]> sigrok.org Git - libsigrok.git/blame - src/input/protocoldata.c
feed_queue: rename routines for submission of a single sample value
[libsigrok.git] / src / input / protocoldata.c
CommitLineData
ff7f7f73
GS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2019-2023 Gerhard Sittig <gerhard.sittig@gmx.net>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20/*
21 * This input module reads data values from an input stream, and sends
22 * the corresponding samples to the sigrok session feed which form the
23 * respective waveform, pretending that a logic analyzer had captured
24 * wire traffic. This allows to feed data to protocol decoders which
25 * were recorded by different means (COM port redirection, pcap(3)
26 * recordings, 3rd party bus analyzers). It can also simplify the
27 * initial creation of protocol decoders by generating synthetic
28 * input data, before real world traffic captures become available.
29 *
30 * This input module "assumes ideal traffic" and absence of protocol
31 * errors. Does _not_ inject error conditions, instead generates valid
32 * bit patterns by naively filling blanks to decorate the payload data
33 * which the input file provides. To yield a stream of samples which
34 * successfully decodes at the recipient's, and upper layer decoders
35 * will see valid data which corresponds to the file's content. Edge
36 * positions and minute timnig details are not adjustable either in
37 * this module (no support for setup or hold times or slew rates etc).
38 * The goal is not to emulate a protocol with all its possibilities to
39 * the fullest detail. The module's purpose is to simplify the import
40 * of values while no capture of the wire traffic was available.
41 *
42 * There are several approaches to using the input module:
43 * - Input data can be a mere bytes sequence. While attributes can get
44 * specified by means of input module options. This is the fastest
45 * approach to accessing raw data that's externally made available.
46 * - An optional leading magic literal supports automatic file type
47 * detection, and obsoletes the -I input module selection. Unwanted
48 * automatic detection is possible but very unlikely. The magic text
49 * was chosen such that its occurance at the very start of payload
50 * data is extremely unlikely, and is easy to work around should the
51 * situation happen. Of course specifying input module options does
52 * necessitate the selection of the input module.
53 * - When the file type magic is present, an optional header section
54 * can follow, and can carry parameters which obsolete the necessity
55 * to specify input module options. The choice of header section
56 * boundaries again reduces the likelyhood of false detection. When
57 * input module options were specified, they take precedence over
58 * input stream content.
59 * - The payload of the input stream (the protocol values) can take
60 * the form of a mere bytes sequence where every byte is a value
61 * (this is the default). Or values can be represented in textual
62 * format when either an input module option or the header section
63 * specify that the input is text. Individual protocol handlers can
64 * also prefer one format over another, while file content and
65 * module options take precedence as usual. Some protocols may not
66 * usefully be described by values only, or may involve values and
67 * numbers larger than a byte, which essentially makes text format
68 * a non-option for these situations.
69 * - The text format supports coments which silently get discarded.
70 * As well as pseudo comments which can affect the interpretation
71 * of the input text, and/or can control properties of protocols
72 * that exceed the mere submission of values. Think chip-select or
73 * ACK/NAK slots or similar.
74 * - It's understood that the text format is more expensive to process,
75 * but is also more versatile. It's assumed that the 'protocoldata'
76 * input format is used for small or mid size capture lengths. The
77 * input module enables quick access to data that became available
78 * by other means. For higher fidelity of real world traffic and for
79 * long captures the native format should be preferred. For error
80 * injection the VCD format might be a better match.
81 * - It should be obvious that raw bytes or input data in text form,
82 * as well as header fields can either be the content of a file on
83 * disk, or can be part of a pipe input. Either the earlier process
84 * in the pipe which provides the values, or an intermediate filter
85 * in the pipe, can provide the decoration.
86 * $ ./gen-values.sh | sigrok-cli -i - ...
87 * $ ./gen-values.sh | cat header - | sigrok-cli -i - ...
88 * - Since the input format supports automatic detection as well as
89 * parameter specs by means of input module options as well as in
90 * file content, the format lends itself equally well to pipelined
91 * or scripted as well as interactive use in different applications.
92 * For pipelines, the header as well as the values (as well as any
93 * mix of these pieces) can be kept in separate locations. Generators
94 * need not provide all of the input stream in a single invocation.
95 * - As a matter of convenience, especially when targetting upper layer
96 * protocol decoders, users need not construct "correctly configured"
97 * from the lower protocol's perspective) waveforms on the wire.
98 * Instead "naive" waveforms which match the decoders' default options
99 * can be used, which eliminates the need to configure non-default
100 * options in decoders (and redundantly do the same thing in the
101 * input module, just to have them match again).
102 * $ ./gen-values.sh | sigrok-cli \
103 * -i - -I protocoldata:protocol=uart:bitrate=57600:frameformat=8e2 \
104 * -P uart:parity=even:baudrate=57600
105 * $ ./gen-values.sh | sigrok-cli \
106 * -i - -I protocoldata:protocol=uart -P uart,midi
107 *
108 * Example invocations:
109 *
110 * $ sigrok-cli -I protocoldata --show
111 *
112 * $ echo "Hello sigrok protocol values!" | \
113 * sigrok-cli \
114 * -I protocoldata:protocol=uart -i - \
115 * -P uart:format=ascii -A uart=rx-data
116 *
117 * $ sigrok-cli -i file.bin -P uart -A uart=rx-data
118 * $ sigrok-cli -i file.txt -P uart:rx=rxtx -A uart
119 * $ sigrok-cli -i file.txt --show
120 * $ sigrok-cli -i file.txt -O ascii:width=4000 | $PAGER
121 *
122 * $ echo "# -- sigrok protocol data values file --" > header.txt
123 * $ echo "# -- sigrok protocol data header start --" >> header.txt
124 * $ echo "protocol=uart" >> header.txt
125 * $ echo "bitrate=100000" >> header.txt
126 * $ echo "frameformat=8e2" >> header.txt
127 * $ echo "textinput=yes" >> header.txt
128 * $ echo "# -- sigrok protocol data header end --" >> header.txt
129 * $ echo "# textinput: radix=16" > values.txt
130 * $ echo "0f 40 a6 28 fa 78 05 19 ee c2 92 70 58 62 09 a9 f1 ca 44 90 d1 07 19 02 00" >> values.txt
131 * $ head header.txt values.txt
132 * $ cat values.txt | cat header.txt - | \
133 * sigrok-cli -i - -P uart:baudrate=100000:parity=even,sbus_futaba -A sbus_futaba
134 *
135 * $ pulseview -i file-spi-text.txt &
136 *
137 * Known issues:
138 * - Only few protocols are implemented so far. Existing handlers have
139 * suggested which infrastructure is required for future extension.
140 * But future handlers may reveal more omissions or assumptions that
141 * need addressing.
142 * - Terminology may be inconsistent, because this input module supports
143 * several protocols which often differ in how they use terms. What is
144 * available:
145 * - The input module constructs waveforms that span multiple traces.
146 * Resulting waveforms are said to have a samplerate. Data that is
147 * kept in that waveform can have a bitrate. Which is essential for
148 * asynchronous communication, but could be unimportant for clocked
149 * protocols. Protocol handlers may adjust their output to enforce
150 * a bitrate, but need not. The timing is an approximation anyway,
151 * does not reflect pauses or jitter or turnarounds which real world
152 * traffic would reveal.
153 * - Protocol handlers can generate an arbitrary number of samples for
154 * a protocol data value. A maximum number of samples per value is
155 * assumed. Variable length samples sequences per data value or per
156 * invocation is supported (and can be considered the typical case).
157 * - Protocol handlers can configure differing widths for the samples
158 * that they derived from input data. These quanta get configured
159 * when the frame format gets interpreted, and are assumed to remain
160 * as they are across data value processing.
161 * - Data values can be considered "a frame" (as seen with UART). But
162 * data values could also be "bytes" or "words" in a protocol, while
163 * "frames" or "transfers" are implemented by different means (as
164 * seen with SPI or I2C). The typical approach would be to control a
165 * "select" signal by means of pseudo comments which are interleaved
166 * with data values.
167 * - Data values need not get forwarded to decoders. They might also
168 * control the processing of the following data values as well as
169 * the waveform construction. This is at the discretion of protocol
170 * handlers, think of slave addresses, preceeding field or value
171 * counts before their data values follow, etc.
172 * - Users may need to specify more options than expected when the file
173 * content is "incomplete". The sequence of scanning builtin defaults,
174 * then file content provided specs, then user specified specs, is
175 * yet to get done. Until then it helps being explicit and thorough.
176 *
177 * TODO (arbitrary order, could partially be outdated)
178 * - Implement the most appropriate order of option scanning. Use
179 * builtin defaults first, file content then, then user specified
180 * options (when available). This shall be most robust and correct.
181 * - Switch to "submit one sample" in feed queue API when available.
182 * The current implementation of this input module uses ugly ifdefs
183 * to adjust to either feed queue API approach.
184 * - (obsoleted by the introduction of support for text format input?)
185 * Introduce TLV support for the binary input format? u32be type,
186 * u64be length, u8[] payload. The complexity of the implementation
187 * in the input module, combined with the complexity of generating
188 * the input stream which uses TLV sections, are currently considered
189 * undesirable for this input module. Do we expect huge files where
190 * the computational cost of text conversion causes pain?
191 * - Extend the UART protocol handler. Implement separate RX and TX
192 * traces. Support tx-only, rx-only, and tx-then-rx input orders.
193 * - Add a 'parallel' protocol handler, which grabs a bit pattern and
194 * derives the waveform in straight forward ways? This would be similar
195 * to the raw binary input module, but the text format could improve
196 * readability, and the input module could generate a clock signal
197 * which isn't part of the input stream. That 'parallel' protocol
198 * could be used as a vehicle to bitbang any other protocol that is
199 * unknown to the input module. The approach is only limited by the
200 * input stream generator's imagination.
201 * - Add other protocol variants. The binary input format was very
202 * limiting, the text format could cover a lot of more cases:
203 * - CAN: Pseudo comments can communicate the frame's flags (and
204 * address type etc). The first data value can be the address. The
205 * second data value or a pseudo comment can hold the CAN frame's
206 * data length (bytes count). Other data values are the 0..8 data
207 * bytes. CAN-FD might be possible with minimal adjustment?
208 * - W1: Pseudo comments can start a frame (initiate RESET). First
209 * value can carry frame length. Data bytes follow. Scans can get
210 * represented as raw bytes (bit count results in full 8bit size).
211 * - Are more than 8 traces desirable? The initial implementation was
212 * motivated by serial communication (UART). More channels were not
213 * needed so far. Even QuadSPI and Hitachi displays fit onto 8 lines.
214 *
215 * See the sigrok.org file format wiki page for details about the syntax
216 * that is supported by this input module. Or see the top of the source
217 * file and its preprocessor symbols to quickly get an idea of known
218 * keywords in input files.
219 */
220
221#include "config.h"
222
223#include <ctype.h>
224#include <libsigrok/libsigrok.h>
225#include <string.h>
226#include <strings.h>
227
228#include "libsigrok-internal.h"
229
230#define LOG_PREFIX "input/protocoldata"
231
232#define CHUNK_SIZE (4 * 1024 * 1024)
233
234/*
235 * Support optional automatic file type detection. Support optionally
236 * embedded options in a header section after the file detection magic
237 * and before the payload data (bytes or text).
238 */
239#define MAGIC_FILE_TYPE "# -- sigrok protocol data values file --"
240#define TEXT_HEAD_START "# -- sigrok protocol data header start --"
241#define TEXT_HEAD_END "# -- sigrok protocol data header end --"
242#define TEXT_COMM_LEADER "#"
243
244#define LABEL_SAMPLERATE "samplerate="
245#define LABEL_BITRATE "bitrate="
246#define LABEL_PROTOCOL "protocol="
247#define LABEL_FRAMEFORMAT "frameformat="
248#define LABEL_TEXTINPUT "textinput="
249
250/*
251 * Options which are embedded in pseudo comments and are related to
252 * how the input module reads the input text stream. Universally
253 * applicable to all text inputs regardless of protocol choice.
254 */
255#define TEXT_INPUT_PREFIX "textinput:"
256#define TEXT_INPUT_RADIX "radix="
257
258/*
259 * Protocol dependent frame formats, the default and absolute limits.
260 * Protocol dependent keywords in pseudo-comments.
261 *
262 * UART assumes 9x2 as the longest useful frameformat. Additional STOP
263 * bits let users insert idle phases between frames, until more general
264 * support for inter-frame gaps is in place. By default the protocol
265 * handler generously adds a few more idle bit times after a UART frame.
266 *
267 * SPI assumes exactly 8 bits per "word". And leaves bit slots around
268 * the byte transmission, to have space where CS asserts or releases.
269 * Including time where SCK changes to its idle level. And requires two
270 * samples per bit time (pos and neg clock phase). The "decoration" also
271 * helps users' interactive exploration of generated waveforms.
272 *
273 * I2C generously assumes six quanta per bit slot, to gracefully allow
274 * for reliable SCL and SDA transitions regardless of samples that result
275 * from prior communication. The longest waveform is a byte (with eight
276 * data bits and an ACK slot). Special symbols like START, and STOP will
277 * fit into that memory while it is not used to communicate a byte.
278 */
279#define UART_HANDLER_NAME "uart"
280#define UART_DFLT_SAMPLERATE SR_MHZ(1)
281#define UART_DFLT_BITRATE 115200
282#define UART_DFLT_FRAMEFMT "8n1"
283#define UART_MIN_DATABITS 5
284#define UART_MAX_DATABITS 9
285#define UART_MAX_STOPBITS 20
286#define UART_ADD_IDLEBITS 2
287#define UART_MAX_WAVELEN (1 + UART_MAX_DATABITS + 1 + UART_MAX_STOPBITS \
288 + UART_ADD_IDLEBITS)
289#define UART_FORMAT_INVERT "inverted"
290/* In addition the usual '8n1' et al are supported. */
291#define UART_PSEUDO_BREAK "break"
292#define UART_PSEUDO_IDLE "idle"
293
294#define SPI_HANDLER_NAME "spi"
295#define SPI_DFLT_SAMPLERATE SR_MHZ(10)
296#define SPI_DFLT_BITRATE SR_MHZ(1)
297#define SPI_DFLT_FRAMEFMT "cs-low,bits=8,mode=0,msb-first"
298#define SPI_MIN_DATABITS 8
299#define SPI_MAX_DATABITS 8
300#define SPI_MAX_WAVELEN (2 + 2 * SPI_MAX_DATABITS + 3)
301#define SPI_FORMAT_CS_LOW "cs-low"
302#define SPI_FORMAT_CS_HIGH "cs-high"
303#define SPI_FORMAT_DATA_BITS "bits="
304#define SPI_FORMAT_SPI_MODE "mode="
305#define SPI_FORMAT_MODE_CPOL "cpol="
306#define SPI_FORMAT_MODE_CPHA "cpha="
307#define SPI_FORMAT_MSB_FIRST "msb-first"
308#define SPI_FORMAT_LSB_FIRST "lsb-first"
309#define SPI_PSEUDO_MOSI_ONLY "mosi-only"
310#define SPI_PSEUDO_MOSI_FIXED "mosi-fixed="
311#define SPI_PSEUDO_MISO_ONLY "miso-only"
312#define SPI_PSEUDO_MISO_FIXED "miso-fixed="
313#define SPI_PSEUDO_MOSI_MISO "mosi-then-miso"
314#define SPI_PSEUDO_MISO_MOSI "miso-then-mosi"
315#define SPI_PSEUDO_CS_ASSERT "cs-assert"
316#define SPI_PSEUDO_CS_RELEASE "cs-release"
317#define SPI_PSEUDO_CS_NEXT "cs-auto-next="
318#define SPI_PSEUDO_IDLE "idle"
319
320#define I2C_HANDLER_NAME "i2c"
321#define I2C_DFLT_SAMPLERATE SR_MHZ(10)
322#define I2C_DFLT_BITRATE SR_KHZ(400)
323#define I2C_DFLT_FRAMEFMT "addr-7bit"
324#define I2C_BITTIME_SLOTS (1 + 8 + 1 + 1)
325#define I2C_BITTIME_QUANTA 6
326#define I2C_ADD_IDLESLOTS 2
327#define I2C_MAX_WAVELEN (I2C_BITTIME_QUANTA * I2C_BITTIME_SLOTS + I2C_ADD_IDLESLOTS)
328#define I2C_FORMAT_ADDR_7BIT "addr-7bit"
329#define I2C_FORMAT_ADDR_10BIT "addr-10bit"
330#define I2C_PSEUDO_START "start"
331#define I2C_PSEUDO_REP_START "repeat-start"
332#define I2C_PSEUDO_STOP "stop"
333#define I2C_PSEUDO_ADDR_WRITE "addr-write="
334#define I2C_PSEUDO_ADDR_READ "addr-read="
335#define I2C_PSEUDO_ACK_NEXT "ack-next="
336#define I2C_PSEUDO_ACK_ONCE "ack-next"
337
338enum textinput_t {
339 INPUT_UNSPEC,
340 INPUT_BYTES,
341 INPUT_TEXT,
342};
343
344static const char *input_format_texts[] = {
345 [INPUT_UNSPEC] = "from-file",
346 [INPUT_BYTES] = "raw-bytes",
347 [INPUT_TEXT] = "text-format",
348};
349
350struct spi_proto_context_t {
351 gboolean needs_mosi, has_mosi;
352 gboolean needs_miso, has_miso;
353 gboolean mosi_first;
354 gboolean cs_active;
355 size_t auto_cs_remain;
356 uint8_t mosi_byte, miso_byte;
357 uint8_t mosi_fixed_value;
358 gboolean mosi_is_fixed;
359 uint8_t miso_fixed_value;
360 gboolean miso_is_fixed;
361};
362
363struct i2c_proto_context_t {
364 size_t ack_remain;
365};
366
367struct context;
368
369struct proto_handler_t {
370 const char *name;
371 struct {
372 uint64_t samplerate;
373 uint64_t bitrate;
374 const char *frame_format;
375 enum textinput_t textinput;
376 } dflt;
377 struct {
378 size_t count;
379 const char **names;
380 } chans;
381 size_t priv_size;
382 int (*check_opts)(struct context *inc);
383 int (*config_frame)(struct context *inc);
384 int (*proc_pseudo)(struct sr_input *in, char *text);
385 int (*proc_value)(struct context *inc, uint32_t value);
386 int (*get_idle_capture)(struct context *inc,
387 size_t *bits, uint8_t *lvls);
388 int (*get_idle_interframe)(struct context *inc,
389 size_t *samples, uint8_t *lvls);
390};
391
392struct context {
393 /* User provided options. */
394 struct user_opts_t {
395 uint64_t samplerate;
396 uint64_t bitrate;
397 const char *proto_name;
398 const char *fmt_text;
399 enum textinput_t textinput;
400 } user_opts;
401 /* Derived at runtime. */
402 struct {
403 uint64_t samplerate;
404 uint64_t bitrate;
405 uint64_t samples_per_bit;
406 char *proto_name;
407 char *fmt_text;
408 enum textinput_t textinput;
409 enum proto_type_t {
410 PROTO_TYPE_NONE,
411 PROTO_TYPE_UART,
412 PROTO_TYPE_SPI,
413 PROTO_TYPE_I2C,
414 PROTO_TYPE_COUNT,
415 } protocol_type;
416 const struct proto_handler_t *prot_hdl;
417 void *prot_priv;
418 union {
419 struct uart_frame_fmt_opts {
420 size_t databit_count;
421 enum {
422 UART_PARITY_NONE,
423 UART_PARITY_ODD,
424 UART_PARITY_EVEN,
425 } parity_type;
426 size_t stopbit_count;
427 gboolean half_stopbit;
428 gboolean inverted;
429 } uart;
430 struct spi_frame_fmt_opts {
431 uint8_t cs_polarity;
432 size_t databit_count;
433 gboolean msb_first;
434 gboolean spi_mode_cpol;
435 gboolean spi_mode_cpha;
436 } spi;
437 struct i2c_frame_fmt_opts {
438 gboolean addr_10bit;
439 } i2c;
440 } frame_format;
441 } curr_opts;
442 /* Module stage. Logic output channels. Session feed. */
443 gboolean scanned_magic;
444 gboolean has_magic;
445 gboolean has_header;
446 gboolean got_header;
447 gboolean started;
448 gboolean meta_sent;
449 size_t channel_count;
450 const char **channel_names;
451 struct feed_queue_logic *feed_logic;
452 /*
453 * Internal state: Allocated space for a theoretical maximum
454 * bit count. Filled in bit pattern for the current data value.
