]> sigrok.org Git - libsigrok.git/blame - src/analog.c
siglent-sds: Fix