455 * (Stuffing can result in varying bit counts across frames.)
456 *
457 * Keep the bits' width in sample numbers, as well as the bits'
458 * boundaries relative to the start of the protocol frame's
459 * start. Support a number of logic bits per bit time.
460 *
461 * Implementor's note: Due to development history terminology
462 * might slip here. Strictly speaking it's "waveform sections"
463 * that hold samples for a given number of cycles. "A bit" in
464 * the protocol can occupy multiple of these slots to e.g. have
465 * a synchronous clock, or to present setup and hold phases,
466 * etc. Sample data spans several logic signal traces. You get
467 * the idea ...
468 */
469 size_t max_frame_bits; /* Reserved. */
470 size_t top_frame_bits; /* Currently filled. */
471 struct {
472 size_t mul;
473 size_t div;
474 } *bit_scale; /* Quanta scaling. */
475 size_t *sample_edges;
476 size_t *sample_widths;
477 uint8_t *sample_levels; /* Sample data, logic traces. */
478 /* Common support for samples updating by manipulation. */
479 struct {
480 uint8_t idle_levels;
481 uint8_t curr_levels;
482 } samples;
483 /* Internal state of the input text reader. */
484 struct {
485 int base;
486 } read_text;
487 /* Manage state across .reset() calls. Robustness. */
488 struct proto_prev {
489 GSList *sr_channels;
490 GSList *sr_groups;
491 } prev;
492};
493
494/* {{{ frame bits manipulation, waveform construction */
495
496/*
497 * Primitives to construct waveforms for a protocol frame, by sequencing
498 * samples after data values were seen in the input stream. Individual
499 * protocol handlers will use these common routines.
500 *
501 * The general idea is: The protocol handler's options parser determines
502 * the frame format, and derives the maximum number of time slots needed
503 * to represent the waveform. Slots can scale differintly, proportions
504 * get configured once during initialization. All remaining operation
505 * receives arbitrarily interleaved data values and pseudo comments, uses
506 * the pre-allocated and pre-scaled time slots to construct waveforms,
507 * which then get sent to the session bus as if an acquisition device
508 * had captured wire traffic. For clocked signals the "coarse" timing
509 * should never be an issue. Protocol handlers are free to use as many
510 * time slots per bit time as they please or feel necessary.
511 */
512
513static int alloc_frame_storage(struct context *inc)
514{
515 size_t bits, alloc;
516
517 if (!inc)
518 return SR_ERR_ARG;
519
520 if (!inc->max_frame_bits)
521 return SR_ERR_DATA;
522
523 inc->top_frame_bits = 0;
524 bits = inc->max_frame_bits;
525
526 alloc = bits * sizeof(inc->sample_edges[0]);
527 inc->sample_edges = g_malloc0(alloc);
528 alloc = bits * sizeof(inc->sample_widths[0]);
529 inc->sample_widths = g_malloc0(alloc);
530 alloc = bits * sizeof(inc->sample_levels[0]);
531 inc->sample_levels = g_malloc0(alloc);
532 if (!inc->sample_edges || !inc->sample_widths || !inc->sample_levels)
533 return SR_ERR_MALLOC;
534
535 alloc = bits * sizeof(inc->bit_scale[0]);
536 inc->bit_scale = g_malloc0(alloc);
537 if (!inc->bit_scale)
538 return SR_ERR_MALLOC;
539
540 return SR_OK;
541}
542
543/*
544 * Assign an equal bit width to all bits in the frame. Derive the width
545 * from the bitrate and the sampelrate. Protocol handlers optionally can
546 * arrange for "odd bit widths" (either fractions, or multiples, or when
547 * desired any rational at all). Think half-bits, or think quanta within
548 * a bit time, depends on the protocol handler really.
549 *
550 * Implementation note: The input module assumes that the position of
551 * odd length bits will never vary during frame construction. The total
552 * length may vary, 'top' can be smaller than 'max' in every iteration.
553 * It is assumed that frames with odd-length bits have constant layout,
554 * and that stuffing protocols have same-width bits. Odd lengths also
555 * can support bit time quanta, while it's assumed that these always use
556 * the same layout for all generated frames. This constraint is kept in
557 * the implementation, until one of the supported protocols genuinely
558 * requires higher flexibility and the involved complexity and runtime
559 * cost of per-samplepoint adjustment.
560 */
561static int assign_bit_widths(struct context *inc)
562{
563 const struct proto_handler_t *handler;
564 int ret;
565 double bit_edge, bit_time, this_bit_time;
566 uint64_t bit_time_int, bit_time_prev, bit_times_total;
567 size_t idx;
568
569 if (!inc)
570 return SR_ERR_ARG;
571
572 /*
573 * Run the protocol handler's optional configure routine.
574 * It derives the maximum number of "bit slots" that are needed
575 * to represent a protocol frame's waveform.
576 */
577 handler = inc->curr_opts.prot_hdl;
578 if (handler && handler->config_frame) {
579 ret = handler->config_frame(inc);
580 if (ret != SR_OK)
581 return ret;
582 }
583
584 /* Assign bit widths to the protocol frame's bit positions. */
585 bit_time = inc->curr_opts.samplerate;
586 bit_time /= inc->curr_opts.bitrate;
587 inc->curr_opts.samples_per_bit = bit_time + 0.5;
588 sr_dbg("Samplerate %" PRIu64 ", bitrate %" PRIu64 ".",
589 inc->curr_opts.samplerate, inc->curr_opts.bitrate);
590 sr_dbg("Resulting bit width %.2f samples, int %" PRIu64 ".",
591 bit_time, inc->curr_opts.samples_per_bit);
592 bit_edge = 0.0;
593 bit_time_prev = 0;
594 bit_times_total = 0;
595 for (idx = 0; idx < inc->max_frame_bits; idx++) {
596 this_bit_time = bit_time;
597 if (inc->bit_scale[idx].mul)
598 this_bit_time *= inc->bit_scale[idx].mul;
599 if (inc->bit_scale[idx].div)
600 this_bit_time /= inc->bit_scale[idx].div;
601 bit_edge += this_bit_time;
602 bit_time_int = (uint64_t)(bit_edge + 0.5);
603 inc->sample_edges[idx] = bit_time_int;
604 bit_time_int -= bit_time_prev;
605 inc->sample_widths[idx] = bit_time_int;
606 bit_time_prev = inc->sample_edges[idx];
607 bit_times_total += bit_time_int;
608 sr_spew("Bit %zu, width %" PRIu64 ".", idx, bit_time_int);
609 }
610 sr_dbg("Maximum waveform width: %zu slots, %.2f / %zu samples.",
611 inc->max_frame_bits, bit_edge, bit_times_total);
612
613 return SR_OK;
614}
615
616/* Start accumulating the samples for a new part of the waveform. */
617static int wave_clear_sequence(struct context *inc)
618{
619
620 if (!inc)
621 return SR_ERR_ARG;
622
623 inc->top_frame_bits = 0;
624
625 return SR_OK;
626}
627
628/* Append channels' levels to the waveform for another period of samples. */
629static int wave_append_pattern(struct context *inc, uint8_t sample)
630{
631
632 if (!inc)
633 return SR_ERR_ARG;
634
635 if (inc->top_frame_bits >= inc->max_frame_bits)
636 return SR_ERR_DATA;
637
638 inc->sample_levels[inc->top_frame_bits++] = sample;
639
640 return SR_OK;
641}
642
643/* Initially assign idle levels, start the buffer from idle state. */
644static void sample_buffer_preset(struct context *inc, uint8_t idle_sample)
645{
646 inc->samples.idle_levels = idle_sample;
647 inc->samples.curr_levels = idle_sample;
648}
649
650/* Modify the samples buffer by assigning a given traces state. */
651static void sample_buffer_assign(struct context *inc, uint8_t sample)
652{
653 inc->samples.curr_levels = sample;
654}
655
656/* Modify the samples buffer by changing individual traces. */
657static void sample_buffer_modify(struct context *inc,
658 uint8_t set_mask, uint8_t clr_mask)
659{
660 inc->samples.curr_levels |= set_mask;
661 inc->samples.curr_levels &= ~clr_mask;
662}
663
664static void sample_buffer_raise(struct context *inc, uint8_t bits)
665{
666 return sample_buffer_modify(inc, bits, 0);
667}
668
669static void sample_buffer_clear(struct context *inc, uint8_t bits)
670{
671 return sample_buffer_modify(inc, 0, bits);
672}
673
674static void sample_buffer_setclr(struct context *inc,
675 gboolean level, uint8_t mask)
676{
677 if (level)
678 sample_buffer_raise(inc, mask);
679 else
680 sample_buffer_clear(inc, mask);
681}
682
683static void sample_buffer_toggle(struct context *inc, uint8_t mask)
684{
685 inc->samples.curr_levels ^= mask;
686}
687
688/* Reset current sample buffer to idle state. */
689static void sample_buffer_toidle(struct context *inc)
690{
691 inc->samples.curr_levels = inc->samples.idle_levels;
692}
693
694/* Append the buffered samples to the waveform memory. */
695static int wave_append_buffer(struct context *inc)
696{
697 return wave_append_pattern(inc, inc->samples.curr_levels);
698}
699
700/* Send idle level before the first generated frame and at end of capture. */
701static int send_idle_capture(struct context *inc)
702{
703 const struct proto_handler_t *handler;
704 size_t count;
705 uint8_t data;
706 int ret;
707
708 handler = inc->curr_opts.prot_hdl;
709 if (!handler->get_idle_capture)
710 return SR_OK;
711
712 ret = handler->get_idle_capture(inc, &count, &data);
713 if (ret != SR_OK)
714 return ret;
715 count *= inc->curr_opts.samples_per_bit;
716 while (count--) {
f40d8479
GS
717 ret = feed_queue_logic_submit_one(inc->feed_logic,
718 &data, sizeof(data));
ff7f7f73
GS
719 if (ret != SR_OK)
720 return ret;
721 }
722
723 return SR_OK;
724}
725
726/* Optionally send idle level between protocol frames. */
727static int send_idle_interframe(struct context *inc)
728{
729 const struct proto_handler_t *handler;
730 size_t count;
731 uint8_t data;
732 int ret;
733
734 handler = inc->curr_opts.prot_hdl;
735 if (!handler->get_idle_interframe)
736 return SR_OK;
737
738 ret = handler->get_idle_interframe(inc, &count, &data);
739 if (ret != SR_OK)
740 return ret;
741 while (count--) {
f40d8479
GS
742 ret = feed_queue_logic_submit_one(inc->feed_logic,
743 &data, sizeof(data));
ff7f7f73
GS
744 if (ret != SR_OK)
745 return ret;
746 }
747
748 return SR_OK;
749}
750
751/* Forward the previously accumulated samples of the waveform. */
752static int send_frame(struct sr_input *in)
753{
754 struct context *inc;
755 size_t count, index;
756 uint8_t data;
757
758 inc = in->priv;
759
760 for (index = 0; index < inc->top_frame_bits; index++) {
761 data = inc->sample_levels[index];
762 count = inc->sample_widths[index];
763 while (count--) {
f40d8479 764 feed_queue_logic_submit_one(inc->feed_logic,
ff7f7f73
GS
765 &data, sizeof(data));
766 }
767 }
768
769 return SR_OK;
770}
771
772/* }}} frame bits manipulation */
773/* {{{ UART protocol handler */
774
775enum uart_pin_t {
776 UART_PIN_RXTX,
777};
778
779#define UART_PINMASK_RXTX (1UL << UART_PIN_RXTX)
780
781/* UART specific options and frame format check. */
782static int uart_check_opts(struct context *inc)
783{
784 struct uart_frame_fmt_opts *fmt_opts;
785 const char *fmt_text;
786 char **opts, *opt;
787 size_t opt_count, opt_idx;
788 int ret;
789 unsigned long v;
790 char par_text;
791 char *endp;
792 size_t total_bits;
793
794 if (!inc)
795 return SR_ERR_ARG;
796 fmt_opts = &inc->curr_opts.frame_format.uart;
797
798 /* Apply defaults before reading external spec. */
799 memset(fmt_opts, 0, sizeof(*fmt_opts));
800 fmt_opts->databit_count = 8;
801 fmt_opts->parity_type = UART_PARITY_NONE;
802 fmt_opts->stopbit_count = 1;
803 fmt_opts->half_stopbit = FALSE;
804 fmt_opts->inverted = FALSE;
805
806 /* Provide a default UART frame format. */
807 fmt_text = inc->curr_opts.fmt_text;
808 if (!fmt_text || !*fmt_text)
809 fmt_text = UART_DFLT_FRAMEFMT;
810 sr_dbg("UART frame format: %s.", fmt_text);
811
812 /* Parse the comma separated list of user provided options. */
813 opts = g_strsplit_set(fmt_text, ", ", 0);
814 opt_count = g_strv_length(opts);
815 for (opt_idx = 0; opt_idx < opt_count; opt_idx++) {
816 opt = opts[opt_idx];
817 if (!opt || !*opt)
818 continue;
819 sr_spew("UART format option: %s", opt);
820 /*
821 * Check for specific keywords. Before falling back to
822 * attempting the "8n1" et al interpretation.
823 */
824 if (strcmp(opt, UART_FORMAT_INVERT) == 0) {
825 fmt_opts->inverted = TRUE;
826 continue;
827 }
828 /* Parse an "8n1", "8e2", "7o1", or similar input spec. */
829 /* Get the data bits count. */
830 endp = NULL;
831 ret = sr_atoul_base(opt, &v, &endp, 10);
832 if (ret != SR_OK || !endp)
833 return SR_ERR_DATA;
834 opt = endp;
835 if (v < UART_MIN_DATABITS || v > UART_MAX_DATABITS)
836 return SR_ERR_DATA;
837 fmt_opts->databit_count = v;
838 /* Get the parity type. */
839 par_text = tolower((int)*opt++);
840 switch (par_text) {
841 case 'n':
842 fmt_opts->parity_type = UART_PARITY_NONE;
843 break;
844 case 'o':
845 fmt_opts->parity_type = UART_PARITY_ODD;
846 break;
847 case 'e':
848 fmt_opts->parity_type = UART_PARITY_EVEN;
849 break;
850 default:
851 return SR_ERR_DATA;
852 }
853 /* Get the stop bits count. Supports half bits too. */
854 endp = NULL;
855 ret = sr_atoul_base(opt, &v, &endp, 10);
856 if (ret != SR_OK || !endp)
857 return SR_ERR_DATA;
858 opt = endp;
859 if (v > UART_MAX_STOPBITS)
860 return SR_ERR_DATA;
861 fmt_opts->stopbit_count = v;
862 if (g_ascii_strcasecmp(opt, ".5") == 0) {
863 opt += strlen(".5");
864 fmt_opts->half_stopbit = TRUE;
865 }
866 /* Incomplete consumption of input text is fatal. */
867 if (*opt) {
868 sr_err("Unprocessed frame format remainder: %s.", opt);
869 return SR_ERR_DATA;
870 }
871 continue;
872 }
873 g_strfreev(opts);
874
875 /*
876 * Calculate the total number of bit times in the UART frame.
877 * Add a few more bit times to the reserved space. They usually
878 * are not occupied during data transmission, but are useful to
879 * have for special symbols (BREAK, IDLE).
880 */
881 total_bits = 1; /* START bit, unconditional. */
882 total_bits += fmt_opts->databit_count;
883 total_bits += (fmt_opts->parity_type != UART_PARITY_NONE) ? 1 : 0;
884 total_bits += fmt_opts->stopbit_count;
885 total_bits += fmt_opts->half_stopbit ? 1 : 0;
886 total_bits += UART_ADD_IDLEBITS;
887 sr_dbg("UART frame: total bits %lu.", total_bits);
888 if (total_bits > UART_MAX_WAVELEN)
889 return SR_ERR_DATA;
890 inc->max_frame_bits = total_bits;
891
892 return SR_OK;
893}
894
895/*
896 * Configure the frame's bit widths when not identical across the
897 * complete frame. Think half STOP bits.
898 * Preset the sample data for an idle bus.
899 */
900static int uart_config_frame(struct context *inc)
901{
902 struct uart_frame_fmt_opts *fmt_opts;
903 size_t bit_idx;
904 uint8_t sample;
905
906 if (!inc)
907 return SR_ERR_ARG;
908 fmt_opts = &inc->curr_opts.frame_format.uart;
909
910 /*
911 * Position after the START bit. Advance over DATA, PARITY and
912 * (full) STOP bits. Then set the trailing STOP bit to half if
913 * needed. Make the trailing IDLE period after a UART frame
914 * wider than regular bit times. Add an even wider IDLE period
915 * which is used for special symbols.
916 */
917 bit_idx = 1;
918 bit_idx += fmt_opts->databit_count;
919 bit_idx += (fmt_opts->parity_type == UART_PARITY_NONE) ? 0 : 1;
920 bit_idx += fmt_opts->stopbit_count;
921 if (fmt_opts->half_stopbit) {
922 sr_dbg("Setting bit index %zu to half width.", bit_idx);
923 inc->bit_scale[bit_idx].div = 2;
924 bit_idx++;
925 }
926 inc->bit_scale[bit_idx++].mul = 2;
927 inc->bit_scale[bit_idx++].mul = 4;
928
929 /* Start from idle signal levels (high when not inverted). */
930 sample = 0;
931 if (!fmt_opts->inverted)
932 sample |= UART_PINMASK_RXTX;
933 sample_buffer_preset(inc, sample);
934
935 return SR_OK;
936}
937
938/* Create samples for a special UART frame (IDLE, BREAK). */
939static int uart_write_special(struct context *inc, uint8_t level)
940{
941 struct uart_frame_fmt_opts *fmt_opts;
942 int ret;
943 size_t bits;
944
945 if (!inc)
946 return SR_ERR_ARG;
947 fmt_opts = &inc->curr_opts.frame_format.uart;
948
949 ret = wave_clear_sequence(inc);
950 if (ret != SR_OK)
951 return ret;
952
953 /*
954 * Set the same level for all bit slots, covering all of
955 * START and DATA (and PARITY) and STOP. This allows the
956 * simulation of BREAK and IDLE phases.
957 */
958 if (fmt_opts->inverted)
959 level = !level;
960 sample_buffer_setclr(inc, level, UART_PINMASK_RXTX);
961 bits = 1; /* START */
962 bits += fmt_opts->databit_count;
963 bits += (fmt_opts->parity_type != UART_PARITY_NONE) ? 1 : 0;
964 bits += fmt_opts->stopbit_count;
965 bits += fmt_opts->half_stopbit ? 1 : 0;
966 while (bits--) {
967 ret = wave_append_buffer(inc);
968 if (ret != SR_OK)
969 return ret;
970 }
971
972 /*
973 * Force a few more idle bit times. This does not affect a
974 * caller requested IDLE symbol. But helps separate (i.e.
975 * robustly detect) several caller requested BREAK symbols.
976 * Also separates those specials from subsequent data bytes.
977 */
978 sample_buffer_toidle(inc);
979 bits = UART_ADD_IDLEBITS;
980 while (bits--) {
981 ret = wave_append_buffer(inc);
982 if (ret != SR_OK)
983 return ret;
984 }
985
986 return SR_OK;
987}
988
989/* Process UART protocol specific pseudo comments. */
990static int uart_proc_pseudo(struct sr_input *in, char *line)
991{
992 struct context *inc;
993 char *word;
994 int ret;
995
996 inc = in->priv;
997
998 while (line) {
999 word = sr_text_next_word(line, &line);
1000 if (!word)
1001 break;
1002 if (!*word)
1003 continue;
1004 if (strcmp(word, UART_PSEUDO_BREAK) == 0) {
1005 ret = uart_write_special(inc, 0);
1006 if (ret != SR_OK)
1007 return ret;
1008 ret = send_frame(in);
1009 if (ret != SR_OK)
1010 return ret;
1011 continue;
1012 }
1013 if (strcmp(word, UART_PSEUDO_IDLE) == 0) {
1014 ret = uart_write_special(inc, 1);
1015 if (ret != SR_OK)
1016 return ret;
1017 ret = send_frame(in);
1018 if (ret != SR_OK)
1019 return ret;
1020 continue;
1021 }
1022 return SR_ERR_DATA;
1023 }
1024
1025 return SR_OK;
1026}
1027
1028/*
1029 * Create the UART frame's waveform for the given data value.
1030 *
1031 * In theory the protocol handler could setup START and STOP once during
1032 * initialization. But the overhead compares to DATA and PARITY is small.
1033 * And unconditional START/STOP would break the creation of BREAK and
1034 * IDLE frames, or complicate their construction and recovery afterwards.
1035 * A future implementation might as well support UART traffic on multiple
1036 * traces, including interleaved bidirectional communication. So let's
1037 * keep the implementation simple. Execution time is not a priority.
1038 */
1039static int uart_proc_value(struct context *inc, uint32_t value)
1040{
1041 struct uart_frame_fmt_opts *fmt_opts;
1042 int ret;
1043 size_t bits;
1044 int par_bit, data_bit;
1045
1046 if (!inc)
1047 return SR_ERR_ARG;
1048 fmt_opts = &inc->curr_opts.frame_format.uart;
1049
1050 ret = wave_clear_sequence(inc);
1051 if (ret != SR_OK)
1052 return ret;
1053
1054 /* START bit, unconditional, always 0. */
1055 sample_buffer_clear(inc, UART_PINMASK_RXTX);
1056 if (fmt_opts->inverted)
1057 sample_buffer_toggle(inc, UART_PINMASK_RXTX);
1058 ret = wave_append_buffer(inc);
1059
1060 /* DATA bits. Track parity here (unconditionally). */
1061 par_bit = 0;
1062 bits = fmt_opts->databit_count;
1063 while (bits--) {
1064 data_bit = value & 0x01;
1065 value >>= 1;
1066 par_bit ^= data_bit;
1067 if (fmt_opts->inverted)
1068 data_bit = !data_bit;
1069 sample_buffer_setclr(inc, data_bit, UART_PINMASK_RXTX);
1070 ret = wave_append_buffer(inc);
1071 if (ret != SR_OK)
1072 return ret;
1073 }
1074
1075 /* PARITY bit. Emission is optional. */
1076 switch (fmt_opts->parity_type) {
1077 case UART_PARITY_ODD:
1078 data_bit = par_bit ? 0 : 1;
1079 bits = 1;
1080 break;
1081 case UART_PARITY_EVEN:
1082 data_bit = par_bit ? 1 : 0;
1083 bits = 1;
1084 break;
1085 default:
1086 data_bit = 0;
1087 bits = 0;
1088 break;
1089 }
1090 if (bits) {
1091 if (fmt_opts->inverted)
1092 data_bit = !data_bit;
1093 sample_buffer_setclr(inc, data_bit, UART_PINMASK_RXTX);
1094 ret = wave_append_buffer(inc);
1095 if (ret != SR_OK)
1096 return ret;
1097 }
1098
1099 /* STOP bits. Optional. */
1100 sample_buffer_raise(inc, UART_PINMASK_RXTX);
1101 if (fmt_opts->inverted)
1102 sample_buffer_toggle(inc, UART_PINMASK_RXTX);
1103 bits = fmt_opts->stopbit_count;
1104 bits += fmt_opts->half_stopbit ? 1 : 0;
1105 while (bits--) {
1106 ret = wave_append_buffer(inc);
1107 if (ret != SR_OK)
1108 return ret;
1109 }
1110
1111 /*
1112 * Force some idle time after the UART frame.
1113 * A little shorter than for special symbols.
1114 */
1115 sample_buffer_toidle(inc);
1116 bits = UART_ADD_IDLEBITS - 1;
1117 while (bits--) {
1118 ret = wave_append_buffer(inc);
1119 if (ret != SR_OK)
1120 return ret;
1121 }
1122
1123 return SR_OK;
1124}
1125
1126/* Start/end the logic trace with a few bit times of idle level. */
1127static int uart_get_idle_capture(struct context *inc,
1128 size_t *bitcount, uint8_t *sample)
1129{
1130
1131 /* Describe a UART frame's length of idle level. */
1132 if (bitcount)
1133 *bitcount = inc->max_frame_bits;
1134 if (sample)
1135 *sample = inc->samples.idle_levels;
1136 return SR_OK;
1137}
1138
1139/* Arrange for a few samples of idle level between UART frames. */
1140static int uart_get_idle_interframe(struct context *inc,
1141 size_t *samplecount, uint8_t *sample)
1142{
1143
1144 (void)inc;
1145
1146 /*
1147 * Regular waveform creation for UART frames already includes
1148 * padding between UART frames. That is why we don't need to
1149 * add extra inter-frame samples. Yet prepare the implementation
1150 * for when we need or want to add a few more idle samples.
1151 */
1152 if (samplecount) {
1153 *samplecount = inc->curr_opts.samples_per_bit;
1154 *samplecount *= 0;
1155 }
1156 if (sample)
1157 *sample = inc->samples.idle_levels;
1158 return SR_OK;
1159}
1160
1161/* }}} UART protocol handler */
1162/* {{{ SPI protocol handler */
1163
1164enum spi_pin_t {
1165 SPI_PIN_SCK,
1166 SPI_PIN_MISO,
1167 SPI_PIN_MOSI,
1168 SPI_PIN_CS,
1169 SPI_PIN_COUNT,
1170};
1171
1172#define SPI_PINMASK_SCK (1UL << SPI_PIN_SCK)
1173#define SPI_PINMASK_MISO (1UL << SPI_PIN_MISO)
1174#define SPI_PINMASK_MOSI (1UL << SPI_PIN_MOSI)
1175#define SPI_PINMASK_CS (1UL << SPI_PIN_CS)
1176
1177/* "Forget" data which was seen before. */
1178static void spi_value_discard_prev_data(struct context *inc)
1179{
1180 struct spi_proto_context_t *incs;
1181
1182 incs = inc->curr_opts.prot_priv;
1183 incs->has_mosi = !incs->needs_mosi;
1184 incs->has_miso = !incs->needs_miso;
1185 incs->mosi_byte = 0;
1186 incs->miso_byte = 0;
1187}
1188
1189/* Check whether all required values for the byte time were seen. */
1190static gboolean spi_value_is_bytes_complete(struct context *inc)
1191{
1192 struct spi_proto_context_t *incs;
1193
1194 incs = inc->curr_opts.prot_priv;
1195
1196 return incs->has_mosi && incs->has_miso;
1197}
1198
1199/* Arrange for data reception before waveform emission. */
1200static void spi_pseudo_data_order(struct context *inc,
1201 gboolean needs_mosi, gboolean needs_miso, gboolean mosi_first)
1202{
1203 struct spi_proto_context_t *incs;
1204
1205 incs = inc->curr_opts.prot_priv;
1206
1207 incs->needs_mosi = needs_mosi;
1208 incs->needs_miso = needs_miso;
1209 incs->mosi_first = mosi_first;
1210 if (needs_mosi)
1211 incs->mosi_is_fixed = FALSE;
1212 if (needs_miso)
1213 incs->miso_is_fixed = FALSE;
1214 spi_value_discard_prev_data(inc);
1215}
1216
1217static void spi_pseudo_mosi_fixed(struct context *inc, uint8_t v)
1218{
1219 struct spi_proto_context_t *incs;
1220
1221 incs = inc->curr_opts.prot_priv;
1222
1223 incs->mosi_fixed_value = v;
1224 incs->mosi_is_fixed = TRUE;
1225}
1226
1227static void spi_pseudo_miso_fixed(struct context *inc, uint8_t v)
1228{
1229 struct spi_proto_context_t *incs;
1230
1231 incs = inc->curr_opts.prot_priv;
1232
1233 incs->miso_fixed_value = v;
1234 incs->miso_is_fixed = TRUE;
1235}
1236
1237/* Explicit CS control. Arrange for next CS level, track state to keep it. */
1238static void spi_pseudo_select_control(struct context *inc, gboolean cs_active)
1239{
1240 struct spi_frame_fmt_opts *fmt_opts;
1241 struct spi_proto_context_t *incs;
1242 uint8_t cs_level, sck_level;
1243
1244 fmt_opts = &inc->curr_opts.frame_format.spi;
1245 incs = inc->curr_opts.prot_priv;
1246
1247 /* Track current "CS active" state. */
1248 incs->cs_active = cs_active;
1249 incs->auto_cs_remain = 0;
1250
1251 /* Derive current "CS pin level". Update sample data buffer. */
1252 cs_level = 1 - fmt_opts->cs_polarity;
1253 if (incs->cs_active)
1254 cs_level = fmt_opts->cs_polarity;
1255 sample_buffer_setclr(inc, cs_level, SPI_PINMASK_CS);
1256
1257 /* Derive the idle "SCK level" from the SPI mode's CPOL. */
1258 sck_level = fmt_opts->spi_mode_cpol ? 1 : 0;
1259 sample_buffer_setclr(inc, sck_level, SPI_PINMASK_SCK);
1260}
1261
1262/* Arrange for automatic CS release after transfer length. Starts the phase. */
1263static void spi_pseudo_auto_select(struct context *inc, size_t length)
1264{
1265 struct spi_frame_fmt_opts *fmt_opts;
1266 struct spi_proto_context_t *incs;
1267 uint8_t cs_level;
1268
1269 fmt_opts = &inc->curr_opts.frame_format.spi;
1270 incs = inc->curr_opts.prot_priv;
1271
1272 /* Track current "CS active" state. */
1273 incs->cs_active = TRUE;
1274 incs->auto_cs_remain = length;
1275
1276 /* Derive current "CS pin level". Update sample data buffer. */
1277 cs_level = 1 - fmt_opts->cs_polarity;
1278 if (incs->cs_active)
1279 cs_level = fmt_opts->cs_polarity;
1280 sample_buffer_setclr(inc, cs_level, SPI_PINMASK_CS);
1281}
1282
1283/* Check for automatic CS release. Decrements, yields result. No action here. */
1284static gboolean spi_auto_select_ends(struct context *inc)
1285{
1286 struct spi_proto_context_t *incs;
1287
1288 incs = inc->curr_opts.prot_priv;
1289 if (!incs->auto_cs_remain)
1290 return FALSE;
1291
1292 incs->auto_cs_remain--;
1293 if (incs->auto_cs_remain)
1294 return FALSE;
1295
1296 /*
1297 * DON'T release CS yet. The last data is yet to get sent.
1298 * Keep the current "CS pin level", but tell the caller that
1299 * CS will be released after transmission of that last data.
1300 */
1301 return TRUE;
1302}
1303
1304/* Update for automatic CS release after last data was sent. */
1305static void spi_auto_select_update(struct context *inc)
1306{
1307 struct spi_frame_fmt_opts *fmt_opts;
1308 struct spi_proto_context_t *incs;
1309 uint8_t cs_level;
1310
1311 fmt_opts = &inc->curr_opts.frame_format.spi;
1312 incs = inc->curr_opts.prot_priv;
1313
1314 /* Track current "CS active" state. */
1315 incs->cs_active = FALSE;
1316 incs->auto_cs_remain = 0;
1317
1318 /* Derive current "CS pin level". Map to bits pattern. */
1319 cs_level = 1 - fmt_opts->cs_polarity;
1320 sample_buffer_setclr(inc, cs_level, SPI_PINMASK_CS);
1321}
1322
1323/*
1324 * Create the waveforms for one SPI byte. Also cover idle periods:
1325 * Dummy/padding bytes within a frame with clock. Idle lines outside
1326 * of frames without clock edges. Optional automatic CS release with
1327 * resulting inter-frame gap.
1328 */
1329static int spi_write_frame_patterns(struct context *inc,
1330 gboolean idle, gboolean cs_release)
1331{
1332 struct spi_proto_context_t *incs;
1333 struct spi_frame_fmt_opts *fmt_opts;
1334 int ret;
1335 uint8_t mosi_bit, miso_bit;
1336 size_t bits;
1337
1338 if (!inc)
1339 return SR_ERR_ARG;
1340 incs = inc->curr_opts.prot_priv;
1341 fmt_opts = &inc->curr_opts.frame_format.spi;
1342
1343 /* Apply fixed values before drawing the waveform. */
1344 if (incs->mosi_is_fixed)
1345 incs->mosi_byte = incs->mosi_fixed_value;
1346 if (incs->miso_is_fixed)
1347 incs->miso_byte = incs->miso_fixed_value;
1348
1349 ret = wave_clear_sequence(inc);
1350 if (ret != SR_OK)
1351 return ret;
1352
1353 /* Provide two samples with idle SCK and current CS. */
1354 ret = wave_append_buffer(inc);
1355 if (ret != SR_OK)
1356 return ret;
1357 ret = wave_append_buffer(inc);
1358 if (ret != SR_OK)
1359 return ret;
1360
1361 /*
1362 * Provide two samples per DATABIT time slot. Keep CS as is.
1363 * Toggle SCK according to CPHA specs. Shift out MOSI and MISO
1364 * in the configured order.
1365 *
1366 * Force dummy MOSI/MISO bits for idle bytes within a frame.
1367 * Skip SCK toggling for idle "frames" outside of active CS.
1368 */
1369 bits = fmt_opts->databit_count;
1370 while (bits--) {
1371 /*
1372 * First half-period. Provide next DATABIT values.
1373 * Toggle SCK here when CPHA is set.
1374 */
1375 if (fmt_opts->msb_first) {
1376 mosi_bit = incs->mosi_byte & 0x80;
1377 miso_bit = incs->miso_byte & 0x80;
1378 incs->mosi_byte <<= 1;
1379 incs->miso_byte <<= 1;
1380 } else {
1381 mosi_bit = incs->mosi_byte & 0x01;
1382 miso_bit = incs->miso_byte & 0x01;
1383 incs->mosi_byte >>= 1;
1384 incs->miso_byte >>= 1;
1385 }
1386 if (incs->cs_active && !idle) {
1387 sample_buffer_setclr(inc, mosi_bit, SPI_PINMASK_MOSI);
1388 sample_buffer_setclr(inc, miso_bit, SPI_PINMASK_MISO);
1389 }
1390 if (fmt_opts->spi_mode_cpha && incs->cs_active)
1391 sample_buffer_toggle(inc, SPI_PINMASK_SCK);
1392 ret = wave_append_buffer(inc);
1393 if (ret != SR_OK)
1394 return ret;
1395 /* Second half-period. Keep DATABIT, toggle SCK. */
1396 if (incs->cs_active)
1397 sample_buffer_toggle(inc, SPI_PINMASK_SCK);
1398 ret = wave_append_buffer(inc);
1399 if (ret != SR_OK)
1400 return ret;
1401 /* Toggle SCK again unless done above due to CPHA. */
1402 if (!fmt_opts->spi_mode_cpha && incs->cs_active)
1403 sample_buffer_toggle(inc, SPI_PINMASK_SCK);
1404 }
1405
1406 /*
1407 * Hold the waveform for another sample period. Happens to
1408 * also communicate the most recent SCK pin level.
1409 *
1410 * Optionally auto-release the CS signal after sending the
1411 * last data byte. Update the CS trace's level. Add another
1412 * (long) bit slot to present an inter-frame gap.
1413 */
1414 ret = wave_append_buffer(inc);
1415 if (ret != SR_OK)
1416 return ret;
1417 if (cs_release)
1418 spi_auto_select_update(inc);
1419 ret = wave_append_buffer(inc);
1420 if (ret != SR_OK)
1421 return ret;
1422 if (cs_release) {
1423 ret = wave_append_buffer(inc);
1424 if (ret != SR_OK)
1425 return ret;
1426 }
1427
1428 return SR_OK;
1429}
1430
1431/* SPI specific options and frame format check. */
1432static int spi_check_opts(struct context *inc)
1433{
1434 struct spi_frame_fmt_opts *fmt_opts;
1435 const char *fmt_text;
1436 char **opts, *opt;
1437 size_t opt_count, opt_idx;
1438 int ret;
1439 unsigned long v;
1440 char *endp;
1441 size_t total_bits;
1442
1443 if (!inc)
1444 return SR_ERR_ARG;
1445 fmt_opts = &inc->curr_opts.frame_format.spi;
1446
1447 /* Setup defaults before reading external specs. */
1448 fmt_opts->cs_polarity = 0;
1449 fmt_opts->databit_count = SPI_MIN_DATABITS;
1450 fmt_opts->msb_first = TRUE;
1451 fmt_opts->spi_mode_cpol = FALSE;
1452 fmt_opts->spi_mode_cpha = FALSE;
1453
1454 /* Provide a default SPI frame format. */
1455 fmt_text = inc->curr_opts.fmt_text;
1456 if (!fmt_text || !*fmt_text)
1457 fmt_text = SPI_DFLT_FRAMEFMT;
1458 sr_dbg("SPI frame format: %s.", fmt_text);
1459
1460 /* Accept comma separated key=value pairs of specs. */
1461 opts = g_strsplit_set(fmt_text, ", ", 0);
1462 opt_count = g_strv_length(opts);
1463 for (opt_idx = 0; opt_idx < opt_count; opt_idx++) {
1464 opt = opts[opt_idx];
1465 if (!opt || !*opt)
1466 continue;
1467 sr_spew("SPI format option: %s.", opt);
1468 if (strcmp(opt, SPI_FORMAT_CS_LOW) == 0) {
1469 sr_spew("SPI chip select: low.");
1470 fmt_opts->cs_polarity = 0;
1471 continue;
1472 }
1473 if (strcmp(opt, SPI_FORMAT_CS_HIGH) == 0) {
1474 sr_spew("SPI chip select: high.");
1475 fmt_opts->cs_polarity = 1;
1476 continue;
1477 }
1478 if (g_str_has_prefix(opt, SPI_FORMAT_DATA_BITS)) {
1479 opt += strlen(SPI_FORMAT_DATA_BITS);
1480 endp = NULL;
1481 ret = sr_atoul_base(opt, &v, &endp, 10);
1482 if (ret != SR_OK)
1483 return ret;
1484 if (!endp || *endp)
1485 return SR_ERR_ARG;
1486 sr_spew("SPI word size: %lu.", v);
1487 if (v < SPI_MIN_DATABITS || v > SPI_MAX_DATABITS)
1488 return SR_ERR_ARG;
1489 fmt_opts->databit_count = v;
1490 continue;
1491 }
1492 if (g_str_has_prefix(opt, SPI_FORMAT_SPI_MODE)) {
1493 opt += strlen(SPI_FORMAT_SPI_MODE);
1494 endp = NULL;
1495 ret = sr_atoul_base(opt, &v, &endp, 10);
1496 if (ret != SR_OK)
1497 return ret;
1498 if (!endp || *endp)
1499 return SR_ERR_ARG;
1500 sr_spew("SPI mode: %lu.", v);
1501 if (v > 3)
1502 return SR_ERR_ARG;
1503 fmt_opts->spi_mode_cpol = v & (1UL << 1);
1504 fmt_opts->spi_mode_cpha = v & (1UL << 0);
1505 continue;
1506 }
1507 if (g_str_has_prefix(opt, SPI_FORMAT_MODE_CPOL)) {
1508 opt += strlen(SPI_FORMAT_MODE_CPOL);
1509 endp = NULL;
1510 ret = sr_atoul_base(opt, &v, &endp, 10);
1511 if (ret != SR_OK)
1512 return ret;
1513 if (!endp || *endp)
1514 return SR_ERR_ARG;
1515 sr_spew("SPI cpol: %lu.", v);
1516 if (v > 1)
1517 return SR_ERR_ARG;
1518 fmt_opts->spi_mode_cpol = !!v;
1519 continue;
1520 }
1521 if (g_str_has_prefix(opt, SPI_FORMAT_MODE_CPHA)) {
1522 opt += strlen(SPI_FORMAT_MODE_CPHA);
1523 endp = NULL;
1524 ret = sr_atoul_base(opt, &v, &endp, 10);
1525 if (ret != SR_OK)
1526 return ret;
1527 if (!endp || *endp)
1528 return SR_ERR_ARG;
1529 sr_spew("SPI cpha: %lu.", v);
1530 if (v > 1)
1531 return SR_ERR_ARG;
1532 fmt_opts->spi_mode_cpha = !!v;
1533 continue;
1534 }
1535 if (strcmp(opt, SPI_FORMAT_MSB_FIRST) == 0) {
1536 sr_spew("SPI endianess: MSB first.");
1537 fmt_opts->msb_first = 1;
1538 continue;
1539 }
1540 if (strcmp(opt, SPI_FORMAT_LSB_FIRST) == 0) {
1541 sr_spew("SPI endianess: LSB first.");
1542 fmt_opts->msb_first = 0;
1543 continue;
1544 }
1545 return SR_ERR_ARG;
1546 }
1547 g_strfreev(opts);
1548
1549 /*
1550 * Get the total bit count. Add slack for CS control, and to
1551 * visually separate bytes in frames. Multiply data bit count
1552 * for the creation of two clock half-periods.
1553 */
1554 total_bits = 2;
1555 total_bits += 2 * fmt_opts->databit_count;
1556 total_bits += 3;
1557
1558 sr_dbg("SPI frame: total bits %lu.", total_bits);
1559 if (total_bits > SPI_MAX_WAVELEN)
1560 return SR_ERR_DATA;
1561 inc->max_frame_bits = total_bits;
1562
1563 return SR_OK;
1564}
1565
1566/*
1567 * Setup half-width slots for the two halves of a DATABIT time. Keep
1568 * the "decoration" (CS control) at full width. Setup a rather long
1569 * last slot for potential inter-frame gaps.
1570 *
1571 * Preset CS and SCK from their idle levels according to the frame format
1572 * configuration. So that idle times outside of SPI transfers are covered
1573 * with simple logic despite the protocol's flexibility.
1574 */
1575static int spi_config_frame(struct context *inc)
1576{
1577 struct spi_frame_fmt_opts *fmt_opts;
1578 size_t bit_idx, bit_count;
1579
1580 if (!inc)
1581 return SR_ERR_ARG;
1582 fmt_opts = &inc->curr_opts.frame_format.spi;
1583
1584 /* Configure DATABIT positions for half width (for clock period). */
1585 bit_idx = 2;
1586 bit_count = fmt_opts->databit_count;
1587 while (bit_count--) {
1588 inc->bit_scale[bit_idx + 0].div = 2;
1589 inc->bit_scale[bit_idx + 1].div = 2;
1590 bit_idx += 2;
1591 }
1592 bit_idx += 2;
1593 inc->bit_scale[bit_idx].mul = fmt_opts->databit_count;
1594
1595 /*
1596 * Seed the protocol handler's internal state before seeing
1597 * first data values. To properly cover idle periods, and to
1598 * operate correctly in the absence of pseudo comments.
1599 *
1600 * Use internal helpers for sample data initialization. Then
1601 * grab the resulting pin levels as the idle state.
1602 */
1603 spi_value_discard_prev_data(inc);
1604 spi_pseudo_data_order(inc, TRUE, TRUE, TRUE);
1605 spi_pseudo_select_control(inc, FALSE);
1606 sample_buffer_preset(inc, inc->samples.curr_levels);
1607
1608 return SR_OK;
1609}
1610
1611/*
1612 * Process protocol dependent pseudo comments. Can affect future frame
1613 * construction and submission, or can immediately emit "inter frame"
1614 * bit patterns like chip select control.
1615 */
1616static int spi_proc_pseudo(struct sr_input *in, char *line)
1617{
1618 struct context *inc;
1619 char *word, *endp;
1620 int ret;
1621 unsigned long v;
1622
1623 inc = in->priv;
1624
1625 while (line) {
1626 word = sr_text_next_word(line, &line);
1627 if (!word)
1628 break;
1629 if (!*word)
1630 continue;
1631 if (strcmp(word, SPI_PSEUDO_MOSI_ONLY) == 0) {
1632 sr_spew("SPI pseudo: MOSI only");
1633 spi_pseudo_data_order(inc, TRUE, FALSE, TRUE);
1634 continue;
1635 }
1636 if (g_str_has_prefix(word, SPI_PSEUDO_MOSI_FIXED)) {
1637 word += strlen(SPI_PSEUDO_MOSI_FIXED);
1638 endp = NULL;
1639 ret = sr_atoul_base(word, &v, &endp, inc->read_text.base);
1640 if (ret != SR_OK)
1641 return ret;
1642 if (!endp || *endp)
1643 return SR_ERR_ARG;
1644 sr_spew("SPI pseudo: MOSI fixed %lu", v);
1645 spi_pseudo_mosi_fixed(inc, v);
1646 continue;
1647 }
1648 if (strcmp(word, SPI_PSEUDO_MISO_ONLY) == 0) {
1649 sr_spew("SPI pseudo: MISO only");
1650 spi_pseudo_data_order(inc, FALSE, TRUE, FALSE);
1651 continue;
1652 }
1653 if (g_str_has_prefix(word, SPI_PSEUDO_MISO_FIXED)) {
1654 word += strlen(SPI_PSEUDO_MISO_FIXED);
1655 endp = NULL;
1656 ret = sr_atoul_base(word, &v, &endp, inc->read_text.base);
1657 if (ret != SR_OK)
1658 return ret;
1659 if (!endp || *endp)
1660 return SR_ERR_ARG;
1661 sr_spew("SPI pseudo: MISO fixed %lu", v);
1662 spi_pseudo_miso_fixed(inc, v);
1663 continue;
1664 }
1665 if (strcmp(word, SPI_PSEUDO_MOSI_MISO) == 0) {
1666 sr_spew("SPI pseudo: MOSI then MISO");
1667 spi_pseudo_data_order(inc, TRUE, TRUE, TRUE);
1668 continue;
1669 }
1670 if (strcmp(word, SPI_PSEUDO_MISO_MOSI) == 0) {
1671 sr_spew("SPI pseudo: MISO then MOSI");
1672 spi_pseudo_data_order(inc, TRUE, TRUE, FALSE);
1673 continue;
1674 }
1675 if (strcmp(word, SPI_PSEUDO_CS_ASSERT) == 0) {
1676 sr_spew("SPI pseudo: CS assert");
1677 spi_pseudo_select_control(inc, TRUE);
1678 continue;
1679 }
1680 if (strcmp(word, SPI_PSEUDO_CS_RELEASE) == 0) {
1681 sr_spew("SPI pseudo: CS release");
1682 /* Release CS. Force IDLE to display the pin change. */
1683 spi_pseudo_select_control(inc, FALSE);
1684 ret = spi_write_frame_patterns(inc, TRUE, FALSE);
1685 if (ret != SR_OK)
1686 return ret;
1687 ret = send_frame(in);
1688 if (ret != SR_OK)
1689 return ret;
1690 continue;
1691 }
1692 if (g_str_has_prefix(word, SPI_PSEUDO_CS_NEXT)) {
1693 word += strlen(SPI_PSEUDO_CS_NEXT);
1694 endp = NULL;
1695 ret = sr_atoul_base(word, &v, &endp, 0);
1696 if (ret != SR_OK)
1697 return ret;
1698 if (!endp || *endp)
1699 return SR_ERR_ARG;
1700 sr_spew("SPI pseudo: CS auto next %lu", v);
1701 spi_pseudo_auto_select(inc, v);
1702 continue;
1703 }
1704 if (strcmp(word, SPI_PSEUDO_IDLE) == 0) {
1705 sr_spew("SPI pseudo: idle");
1706 ret = spi_write_frame_patterns(inc, TRUE, FALSE);
1707 if (ret != SR_OK)
1708 return ret;
1709 ret = send_frame(in);
1710 if (ret != SR_OK)
1711 return ret;
1712 continue;
1713 }
1714 return SR_ERR_DATA;
1715 }
1716
1717 return SR_OK;
1718}
1719
1720/*
1721 * Create the frame's waveform for the given data value. For bidirectional
1722 * communication multiple routine invocations accumulate data bits, while
1723 * the last invocation completes the frame preparation.
1724 */
1725static int spi_proc_value(struct context *inc, uint32_t value)
1726{
1727 struct spi_proto_context_t *incs;
1728 gboolean taken;
1729 int ret;
1730 gboolean auto_cs_end;
1731
1732 if (!inc)
1733 return SR_ERR_ARG;
1734 incs = inc->curr_opts.prot_priv;
1735
1736 /*
1737 * Discard previous data when we get here after having completed
1738 * a previous frame. This roundtrip from filling in to clearing
1739 * is required to have the caller emit the waveform that we have
1740 * constructed after receiving data values.
1741 */
1742 if (spi_value_is_bytes_complete(inc)) {
1743 sr_spew("SPI value: discarding previous data");
1744 spi_value_discard_prev_data(inc);
1745 }
1746
1747 /*
1748 * Consume the caller provided value. Apply data in the order
1749 * that was configured before.
1750 */
1751 taken = FALSE;
1752 if (!taken && incs->mosi_first && !incs->has_mosi) {
1753 sr_spew("SPI value: grabbing MOSI value");
1754 incs->mosi_byte = value & 0xff;
1755 incs->has_mosi = TRUE;
1756 taken = TRUE;
1757 }
1758 if (!taken && !incs->has_miso) {
1759 sr_spew("SPI value: grabbing MISO value");
1760 incs->miso_byte = value & 0xff;
1761 incs->has_miso = TRUE;
1762 }
1763 if (!taken && !incs->mosi_first && !incs->has_mosi) {
1764 sr_spew("SPI value: grabbing MOSI value");
1765 incs->mosi_byte = value & 0xff;
1766 incs->has_mosi = TRUE;
1767 taken = TRUE;
1768 }
1769
1770 /*
1771 * Generate the waveform when all data values in a byte time
1772 * were seen (all MOSI and MISO including their being optional
1773 * or fixed values).
1774 *
1775 * Optionally automatically release CS after a given number of
1776 * data bytes, when requested by the input stream.
1777 */
1778 if (!spi_value_is_bytes_complete(inc)) {
1779 sr_spew("SPI value: need more values");
1780 return +1;
1781 }
1782 auto_cs_end = spi_auto_select_ends(inc);
1783 sr_spew("SPI value: frame complete, drawing, auto CS %d", auto_cs_end);
1784 ret = spi_write_frame_patterns(inc, FALSE, auto_cs_end);
1785 if (ret != SR_OK)
1786 return ret;
1787 return 0;
1788}
1789
1790/* Start/end the logic trace with a few bit times of idle level. */
1791static int spi_get_idle_capture(struct context *inc,
1792 size_t *bitcount, uint8_t *sample)
1793{
1794
1795 /* Describe one byte time of idle level. */
1796 if (bitcount)
1797 *bitcount = inc->max_frame_bits;
1798 if (sample)
1799 *sample = inc->samples.idle_levels;
1800 return SR_OK;
1801}
1802
1803/* Arrange for a few samples of idle level between UART frames. */
1804static int spi_get_idle_interframe(struct context *inc,
1805 size_t *samplecount, uint8_t *sample)
1806{
1807
1808 /* Describe four bit times, re-use most recent pin levels. */
1809 if (samplecount) {
1810 *samplecount = inc->curr_opts.samples_per_bit;
1811 *samplecount *= 4;
1812 }
1813 if (sample)
1814 *sample = inc->samples.curr_levels;
1815 return SR_OK;
1816}
1817
1818/* }}} SPI protocol handler */
1819/* {{{ I2C protocol handler */
1820
1821enum i2c_pin_t {
1822 I2C_PIN_SCL,
1823 I2C_PIN_SDA,
1824 I2C_PIN_COUNT,
1825};
1826
1827#define I2C_PINMASK_SCL (1UL << I2C_PIN_SCL)
1828#define I2C_PINMASK_SDA (1UL << I2C_PIN_SDA)
1829
1830/* Arrange for automatic ACK for a given number of data bytes. */
1831static void i2c_auto_ack_start(struct context *inc, size_t count)
1832{
1833 struct i2c_proto_context_t *incs;
1834
1835 incs = inc->curr_opts.prot_priv;
1836 incs->ack_remain = count;
1837}
1838
1839/* Check whether automatic ACK is still applicable. Decrements. */
1840static gboolean i2c_auto_ack_avail(struct context *inc)
1841{
1842 struct i2c_proto_context_t *incs;
1843
1844 incs = inc->curr_opts.prot_priv;
1845 if (!incs->ack_remain)
1846 return FALSE;
1847
1848 if (incs->ack_remain--)
1849 return TRUE;
1850 return FALSE;
1851}
1852
1853/* Occupy the slots where START/STOP would be. Keep current levels. */
1854static int i2c_write_nothing(struct context *inc)
1855{
1856 size_t reps;
1857 int ret;
1858
1859 reps = I2C_BITTIME_QUANTA;
1860 while (reps--) {
1861 ret = wave_append_buffer(inc);
1862 if (ret != SR_OK)
1863 return ret;
1864 }
1865
1866 return SR_OK;
1867}
1868
1869/*
1870 * Construct a START symbol. Occupy a full bit time in the waveform.
1871 * Can also be used as REPEAT START due to its conservative signalling.
1872 *
1873 * Definition of START: Falling SDA while SCL is high.
1874 * Repeated START: A START without a preceeding STOP.
1875 */
1876static int i2c_write_start(struct context *inc)
1877{
1878 int ret;
1879
1880 /*
1881 * Important! Assumes that either SDA and SCL already are
1882 * high (true when we come here from an idle bus). Or that
1883 * SCL already is low before SDA potentially changes (this
1884 * is true for preceeding START or REPEAT START or DATA BIT
1885 * symbols).
1886 *
1887 * Implementation detail: This START implementation can be
1888 * used for REPEAT START as well. The signalling sequence is
1889 * conservatively done.
1890 */
1891
1892 /* Enforce SDA high. */
1893 sample_buffer_raise(inc, I2C_PINMASK_SDA);
1894 ret = wave_append_buffer(inc);
1895 if (ret != SR_OK)
1896 return ret;
1897
1898 /* Enforce SCL high. */
1899 sample_buffer_raise(inc, I2C_PINMASK_SCL);
1900 ret = wave_append_buffer(inc);
1901 if (ret != SR_OK)
1902 return ret;
1903
1904 /* Keep high SCL and high SDA for another period. */
1905 ret = wave_append_buffer(inc);
1906 if (ret != SR_OK)
1907 return ret;
1908
1909 /* Falling SDA while SCL is high. */
1910 sample_buffer_clear(inc, I2C_PINMASK_SDA);
1911 ret = wave_append_buffer(inc);
1912 if (ret != SR_OK)
1913 return ret;
1914
1915 /* Keep high SCL and low SDA for one more period. */
1916 ret = wave_append_buffer(inc);
1917 if (ret != SR_OK)
1918 return ret;
1919
1920 /*
1921 * Lower SCL here already. Which kind of prepares DATA BIT
1922 * times (fits a data bit's start condition, does not harm).
1923 * Improves back to back START and (repeated) START as well
1924 * as STOP without preceeding DATA BIT.
1925 */
1926 sample_buffer_clear(inc, I2C_PINMASK_SCL);
1927 ret = wave_append_buffer(inc);
1928 if (ret != SR_OK)
1929 return ret;
1930
1931 return SR_OK;
1932}
1933
1934/*
1935 * Construct a STOP symbol. Occupy a full bit time in the waveform.
1936 *
1937 * Definition of STOP: Rising SDA while SCL is high.
1938 */
1939static int i2c_write_stop(struct context *inc)
1940{
1941 int ret;
1942
1943 /* Enforce SCL low before SDA changes. */
1944 sample_buffer_clear(inc, I2C_PINMASK_SCL);
1945 ret = wave_append_buffer(inc);
1946 if (ret != SR_OK)
1947 return ret;
1948
1949 /* Enforce SDA low (can change while SCL is low). */
1950 sample_buffer_clear(inc, I2C_PINMASK_SDA);
1951 ret = wave_append_buffer(inc);
1952 if (ret != SR_OK)
1953 return ret;
1954
1955 /* Rise SCL high while SDA is low. */
1956 sample_buffer_raise(inc, I2C_PINMASK_SCL);
1957 ret = wave_append_buffer(inc);
1958 if (ret != SR_OK)
1959 return ret;
1960
1961 /* Keep high SCL and low SDA for another period. */
1962 ret = wave_append_buffer(inc);
1963 if (ret != SR_OK)
1964 return ret;
1965
1966 /* Rising SDA. */
1967 sample_buffer_raise(inc, I2C_PINMASK_SDA);
1968 ret = wave_append_buffer(inc);
1969 if (ret != SR_OK)
1970 return ret;
1971
1972 /* Keep high SCL and high SDA for one more periods. */
1973 ret = wave_append_buffer(inc);
1974 if (ret != SR_OK)
1975 return ret;
1976
1977 return SR_OK;
1978}
1979
1980/*
1981 * Construct a DATA BIT symbol. Occupy a full bit time in the waveform.
1982 *
1983 * SDA can change while SCL is low. SDA must be kept while SCL is high.
1984 */
1985static int i2c_write_bit(struct context *inc, uint8_t value)
1986{
1987 int ret;
1988
1989 /* Enforce SCL low before SDA changes. */
1990 sample_buffer_clear(inc, I2C_PINMASK_SCL);
1991 ret = wave_append_buffer(inc);
1992 if (ret != SR_OK)
1993 return ret;
1994
1995 /* Setup SDA pin level while SCL is low. */
1996 sample_buffer_setclr(inc, value, I2C_PINMASK_SDA);
1997 ret = wave_append_buffer(inc);
1998 if (ret != SR_OK)
1999 return ret;
2000
2001 /* Rising SCL, starting SDA validity. */
2002 sample_buffer_raise(inc, I2C_PINMASK_SCL);
2003 ret = wave_append_buffer(inc);
2004 if (ret != SR_OK)
2005 return ret;
2006
2007 /* Keep SDA level with high SCL for two more periods. */
2008 ret = wave_append_buffer(inc);
2009 if (ret != SR_OK)
2010 return ret;
2011 ret = wave_append_buffer(inc);
2012 if (ret != SR_OK)
2013 return ret;
2014
2015 /* Falling SCL, terminates SDA validity. */
2016 sample_buffer_clear(inc, I2C_PINMASK_SCL);
2017 ret = wave_append_buffer(inc);
2018 if (ret != SR_OK)
2019 return ret;
2020
2021 return SR_OK;
2022}
2023
2024/* Create a waveform for the eight data bits and the ACK/NAK slot. */
2025static int i2c_write_byte(struct context *inc, uint8_t value, uint8_t ack)
2026{
2027 size_t bit_mask, bit_value;
2028 int ret;
2029
2030 /* Keep an empty bit time before the data byte. */
2031 ret = i2c_write_nothing(inc);
2032 if (ret != SR_OK)
2033 return ret;
2034
2035 /* Send 8 data bits, MSB first. */
2036 bit_mask = 0x80;
2037 while (bit_mask) {
2038 bit_value = value & bit_mask;
2039 bit_mask >>= 1;
2040 ret = i2c_write_bit(inc, bit_value);
2041 if (ret != SR_OK)
2042 return ret;
2043 }
2044
2045 /* Send ACK, which is low active. NAK is recessive, high. */
2046 bit_value = !ack;
2047 ret = i2c_write_bit(inc, bit_value);
2048 if (ret != SR_OK)
2049 return ret;
2050
2051 /* Keep an empty bit time after the data byte. */
2052 ret = i2c_write_nothing(inc);
2053 if (ret != SR_OK)
2054 return ret;
2055
2056 return SR_OK;
2057}
2058
2059/* Send slave address (7bit or 10bit, 1 or 2 bytes). Consumes one ACK. */
2060static int i2c_send_address(struct sr_input *in, uint16_t addr, gboolean read)
2061{
2062 struct context *inc;
2063 struct i2c_frame_fmt_opts *fmt_opts;
2064 gboolean with_ack;
2065 uint8_t addr_byte, rw_bit;
2066 int ret;
2067
2068 inc = in->priv;
2069 fmt_opts = &inc->curr_opts.frame_format.i2c;
2070
2071 addr &= 0x3ff;
2072 rw_bit = read ? 1 : 0;
2073 with_ack = i2c_auto_ack_avail(inc);
2074
2075 if (!fmt_opts->addr_10bit) {
2076 /* 7 bit address, the simple case. */
2077 addr_byte = addr & 0x7f;
2078 addr_byte <<= 1;
2079 addr_byte |= rw_bit;
2080 sr_spew("I2C 7bit address, byte 0x%" PRIx8, addr_byte);
2081 ret = wave_clear_sequence(inc);
2082 if (ret != SR_OK)
2083 return ret;
2084 ret = i2c_write_byte(inc, addr_byte, with_ack);
2085 if (ret != SR_OK)
2086 return ret;
2087 ret = send_frame(in);
2088 if (ret != SR_OK)
2089 return ret;
2090 } else {
2091 /*
2092 * 10 bit address, need to write two bytes: First byte
2093 * with prefix 0xf0, upper most 2 address bits, and R/W.
2094 * Second byte with lower 8 address bits.
2095 */
2096 addr_byte = addr >> 8;
2097 addr_byte <<= 1;
2098 addr_byte |= 0xf0;
2099 addr_byte |= rw_bit;
2100 sr_spew("I2C 10bit address, byte 0x%" PRIx8, addr_byte);
2101 ret = wave_clear_sequence(inc);
2102 if (ret != SR_OK)
2103 return ret;
2104 ret = i2c_write_byte(inc, addr_byte, with_ack);
2105 if (ret != SR_OK)
2106 return ret;
2107 ret = send_frame(in);
2108 if (ret != SR_OK)
2109 return ret;
2110
2111 addr_byte = addr & 0xff;
2112 sr_spew("I2C 10bit address, byte 0x%" PRIx8, addr_byte);
2113 ret = wave_clear_sequence(inc);
2114 if (ret != SR_OK)
2115 return ret;
2116 ret = i2c_write_byte(inc, addr_byte, with_ack);
2117 if (ret != SR_OK)
2118 return ret;
2119 ret = send_frame(in);
2120 if (ret != SR_OK)
2121 return ret;
2122 }
2123
2124 return SR_OK;
2125}
2126
2127/* I2C specific options and frame format check. */
2128static int i2c_check_opts(struct context *inc)
2129{
2130 struct i2c_frame_fmt_opts *fmt_opts;
2131 const char *fmt_text;
2132 char **opts, *opt;
2133 size_t opt_count, opt_idx;
2134 size_t total_bits;
2135
2136 if (!inc)
2137 return SR_ERR_ARG;
2138 fmt_opts = &inc->curr_opts.frame_format.i2c;
2139
2140 /* Apply defaults before reading external specs. */
2141 memset(fmt_opts, 0, sizeof(*fmt_opts));
2142 fmt_opts->addr_10bit = FALSE;
2143
2144 /* Provide a default I2C frame format. */
2145 fmt_text = inc->curr_opts.fmt_text;
2146 if (!fmt_text || !*fmt_text)
2147 fmt_text = I2C_DFLT_FRAMEFMT;
2148 sr_dbg("I2C frame format: %s.", fmt_text);
2149
2150 /* Accept comma separated key=value pairs of specs. */
2151 opts = g_strsplit_set(fmt_text, ", ", 0);
2152 opt_count = g_strv_length(opts);
2153 for (opt_idx = 0; opt_idx < opt_count; opt_idx++) {
2154 opt = opts[opt_idx];
2155 if (!opt || !*opt)
2156 continue;
2157 sr_spew("I2C format option: %s.", opt);
2158 if (strcmp(opt, I2C_FORMAT_ADDR_7BIT) == 0) {
2159 sr_spew("I2C address: 7 bit");
2160 fmt_opts->addr_10bit = FALSE;
2161 continue;
2162 }
2163 if (strcmp(opt, I2C_FORMAT_ADDR_10BIT) == 0) {
2164 sr_spew("I2C address: 10 bit");
2165 fmt_opts->addr_10bit = TRUE;
2166 continue;
2167 }
2168 return SR_ERR_ARG;
2169 }
2170 g_strfreev(opts);
2171
2172 /* Get the total slot count. Leave plenty room for convenience. */
2173 total_bits = 0;
2174 total_bits += I2C_BITTIME_SLOTS;
2175 total_bits *= I2C_BITTIME_QUANTA;
2176 total_bits += I2C_ADD_IDLESLOTS;
2177
2178 sr_dbg("I2C frame: total bits %lu.", total_bits);
2179 if (total_bits > I2C_MAX_WAVELEN)
2180 return SR_ERR_DATA;
2181 inc->max_frame_bits = total_bits;
2182
2183 return SR_OK;
2184}
2185
2186/*
2187 * Don't bother with wide and narrow slots, just assume equal size for
2188 * them all. Edges will occupy exactly one sample, then levels are kept.
2189 * This protocol handler's oversampling should be sufficient for decoders
2190 * to extract the content from generated waveforms.
2191 *
2192 * Start with high levels on SCL and SDA for an idle bus condition.
2193 */
2194static int i2c_config_frame(struct context *inc)
2195{
2196 struct i2c_proto_context_t *incs;
2197 size_t bit_idx;
2198 uint8_t sample;
2199
2200 if (!inc)
2201 return SR_ERR_ARG;
2202 incs = inc->curr_opts.prot_priv;
2203
2204 memset(incs, 0, sizeof(*incs));
2205 incs->ack_remain = 0;
2206
2207 /*
2208 * Adjust all time slots since they represent a smaller quanta
2209 * of an I2C bit time.
2210 */
2211 for (bit_idx = 0; bit_idx < inc->max_frame_bits; bit_idx++) {
2212 inc->bit_scale[bit_idx].div = I2C_BITTIME_QUANTA;
2213 }
2214
2215 sample = 0;
2216 sample |= I2C_PINMASK_SCL;
2217 sample |= I2C_PINMASK_SDA;
2218 sample_buffer_preset(inc, sample);
2219
2220 return SR_OK;
2221}
2222
2223/*
2224 * Process protocol dependent pseudo comments. Can affect future frame
2225 * construction and submission, or can immediately emit "inter frame"
2226 * bit patterns like START/STOP control. Use wide waveforms for these
2227 * transfer controls, put the special symbol nicely centered. Supports
2228 * users during interactive exploration of generated waveforms.
2229 */
2230static int i2c_proc_pseudo(struct sr_input *in, char *line)
2231{
2232 struct context *inc;
2233 char *word, *endp;
2234 int ret;
2235 unsigned long v;
2236 size_t bits;
2237
2238 inc = in->priv;
2239
2240 while (line) {
2241 word = sr_text_next_word(line, &line);
2242 if (!word)
2243 break;
2244 if (!*word)
2245 continue;
2246 sr_spew("I2C pseudo: word %s", word);
2247 if (strcmp(word, I2C_PSEUDO_START) == 0) {
2248 sr_spew("I2C pseudo: send START");
2249 ret = wave_clear_sequence(inc);
2250 if (ret != SR_OK)
2251 return ret;
2252 bits = I2C_BITTIME_SLOTS / 2;
2253 while (bits--) {
2254 ret = i2c_write_nothing(inc);
2255 if (ret != SR_OK)
2256 return ret;
2257 }
2258 ret = i2c_write_start(inc);
2259 if (ret != SR_OK)
2260 return ret;
2261 bits = I2C_BITTIME_SLOTS / 2;
2262 while (bits--) {
2263 ret = i2c_write_nothing(inc);
2264 if (ret != SR_OK)
2265 return ret;
2266 }
2267 ret = send_frame(in);
2268 if (ret != SR_OK)
2269 return ret;
2270 continue;
2271 }
2272 if (strcmp(word, I2C_PSEUDO_REP_START) == 0) {
2273 sr_spew("I2C pseudo: send REPEAT START");
2274 ret = wave_clear_sequence(inc);
2275 if (ret != SR_OK)
2276 return ret;
2277 bits = I2C_BITTIME_SLOTS / 2;
2278 while (bits--) {
2279 ret = i2c_write_nothing(inc);
2280 if (ret != SR_OK)
2281 return ret;
2282 }
2283 ret = i2c_write_start(inc);
2284 if (ret != SR_OK)
2285 return ret;
2286 bits = I2C_BITTIME_SLOTS / 2;
2287 while (bits--) {
2288 ret = i2c_write_nothing(inc);
2289 if (ret != SR_OK)
2290 return ret;
2291 }
2292 ret = send_frame(in);
2293 if (ret != SR_OK)
2294 return ret;
2295 continue;
2296 }
2297 if (strcmp(word, I2C_PSEUDO_STOP) == 0) {
2298 sr_spew("I2C pseudo: send STOP");
2299 ret = wave_clear_sequence(inc);
2300 if (ret != SR_OK)
2301 return ret;
2302 bits = I2C_BITTIME_SLOTS / 2;
2303 while (bits--) {
2304 ret = i2c_write_nothing(inc);
2305 if (ret != SR_OK)
2306 return ret;
2307 }
2308 ret = i2c_write_stop(inc);
2309 if (ret != SR_OK)
2310 return ret;
2311 bits = I2C_BITTIME_SLOTS / 2;
2312 while (bits--) {
2313 ret = i2c_write_nothing(inc);
2314 if (ret != SR_OK)
2315 return ret;
2316 }
2317 ret = send_frame(in);
2318 if (ret != SR_OK)
2319 return ret;
2320 continue;
2321 }
2322 if (g_str_has_prefix(word, I2C_PSEUDO_ADDR_WRITE)) {
2323 word += strlen(I2C_PSEUDO_ADDR_WRITE);
2324 endp = NULL;
2325 ret = sr_atoul_base(word, &v, &endp, 0);
2326 if (ret != SR_OK)
2327 return ret;
2328 if (!endp || *endp)
2329 return SR_ERR_ARG;
2330 sr_spew("I2C pseudo: addr write %lu", v);
2331 ret = i2c_send_address(in, v, FALSE);
2332 if (ret != SR_OK)
2333 return ret;
2334 continue;
2335 }
2336 if (g_str_has_prefix(word, I2C_PSEUDO_ADDR_READ)) {
2337 word += strlen(I2C_PSEUDO_ADDR_READ);
2338 endp = NULL;
2339 ret = sr_atoul_base(word, &v, &endp, 0);
2340 if (ret != SR_OK)
2341 return ret;
2342 if (!endp || *endp)
2343 return SR_ERR_ARG;
2344 sr_spew("I2C pseudo: addr read %lu", v);
2345 ret = i2c_send_address(in, v, TRUE);
2346 if (ret != SR_OK)
2347 return ret;
2348 continue;
2349 }
2350 if (g_str_has_prefix(word, I2C_PSEUDO_ACK_NEXT)) {
2351 word += strlen(I2C_PSEUDO_ACK_NEXT);
2352 endp = NULL;
2353 ret = sr_atoul_base(word, &v, &endp, 0);
2354 if (ret != SR_OK)
2355 return ret;
2356 if (!endp || *endp)
2357 return SR_ERR_ARG;
2358 sr_spew("i2c pseudo: ack next %lu", v);
2359 i2c_auto_ack_start(inc, v);
2360 continue;
2361 }
2362 if (strcmp(word, I2C_PSEUDO_ACK_ONCE) == 0) {
2363 sr_spew("i2c pseudo: ack once");
2364 i2c_auto_ack_start(inc, 1);
2365 continue;
2366 }
2367 return SR_ERR_DATA;
2368 }
2369
2370 return SR_OK;
2371}
2372
2373/*
2374 * Create the frame's waveform for the given data value. Automatically
2375 * track ACK bits, Fallback to NAK when externally specified ACK counts
2376 * have expired. The caller sends the waveform that we created.
2377 */
2378static int i2c_proc_value(struct context *inc, uint32_t value)
2379{
2380 gboolean with_ack;
2381 int ret;
2382
2383 if (!inc)
2384 return SR_ERR_ARG;
2385
2386 with_ack = i2c_auto_ack_avail(inc);
2387
2388 ret = wave_clear_sequence(inc);
2389 if (ret != SR_OK)
2390 return ret;
2391 ret = i2c_write_byte(inc, value, with_ack);
2392 if (ret != SR_OK)
2393 return ret;
2394
2395 return 0;
2396}
2397
2398/* Start/end the logic trace with a few bit times of idle level. */
2399static int i2c_get_idle_capture(struct context *inc,
2400 size_t *bitcount, uint8_t *sample)
2401{
2402
2403 /* Describe a byte's time of idle level. */
2404 if (bitcount)
2405 *bitcount = I2C_BITTIME_SLOTS;
2406 if (sample)
2407 *sample = inc->samples.idle_levels;
2408 return SR_OK;
2409}
2410
2411/* Arrange for a few samples of idle level between UART frames. */
2412static int i2c_get_idle_interframe(struct context *inc,
2413 size_t *samplecount, uint8_t *sample)
2414{
2415
f6d0f7a8
GS
2416 /*
2417 * The space around regular bytes already is sufficient. We
2418 * don't need to generate an inter-frame gap, but the code is
2419 * prepared to in case we want to in the future.
2420 */
ff7f7f73
GS
2421 if (samplecount) {
2422 *samplecount = inc->curr_opts.samples_per_bit;
f6d0f7a8 2423 *samplecount *= 0;
ff7f7f73
GS
2424 }
2425 if (sample)
2426 *sample = inc->samples.curr_levels;
2427 return SR_OK;
2428}
2429
2430/* }}} I2C protocol handler */
2431/* {{{ protocol dispatching */
2432
2433/*
2434 * The list of supported protocols and their handlers, including
2435 * protocol specific defaults. The first item after the NONE slot
2436 * is the default protocol, and takes effect in the absence of any
2437 * user provided or file content provided spec.
2438 */
2439static const struct proto_handler_t protocols[PROTO_TYPE_COUNT] = {
2440 [PROTO_TYPE_UART] = {
2441 UART_HANDLER_NAME,
2442 {
2443 UART_DFLT_SAMPLERATE,
2444 UART_DFLT_BITRATE, UART_DFLT_FRAMEFMT,
2445 INPUT_BYTES,
2446 },
2447 {
2448 1, (const char *[]){
2449 [UART_PIN_RXTX] = "rxtx",
2450 },
2451 },
2452 0,
2453 uart_check_opts,
2454 uart_config_frame,
2455 uart_proc_pseudo,
2456 uart_proc_value,
2457 uart_get_idle_capture,
2458 uart_get_idle_interframe,
2459 },
2460 [PROTO_TYPE_SPI] = {
2461 SPI_HANDLER_NAME,
2462 {
2463 SPI_DFLT_SAMPLERATE,
2464 SPI_DFLT_BITRATE, SPI_DFLT_FRAMEFMT,
2465 INPUT_TEXT,
2466 },
2467 {
2468 4, (const char *[]){
2469 [SPI_PIN_SCK] = "sck",
2470 [SPI_PIN_MISO] = "miso",
2471 [SPI_PIN_MOSI] = "mosi",
2472 [SPI_PIN_CS] = "cs",
2473 },
2474 },
2475 sizeof(struct spi_proto_context_t),
2476 spi_check_opts,
2477 spi_config_frame,
2478 spi_proc_pseudo,
2479 spi_proc_value,
2480 spi_get_idle_capture,
2481 spi_get_idle_interframe,
2482 },
2483 [PROTO_TYPE_I2C] = {
2484 I2C_HANDLER_NAME,
2485 {
2486 I2C_DFLT_SAMPLERATE,
2487 I2C_DFLT_BITRATE, I2C_DFLT_FRAMEFMT,
2488 INPUT_TEXT,
2489 },
2490 {
2491 2, (const char *[]){
2492 [I2C_PIN_SCL] = "scl",
2493 [I2C_PIN_SDA] = "sda",
2494 },
2495 },
2496 sizeof(struct i2c_proto_context_t),
2497 i2c_check_opts,
2498 i2c_config_frame,
2499 i2c_proc_pseudo,
2500 i2c_proc_value,
2501 i2c_get_idle_capture,
2502 i2c_get_idle_interframe,
2503 },
2504};
2505
2506static int lookup_protocol_name(struct context *inc)
2507{
2508 const char *name;
2509 const struct proto_handler_t *handler;
2510 size_t idx;
2511 void *priv;
2512
2513 /*
2514 * Silence compiler warnings. Protocol handlers are free to use
2515 * several alternative sets of primitives for their operation.
2516 * Not using part of the API is nothing worth warning about.
2517 */
2518 (void)sample_buffer_assign;
2519
2520 if (!inc)
2521 return SR_ERR_ARG;
2522 inc->curr_opts.protocol_type = PROTO_TYPE_NONE;
2523 inc->curr_opts.prot_hdl = NULL;
2524
2525 name = inc->curr_opts.proto_name;
2526 if (!name || !*name) {
2527 /* Fallback to first item after NONE slot. */
2528 handler = &protocols[PROTO_TYPE_NONE + 1];
2529 name = handler->name;
2530 }
2531
2532 for (idx = 0; idx < ARRAY_SIZE(protocols); idx++) {
2533 if (idx == PROTO_TYPE_NONE)
2534 continue;
2535 handler = &protocols[idx];
2536 if (!handler->name || !*handler->name)
2537 continue;
2538 if (strcmp(name, handler->name) != 0)
2539 continue;
2540 inc->curr_opts.protocol_type = idx;
2541 inc->curr_opts.prot_hdl = handler;
2542 if (handler->priv_size) {
2543 priv = g_malloc0(handler->priv_size);
2544 if (!priv)
2545 return SR_ERR_MALLOC;
2546 inc->curr_opts.prot_priv = priv;
2547 }
2548 return SR_OK;
2549 }
2550
2551 return SR_ERR_DATA;
2552}
2553
2554/* }}} protocol dispatching */
2555/* {{{ text/binary input file reader */
2556
2557/**
2558 * Checks for UTF BOM, removes it when found at the start of the buffer.
2559 *
2560 * @param[in] buf The accumulated input buffer.
2561 */
2562static void check_remove_bom(GString *buf)
2563{
2564 static const char *bom_text = "\xef\xbb\xbf";
2565
2566 if (buf->len < strlen(bom_text))
2567 return;
2568 if (strncmp(buf->str, bom_text, strlen(bom_text)) != 0)
2569 return;
2570 g_string_erase(buf, 0, strlen(bom_text));
2571}
2572
2573/**
2574 * Checks for presence of a caption, yields the position after its text line.
2575 *
2576 * @param[in] buf The accumulated input buffer.
2577 * @param[in] caption The text to search for (NUL terminated ASCII literal).
2578 * @param[in] max_pos The maximum length to search for.
2579 *
2580 * @returns The position after the text line which contains the caption.
2581 * Or #NULL when either the caption or the end-of-line was not found.
2582 */
2583static char *have_text_line(GString *buf, const char *caption, size_t max_pos)
2584{
2585 size_t cap_len, rem_len;
2586 char *p_read, *p_found;
2587
2588 cap_len = strlen(caption);
2589 rem_len = buf->len;
2590 p_read = buf->str;
2591
2592 /* Search for the occurance of the caption itself. */
2593 if (!max_pos) {
2594 /* Caption must be at the start of the buffer. */
2595 if (rem_len < cap_len)
2596 return NULL;
2597 if (strncmp(p_read, caption, cap_len) != 0)
2598 return NULL;
2599 } else {
2600 /* Caption can be anywhere up to a max position. */
2601 p_found = g_strstr_len(p_read, rem_len, caption);
2602 if (!p_found)
2603 return NULL;
2604 /* Pretend that caption had been rather long. */
2605 cap_len += p_found - p_read;
2606 }
2607
2608 /*
2609 * Advance over the caption. Advance over end-of-line. Supports
2610 * several end-of-line conditions, but rejects unexpected trailer
2611 * after the caption and before the end-of-line. Always wants LF.
2612 */
2613 p_read += cap_len;
2614 rem_len -= cap_len;
2615 while (rem_len && *p_read != '\n' && g_ascii_isspace(*p_read)) {
2616 p_read++;
2617 rem_len--;
2618 }
2619 if (rem_len && *p_read != '\n' && *p_read == '\r') {
2620 p_read++;
2621 rem_len--;
2622 }
2623 if (rem_len && *p_read == '\n') {
2624 p_read++;
2625 rem_len--;
2626 return p_read;
2627 }
2628
2629 return NULL;
2630}
2631
2632/**
2633 * Checks for the presence of the magic string at the start of the file.
2634 *
2635 * @param[in] buf The accumulated input buffer.
2636 * @param[out] next_pos The text after the magic text line.
2637 *
2638 * @returns Boolean whether the magic was found.
2639 *
2640 * This implementation assumes that the magic file type marker never gets
2641 * split across receive chunks.
2642 */
2643static gboolean have_magic(GString *buf, char **next_pos)
2644{
2645 char *next_line;
2646
2647 if (next_pos)
2648 *next_pos = NULL;
2649
2650 next_line = have_text_line(buf, MAGIC_FILE_TYPE, 0);
2651 if (!next_line)
2652 return FALSE;
2653
2654 if (next_pos)
2655 *next_pos = next_line;
2656
2657 return TRUE;
2658}
2659
2660/**
2661 * Checks for the presence of the header section at the start of the file.
2662 *
2663 * @param[in] buf The accumulated input buffer.
2664 * @param[out] next_pos The text after the header section.
2665 *
2666 * @returns A negative value when the answer is yet unknown (insufficient
2667 * input data). Or boolean 0/1 when the header was found absent/present.
2668 *
2669 * The caller is supposed to have checked for and removed the magic text
2670 * for the file type. This routine expects to find the header section
2671 * boundaries right at the start of the input buffer.
2672 *
2673 * This implementation assumes that the header start marker never gets
2674 * split across receive chunks.
2675 */
2676static int have_header(GString *buf, char **next_pos)
2677{
2678 char *after_start, *after_end;
2679
2680 if (next_pos)
2681 *next_pos = NULL;
2682
2683 after_start = have_text_line(buf, TEXT_HEAD_START, 0);
2684 if (!after_start)
2685 return 0;
2686
2687 after_end = have_text_line(buf, TEXT_HEAD_END, buf->len);
2688 if (!after_end)
2689 return -1;
2690
2691 if (next_pos)
2692 *next_pos = after_end;
2693 return 1;
2694}
2695
2696/*
2697 * Implementation detail: Most parse routines merely accept an input
2698 * string or at most convert text to numbers. Actual processing of the
2699 * values or constraints checks are done later when the header section
2700 * ended and all data was seen, regardless of order of appearance.
2701 */
2702
2703static int parse_samplerate(struct context *inc, const char *text)
2704{
2705 uint64_t rate;
2706 int ret;
2707
2708 ret = sr_parse_sizestring(text, &rate);
2709 if (ret != SR_OK)
2710 return SR_ERR_DATA;
2711
2712 inc->curr_opts.samplerate = rate;
2713
2714 return SR_OK;
2715}
2716
2717static int parse_bitrate(struct context *inc, const char *text)
2718{
2719 uint64_t rate;
2720 int ret;
2721
2722 ret = sr_parse_sizestring(text, &rate);
2723 if (ret != SR_OK)
2724 return SR_ERR_DATA;
2725
2726 inc->curr_opts.bitrate = rate;
2727
2728 return SR_OK;
2729}
2730
2731static int parse_protocol(struct context *inc, const char *line)
2732{
2733
2734 if (!line || !*line)
2735 return SR_ERR_DATA;
2736
2737 if (inc->curr_opts.proto_name) {
2738 free(inc->curr_opts.proto_name);
2739 inc->curr_opts.proto_name = NULL;
2740 }
2741 inc->curr_opts.proto_name = g_strdup(line);
2742 if (!inc->curr_opts.proto_name)
2743 return SR_ERR_MALLOC;
2744 line = inc->curr_opts.proto_name;
2745
2746 return SR_OK;
2747}
2748
2749static int parse_frameformat(struct context *inc, const char *line)
2750{
2751
2752 if (!line || !*line)
2753 return SR_ERR_DATA;
2754
2755 if (inc->curr_opts.fmt_text) {
2756 free(inc->curr_opts.fmt_text);
2757 inc->curr_opts.fmt_text = NULL;
2758 }
2759 inc->curr_opts.fmt_text = g_strdup(line);
2760 if (!inc->curr_opts.fmt_text)
2761 return SR_ERR_MALLOC;
2762 line = inc->curr_opts.fmt_text;
2763
2764 return SR_OK;
2765}
2766
2767static int parse_textinput(struct context *inc, const char *text)
2768{
2769 gboolean is_text;
2770
2771 if (!text || !*text)
2772 return SR_ERR_ARG;
2773
2774 is_text = sr_parse_boolstring(text);
2775 inc->curr_opts.textinput = is_text ? INPUT_TEXT : INPUT_BYTES;
2776 return SR_OK;
2777}
2778
2779static int parse_header_line(struct context *inc, const char *line)
2780{
2781
2782 /* Silently ignore comment lines. Also covers start/end markers. */
2783 if (strncmp(line, TEXT_COMM_LEADER, strlen(TEXT_COMM_LEADER)) == 0)
2784 return SR_OK;
2785
2786 if (strncmp(line, LABEL_SAMPLERATE, strlen(LABEL_SAMPLERATE)) == 0) {
2787 line += strlen(LABEL_SAMPLERATE);
2788 return parse_samplerate(inc, line);
2789 }
2790 if (strncmp(line, LABEL_BITRATE, strlen(LABEL_BITRATE)) == 0) {
2791 line += strlen(LABEL_BITRATE);
2792 return parse_bitrate(inc, line);
2793 }
2794 if (strncmp(line, LABEL_PROTOCOL, strlen(LABEL_PROTOCOL)) == 0) {
2795 line += strlen(LABEL_PROTOCOL);
2796 return parse_protocol(inc, line);
2797 }
2798 if (strncmp(line, LABEL_FRAMEFORMAT, strlen(LABEL_FRAMEFORMAT)) == 0) {
2799 line += strlen(LABEL_FRAMEFORMAT);
2800 return parse_frameformat(inc, line);
2801 }
2802 if (strncmp(line, LABEL_TEXTINPUT, strlen(LABEL_TEXTINPUT)) == 0) {
2803 line += strlen(LABEL_TEXTINPUT);
2804 return parse_textinput(inc, line);
2805 }
2806
2807 /* Unsupported directive. */
2808 sr_err("Unsupported header directive: %s.", line);
2809
2810 return SR_ERR_DATA;
2811}
2812
2813static int parse_header(struct context *inc, GString *buf, size_t hdr_len)
2814{
2815 size_t remain;
2816 char *curr, *next, *line;
2817 int ret;
2818
2819 ret = SR_OK;
2820
2821 /* The caller determined where the header ends. Read up to there. */
2822 remain = hdr_len;
2823 curr = buf->str;
2824 while (curr && remain) {
2825 /* Get another text line. Skip empty lines. */
2826 line = sr_text_next_line(curr, remain, &next, NULL);
2827 if (!line)
2828 break;
2829 if (next)
2830 remain -= next - curr;
2831 else
2832 remain = 0;
2833 curr = next;
2834 if (!*line)
2835 continue;
2836 /* Process the non-empty file header text line. */
2837 sr_dbg("Header line: %s", line);
2838 ret = parse_header_line(inc, line);
2839 if (ret != SR_OK)
2840 break;
2841 }
2842
2843 return ret;
2844}
2845
2846/* Process input text reader specific pseudo comment. */
2847static int process_pseudo_textinput(struct sr_input *in, char *line)
2848{
2849 struct context *inc;
2850 char *word;
2851 unsigned long v;
2852 char *endp;
2853 int ret;
2854
2855 inc = in->priv;
2856 while (line) {
2857 word = sr_text_next_word(line, &line);
2858 if (!word)
2859 break;
2860 if (!*word)
2861 continue;
2862 if (g_str_has_prefix(word, TEXT_INPUT_RADIX)) {
2863 word += strlen(TEXT_INPUT_RADIX);
2864 endp = NULL;
2865 ret = sr_atoul_base(word, &v, &endp, 10);
2866 if (ret != SR_OK)
2867 return ret;
2868 inc->read_text.base = v;
2869 continue;
2870 }
2871 return SR_ERR_DATA;
2872 }
2873
2874 return SR_OK;
2875}
2876
2877/* Process a line of input text. */
2878static int process_textline(struct sr_input *in, char *line)
2879{
2880 struct context *inc;
2881 const struct proto_handler_t *handler;
2882 gboolean is_comm, is_pseudo;
395ac73e 2883 char *p, *word, *endp;
ff7f7f73
GS
2884 unsigned long value;
2885 int ret;
2886
2887 inc = in->priv;
2888 handler = inc->curr_opts.prot_hdl;
2889
2890 /*
2891 * Check for comments, including pseudo-comments with protocol
2892 * specific or text reader specific instructions. It's essential
2893 * to check for "# ${PROTO}:" last, because the implementation
2894 * of the check advances the read position, cannot rewind when
2895 * detection fails. But we know that it is a comment and was not
2896 * a pseudo-comment. So any non-matching data just gets discarded.
2897 * Matching data gets processed (when handlers exist).
2898 */
2899 is_comm = g_str_has_prefix(line, TEXT_COMM_LEADER);
2900 if (is_comm) {
2901 line += strlen(TEXT_COMM_LEADER);
2902 while (isspace(*line))
2903 line++;
2904 is_pseudo = g_str_has_prefix(line, TEXT_INPUT_PREFIX);
2905 if (is_pseudo) {
2906 line += strlen(TEXT_INPUT_PREFIX);
2907 while (isspace(*line))
2908 line++;
2909 sr_dbg("pseudo comment, textinput: %s", line);
2910 line = sr_text_trim_spaces(line);
2911 return process_pseudo_textinput(in, line);
2912 }
2913 is_pseudo = g_str_has_prefix(line, handler->name);
2914 if (is_pseudo) {
2915 line += strlen(handler->name);
2916 is_pseudo = *line == ':';
2917 if (is_pseudo)
2918 line++;
2919 }
2920 if (is_pseudo) {
2921 while (isspace(*line))
2922 line++;
2923 sr_dbg("pseudo comment, protocol: %s", line);
2924 if (!handler->proc_pseudo)
2925 return SR_OK;
2926 return handler->proc_pseudo(in, line);
2927 }
2928 sr_spew("comment, skipping: %s", line);
2929 return SR_OK;
2930 }
2931
2932 /*
2933 * Non-empty non-comment lines carry protocol values.
2934 * (Empty lines are handled transparently when they get here.)
395ac73e 2935 * Accept comma and semicolon separators for user convenience.
ff7f7f73
GS
2936 * Convert text according to previously received instructions.
2937 * Pass the values to the protocol handler. Flush waveforms
2938 * when handlers state that their construction has completed.
2939 */
2940 sr_spew("got values line: %s", line);
395ac73e
GS
2941 for (p = line; *p; p++) {
2942 if (*p == ',' || *p == ';')
2943 *p = ' ';
2944 }
ff7f7f73
GS
2945 while (line) {
2946 word = sr_text_next_word(line, &line);
2947 if (!word)
2948 break;
2949 if (!*word)
2950 continue;
2951 /* Get another numeric value. */
2952 endp = NULL;
2953 ret = sr_atoul_base(word, &value, &endp, inc->read_text.base);
2954 if (ret != SR_OK)
2955 return ret;
2956 if (!endp || *endp)
2957 return SR_ERR_DATA;
2958 sr_spew("got a value, text [%s] -> number [%lu]", word, value);
2959 /* Forward the value to the protocol handler. */
2960 ret = 0;
2961 if (handler->proc_value)
2962 ret = handler->proc_value(inc, value);
2963 if (ret < 0)
2964 return ret;
2965 /* Flush the waveform when handler signals completion. */
2966 if (ret > 0)
2967 continue;
2968 ret = send_frame(in);
2969 if (ret != SR_OK)
2970 return ret;
2971 ret = send_idle_interframe(inc);
2972 if (ret != SR_OK)
2973 return ret;
2974 }
2975
2976 return SR_OK;
2977}
2978
2979/* }}} text/binary input file reader */
2980
2981/*
2982 * Consistency check of all previously received information. Combines
2983 * the data file's optional header section, as well as user provided
2984 * options that were specified during input module creation. User specs
2985 * take precedence over file content.
2986 */
2987static int check_header_user_options(struct context *inc)
2988{
2989 int ret;
2990 const struct proto_handler_t *handler;
2991 uint64_t rate;
2992 const char *text;
2993 enum textinput_t is_text;
2994
2995 if (!inc)
2996 return SR_ERR_ARG;
2997
2998 /* Prefer user specs over file content. */
2999 rate = inc->user_opts.samplerate;
3000 if (rate) {
3001 sr_dbg("Using user samplerate %" PRIu64 ".", rate);
3002 inc->curr_opts.samplerate = rate;
3003 }
3004 rate = inc->user_opts.bitrate;
3005 if (rate) {
3006 sr_dbg("Using user bitrate %" PRIu64 ".", rate);
3007 inc->curr_opts.bitrate = rate;
3008 }
3009 text = inc->user_opts.proto_name;
3010 if (text && *text) {
3011 sr_dbg("Using user protocol %s.", text);
3012 ret = parse_protocol(inc, text);
3013 if (ret != SR_OK)
3014 return SR_ERR_DATA;
3015 }
3016 text = inc->user_opts.fmt_text;
3017 if (text && *text) {
3018 sr_dbg("Using user frame format %s.", text);
3019 ret = parse_frameformat(inc, text);
3020 if (ret != SR_OK)
3021 return SR_ERR_DATA;
3022 }
3023 is_text = inc->user_opts.textinput;
3024 if (is_text) {
3025 sr_dbg("Using user textinput %d.", is_text);
3026 inc->curr_opts.textinput = is_text;
3027 }
3028
3029 /* Lookup the protocol (with fallback). Use protocol's defaults. */
3030 text = inc->curr_opts.proto_name;
3031 ret = lookup_protocol_name(inc);
3032 handler = inc->curr_opts.prot_hdl;
3033 if (ret != SR_OK || !handler) {
3034 sr_err("Unsupported protocol: %s.", text);
3035 return SR_ERR_DATA;
3036 }
3037 text = handler->name;
3038 if (!inc->curr_opts.proto_name && text) {
3039 sr_dbg("Using protocol handler name %s.", text);
3040 ret = parse_protocol(inc, text);
3041 if (ret != SR_OK)
3042 return SR_ERR_DATA;
3043 }
3044 rate = handler->dflt.samplerate;
3045 if (!inc->curr_opts.samplerate && rate) {
3046 sr_dbg("Using protocol handler samplerate %" PRIu64 ".", rate);
3047 inc->curr_opts.samplerate = rate;
3048 }
3049 rate = handler->dflt.bitrate;
3050 if (!inc->curr_opts.bitrate && rate) {
3051 sr_dbg("Using protocol handler bitrate %" PRIu64 ".", rate);
3052 inc->curr_opts.bitrate = rate;
3053 }
3054 text = handler->dflt.frame_format;
3055 if (!inc->curr_opts.fmt_text && text && *text) {
3056 sr_dbg("Using protocol handler frame format %s.", text);
3057 ret = parse_frameformat(inc, text);
3058 if (ret != SR_OK)
3059 return SR_ERR_DATA;
3060 }
3061 is_text = handler->dflt.textinput;
3062 if (!inc->curr_opts.textinput && is_text) {
3063 sr_dbg("Using protocol handler text format %d.", is_text);
3064 inc->curr_opts.textinput = is_text;
3065 }
3066
3067 if (!inc->curr_opts.samplerate) {
3068 sr_err("Need a samplerate.");
3069 return SR_ERR_DATA;
3070 }
3071 if (!inc->curr_opts.bitrate) {
3072 sr_err("Need a protocol bitrate.");
3073 return SR_ERR_DATA;
3074 }
3075
3076 if (inc->curr_opts.samplerate < inc->curr_opts.bitrate) {
3077 sr_err("Bitrate cannot exceed samplerate.");
3078 return SR_ERR_DATA;
3079 }
3080 if (inc->curr_opts.samplerate / inc->curr_opts.bitrate < 3)
3081 sr_warn("Low oversampling, consider higher samplerate.");
3082 if (inc->curr_opts.prot_hdl->check_opts) {
3083 ret = inc->curr_opts.prot_hdl->check_opts(inc);
3084 if (ret != SR_OK) {
3085 sr_err("Options failed the protocol's check.");
3086 return SR_ERR_DATA;
3087 }
3088 }
3089
3090 return SR_OK;
3091}
3092
3093static int create_channels(struct sr_input *in)
3094{
3095 struct context *inc;
3096 struct sr_dev_inst *sdi;
3097 const struct proto_handler_t *handler;
3098 size_t index;
3099 const char *name;
3100
3101 if (!in)
3102 return SR_ERR_ARG;
3103 inc = in->priv;
3104 if (!inc)
3105 return SR_ERR_ARG;
3106 sdi = in->sdi;
3107 handler = inc->curr_opts.prot_hdl;
3108
3109 for (index = 0; index < handler->chans.count; index++) {
3110 name = handler->chans.names[index];
3111 sr_dbg("Channel %zu name %s.", index, name);
3112 sr_channel_new(sdi, index, SR_CHANNEL_LOGIC, TRUE, name);
3113 }
3114
3115 inc->feed_logic = feed_queue_logic_alloc(in->sdi,
3116 CHUNK_SIZE, sizeof(uint8_t));
3117 if (!inc->feed_logic) {
3118 sr_err("Cannot create session feed.");
3119 return SR_ERR_MALLOC;
3120 }
3121
3122 return SR_OK;
3123}
3124
3125/*
3126 * Keep track of a previously created channel list, in preparation of
3127 * re-reading the input file. Gets called from reset()/cleanup() paths.
3128 */
3129static void keep_header_for_reread(const struct sr_input *in)
3130{
3131 struct context *inc;
3132
3133 inc = in->priv;
3134
3135 g_slist_free_full(inc->prev.sr_groups, sr_channel_group_free_cb);
3136 inc->prev.sr_groups = in->sdi->channel_groups;
3137 in->sdi->channel_groups = NULL;
3138
3139 g_slist_free_full(inc->prev.sr_channels, sr_channel_free_cb);
3140 inc->prev.sr_channels = in->sdi->channels;
3141 in->sdi->channels = NULL;
3142}
3143
3144/*
3145 * Check whether the input file is being re-read, and refuse operation
3146 * when essential parameters of the acquisition have changed in ways
3147 * that are unexpected to calling applications. Gets called after the
3148 * file header got parsed (again).
3149 *
3150 * Changing the channel list across re-imports of the same file is not
3151 * supported, by design and for valid reasons, see bug #1215 for details.
3152 * Users are expected to start new sessions when they change these
3153 * essential parameters in the acquisition's setup. When we accept the
3154 * re-read file, then make sure to keep using the previous channel list,
3155 * applications may still reference them.
3156 */
3157static gboolean check_header_in_reread(const struct sr_input *in)
3158{
3159 struct context *inc;
3160
3161 if (!in)
3162 return FALSE;
3163 inc = in->priv;
3164 if (!inc)
3165 return FALSE;
3166 if (!inc->prev.sr_channels)
3167 return TRUE;
3168
3169 if (sr_channel_lists_differ(inc->prev.sr_channels, in->sdi->channels)) {
3170 sr_err("Channel list change not supported for file re-read.");
3171 return FALSE;
3172 }
3173
3174 g_slist_free_full(in->sdi->channel_groups, sr_channel_group_free_cb);
3175 in->sdi->channel_groups = inc->prev.sr_groups;
3176 inc->prev.sr_groups = NULL;
3177
3178 g_slist_free_full(in->sdi->channels, sr_channel_free_cb);
3179 in->sdi->channels = inc->prev.sr_channels;
3180 inc->prev.sr_channels = NULL;
3181
3182 return TRUE;
3183}
3184
3185/* Process another chunk of accumulated input data. */
3186static int process_buffer(struct sr_input *in, gboolean is_eof)
3187{
3188 struct context *inc;
3189 GVariant *gvar;
3190 int ret;
3191 GString *buf;
3192 const struct proto_handler_t *handler;
3193 size_t seen;
3194 char *line, *next;
3195 uint8_t sample;
3196
3197 inc = in->priv;
3198 buf = in->buf;
3199 handler = inc->curr_opts.prot_hdl;
3200
3201 /*
3202 * Send feed header and samplerate once before any sample data.
3203 * Communicate an idle period before the first generated frame.
3204 */
3205 if (!inc->started) {
3206 std_session_send_df_header(in->sdi);
3207 gvar = g_variant_new_uint64(inc->curr_opts.samplerate);
3208 ret = sr_session_send_meta(in->sdi, SR_CONF_SAMPLERATE, gvar);
3209 inc->started = TRUE;
3210 if (ret != SR_OK)
3211 return ret;
3212
3213 ret = send_idle_capture(inc);
3214 if (ret != SR_OK)
3215 return ret;
3216 }
3217
3218 /*
3219 * Force proper line termination when EOF is seen and the data
3220 * is in text format. This does not affect binary input, while
3221 * properly terminated text input does not suffer from another
3222 * line feed, because empty lines are considered acceptable.
3223 * Increases robustness for text input from broken generators
3224 * (popular editors which don't terminate the last line).
3225 */
3226 if (inc->curr_opts.textinput == INPUT_TEXT && is_eof) {
3227 g_string_append_c(buf, '\n');
3228 }
3229
3230 /*
3231 * For text input: Scan for the completion of another text line.
3232 * Process its values (or pseudo comments). Skip comment lines.
3233 */
3234 if (inc->curr_opts.textinput == INPUT_TEXT) do {
3235 /* Get another line of text. */
3236 seen = 0;
3237 line = sr_text_next_line(buf->str, buf->len, &next, &seen);
3238 if (!line)
3239 break;
3240 /* Process non-empty input lines. */
3241 ret = *line ? process_textline(in, line) : 0;
3242 if (ret < 0)
3243 return ret;
3244 /* Discard processed input text. */
3245 g_string_erase(buf, 0, seen);
3246 } while (buf->len);
3247
3248 /*
3249 * For binary input: Pass data values (individual bytes) to the
3250 * creation of protocol frames. Send the frame's waveform to
3251 * logic channels in the session feed when the protocol handler
3252 * signals the completion of another waveform (zero return value).
3253 * Non-zero positive values translate to "need more input data".
3254 * Negative values signal fatal errors. Remove processed input
3255 * data from the receive buffer.
3256 */
3257 if (inc->curr_opts.textinput == INPUT_BYTES) {
3258 seen = 0;
3259 while (seen < buf->len) {
3260 sample = buf->str[seen++];
3261 ret = 0;
3262 if (handler->proc_value)
3263 ret = handler->proc_value(inc, sample);
3264 if (ret < 0)
3265 return ret;
3266 if (ret > 0)
3267 continue;
3268 ret = send_frame(in);
3269 if (ret != SR_OK)
3270 return ret;
3271 ret = send_idle_interframe(inc);
3272 if (ret != SR_OK)
3273 return ret;
3274 }
3275 g_string_erase(buf, 0, seen);
3276 }
3277
3278 /* Send idle level, and flush when end of input data is seen. */
3279 if (is_eof) {
3280 if (buf->len)
3281 sr_warn("Unprocessed input data remains.");
3282
3283 ret = send_idle_capture(inc);
3284 if (ret != SR_OK)
3285 return ret;
3286
3287 ret = feed_queue_logic_flush(inc->feed_logic);
3288 if (ret != SR_OK)
3289 return ret;
3290 }
3291
3292 return SR_OK;
3293}
3294
3295static int format_match(GHashTable *metadata, unsigned int *confidence)
3296{
3297 GString *buf, *tmpbuf;
3298 gboolean has_magic;
3299
3300 buf = g_hash_table_lookup(metadata,
3301 GINT_TO_POINTER(SR_INPUT_META_HEADER));
3302 tmpbuf = g_string_new_len(buf->str, buf->len);
3303
3304 check_remove_bom(tmpbuf);
3305 has_magic = have_magic(tmpbuf, NULL);
3306 g_string_free(tmpbuf, TRUE);
3307
3308 if (!has_magic)
3309 return SR_ERR;
3310
3311 *confidence = 1;
3312 return SR_OK;
3313}
3314
3315static int init(struct sr_input *in, GHashTable *options)
3316{
3317 struct context *inc;
3318 GVariant *gvar;
3319 uint64_t rate;
3320 char *copy;
3321 const char *text;
3322
3323 in->sdi = g_malloc0(sizeof(*in->sdi));
3324 inc = g_malloc0(sizeof(*inc));
3325 in->priv = inc;
3326
3327 /*
3328 * Store user specified options for later reference.
3329 *
3330 * TODO How to most appropriately hook up size strings with the
3331 * input module's defaults, and applications and their input
3332 * dialogs?
3333 */
3334 gvar = g_hash_table_lookup(options, "samplerate");
3335 if (gvar) {
3336 rate = g_variant_get_uint64(gvar);
3337 if (rate)
3338 sr_dbg("User samplerate %" PRIu64 ".", rate);
3339 inc->user_opts.samplerate = rate;
3340 }
3341
3342 gvar = g_hash_table_lookup(options, "bitrate");
3343 if (gvar) {
3344 rate = g_variant_get_uint64(gvar);
3345 if (rate)
3346 sr_dbg("User bitrate %" PRIu64 ".", rate);
3347 inc->user_opts.bitrate = rate;
3348 }
3349
3350 gvar = g_hash_table_lookup(options, "protocol");
3351 if (gvar) {
3352 copy = g_strdup(g_variant_get_string(gvar, NULL));
3353 if (!copy)
3354 return SR_ERR_MALLOC;
3355 if (*copy)
3356 sr_dbg("User protocol %s.", copy);
3357 inc->user_opts.proto_name = copy;
3358 }
3359
3360 gvar = g_hash_table_lookup(options, "frameformat");
3361 if (gvar) {
3362 copy = g_strdup(g_variant_get_string(gvar, NULL));
3363 if (!copy)
3364 return SR_ERR_MALLOC;
3365 if (*copy)
3366 sr_dbg("User frame format %s.", copy);
3367 inc->user_opts.fmt_text = copy;
3368 }
3369
3370 inc->user_opts.textinput = INPUT_UNSPEC;
3371 gvar = g_hash_table_lookup(options, "textinput");
3372 if (gvar) {
3373 text = g_variant_get_string(gvar, NULL);
3374 if (!text)
3375 return SR_ERR_DATA;
3376 if (!*text)
3377 return SR_ERR_DATA;
3378 sr_dbg("User text input %s.", text);
3379 if (strcmp(text, input_format_texts[INPUT_UNSPEC]) == 0) {
3380 inc->user_opts.textinput = INPUT_UNSPEC;
3381 } else if (strcmp(text, input_format_texts[INPUT_BYTES]) == 0) {
3382 inc->user_opts.textinput = INPUT_BYTES;
3383 } else if (strcmp(text, input_format_texts[INPUT_TEXT]) == 0) {
3384 inc->user_opts.textinput = INPUT_TEXT;
3385 } else {
3386 return SR_ERR_DATA;
3387 }
3388 }
3389
3390 return SR_OK;
3391}
3392
3393static int receive(struct sr_input *in, GString *buf)
3394{
3395 struct context *inc;
3396 char *after_magic, *after_header;
3397 size_t consumed;
3398 int ret;
3399
3400 inc = in->priv;
3401
3402 /*
3403 * Accumulate all input chunks, potential deferred processing.
3404 *
3405 * Remove an optional BOM at the very start of the input stream.
3406 * BEWARE! This may affect binary input, and we cannot tell if
3407 * the input is text or binary at this stage. Though probability
3408 * for this issue is rather low. Workarounds are available (put
3409 * another values before the first data which happens to match
3410 * the BOM pattern, provide text input instead).
3411 */
3412 g_string_append_len(in->buf, buf->str, buf->len);
3413 if (!inc->scanned_magic)
3414 check_remove_bom(in->buf);
3415
3416 /*
3417 * Must complete reception of the (optional) header first. Both
3418 * end of header and absence of header will: Check options that
3419 * were seen so far, then start processing the data part.
3420 */
3421 if (!inc->got_header) {
3422 /* Check for magic file type marker. */
3423 if (!inc->scanned_magic) {
3424 inc->has_magic = have_magic(in->buf, &after_magic);
3425 inc->scanned_magic = TRUE;
3426 if (inc->has_magic) {
3427 consumed = after_magic - in->buf->str;
3428 sr_dbg("File format magic found (%zu).", consumed);
3429 g_string_erase(in->buf, 0, consumed);
3430 }
3431 }
3432
3433 /* Complete header reception and processing. */
3434 if (inc->has_magic) {
3435 ret = have_header(in->buf, &after_header);
3436 if (ret < 0)
3437 return SR_OK;
3438 inc->has_header = ret;
3439 if (inc->has_header) {
3440 consumed = after_header - in->buf->str;
3441 sr_dbg("File header found (%zu), processing.", consumed);
3442 ret = parse_header(inc, in->buf, consumed);
3443 if (ret != SR_OK)
3444 return ret;
3445 g_string_erase(in->buf, 0, consumed);
3446 }
3447 }
3448 inc->got_header = TRUE;
3449
3450 /*
3451 * Postprocess the combination of all options. Create
3452 * logic channels, prepare resources for data processing.
3453 */
3454 ret = check_header_user_options(inc);
3455 if (ret != SR_OK)
3456 return ret;
3457 ret = create_channels(in);
3458 if (ret != SR_OK)
3459 return ret;
3460 if (!check_header_in_reread(in))
3461 return SR_ERR_DATA;
3462 ret = alloc_frame_storage(inc);
3463 if (ret != SR_OK)
3464 return ret;
3465 ret = assign_bit_widths(inc);
3466 if (ret != SR_OK)
3467 return ret;
3468
3469 /* Notify the frontend that sdi is ready. */
3470 in->sdi_ready = TRUE;
3471 return SR_OK;
3472 }
3473
3474 /*
3475 * Process the input file's data section after the header section
3476 * was received and processed.
3477 */
3478 ret = process_buffer(in, FALSE);
3479
3480 return ret;
3481}
3482
3483static int end(struct sr_input *in)
3484{
3485 struct context *inc;
3486 int ret;
3487
3488 inc = in->priv;
3489
3490 /* Must complete processing of previously received chunks. */
3491 if (in->sdi_ready) {
3492 ret = process_buffer(in, TRUE);
3493 if (ret != SR_OK)
3494 return ret;
3495 }
3496
3497 /* Must send DF_END when DF_HEADER was sent before. */
3498 if (inc->started) {
3499 ret = std_session_send_df_end(in->sdi);
3500 if (ret != SR_OK)
3501 return ret;
3502 }
3503
3504 return SR_OK;
3505}
3506
3507static void cleanup(struct sr_input *in)
3508{
3509 struct context *inc;
3510
3511 inc = in->priv;
3512
3513 keep_header_for_reread(in);
3514
3515 g_free(inc->curr_opts.proto_name);
3516 inc->curr_opts.proto_name = NULL;
3517 g_free(inc->curr_opts.fmt_text);
3518 inc->curr_opts.fmt_text = NULL;
3519 g_free(inc->curr_opts.prot_priv);
3520 inc->curr_opts.prot_priv = NULL;
3521 feed_queue_logic_free(inc->feed_logic);
3522 inc->feed_logic = NULL;
3523 g_free(inc->sample_edges);
3524 inc->sample_edges = NULL;
3525 g_free(inc->sample_widths);
3526 inc->sample_widths = NULL;
3527 g_free(inc->sample_levels);
3528 inc->sample_levels = NULL;
3529 g_free(inc->bit_scale);
3530 inc->bit_scale = NULL;
3531}
3532
3533static int reset(struct sr_input *in)
3534{
3535 struct context *inc;
3536 struct user_opts_t save_user_opts;
3537 struct proto_prev save_chans;
3538
3539 inc = in->priv;
3540
3541 /* Release previously allocated resources. */
3542 cleanup(in);
3543 g_string_truncate(in->buf, 0);
3544
3545 /* Restore part of the context, init() won't run again. */
3546 save_user_opts = inc->user_opts;
3547 save_chans = inc->prev;
3548 memset(inc, 0, sizeof(*inc));
3549 inc->user_opts = save_user_opts;
3550 inc->prev = save_chans;
3551
3552 return SR_OK;
3553}
3554
3555enum proto_option_t {
3556 OPT_SAMPLERATE,
3557 OPT_BITRATE,
3558 OPT_PROTOCOL,
3559 OPT_FRAME_FORMAT,
3560 OPT_TEXTINPUT,
3561 OPT_MAX,
3562};
3563
3564static struct sr_option options[] = {
3565 [OPT_SAMPLERATE] = {
3566 "samplerate", "Logic data samplerate",
3567 "Samplerate of generated logic traces",
3568 NULL, NULL,
3569 },
3570 [OPT_BITRATE] = {
3571 "bitrate", "Protocol bitrate",
3572 "Bitrate used in protocol's communication",
3573 NULL, NULL,
3574 },
3575 [OPT_PROTOCOL] = {
3576 "protocol", "Protocol type",
3577 "The type of protocol to generate waveforms for",
3578 NULL, NULL,
3579 },
3580 [OPT_FRAME_FORMAT] = {
3581 "frameformat", "Protocol frame format",
3582 "Textual description of the protocol's frame format",
3583 NULL, NULL,
3584 },
3585 [OPT_TEXTINPUT] = {
3586 "textinput", "Input data is in text format",
3587 "Input is not data bytes, but text formatted values",
3588 NULL, NULL,
3589 },
3590 [OPT_MAX] = ALL_ZERO,
3591};
3592
3593static const struct sr_option *get_options(void)
3594{
3595 GSList *l;
3596 enum proto_type_t p_idx;
3597 enum textinput_t t_idx;
3598 const char *s;
3599
3600 if (options[0].def)
3601 return options;
3602
3603 options[OPT_SAMPLERATE].def = g_variant_ref_sink(g_variant_new_uint64(0));
3604 options[OPT_BITRATE].def = g_variant_ref_sink(g_variant_new_uint64(0));
3605 options[OPT_PROTOCOL].def = g_variant_ref_sink(g_variant_new_string(""));
3606 l = NULL;
3607 for (p_idx = 0; p_idx < ARRAY_SIZE(protocols); p_idx++) {
3608 s = protocols[p_idx].name;
3609 if (!s || !*s)
3610 continue;
3611 l = g_slist_append(l, g_variant_ref_sink(g_variant_new_string(s)));
3612 }
3613 options[OPT_PROTOCOL].values = l;
3614 options[OPT_FRAME_FORMAT].def = g_variant_ref_sink(g_variant_new_string(""));
3615 l = NULL;
3616 for (t_idx = INPUT_UNSPEC; t_idx <= INPUT_TEXT; t_idx++) {
3617 s = input_format_texts[t_idx];
3618 l = g_slist_append(l, g_variant_ref_sink(g_variant_new_string(s)));
3619 }
3620 options[OPT_TEXTINPUT].values = l;
3621 options[OPT_TEXTINPUT].def = g_variant_ref_sink(g_variant_new_string(
3622 input_format_texts[INPUT_UNSPEC]));
3623 return options;
3624}
3625
3626SR_PRIV struct sr_input_module input_protocoldata = {
3627 .id = "protocoldata",
3628 .name = "Protocol data",
3629 .desc = "Generate logic traces from protocol's data values",
3630 .exts = (const char *[]){ "sr-protocol", "protocol", "bin", NULL, },
3631 .metadata = { SR_INPUT_META_HEADER | SR_INPUT_META_REQUIRED },
3632 .options = get_options,
3633 .format_match = format_match,
3634 .init = init,
3635 .receive = receive,
3636 .end = end,
3637 .reset = reset,
3638};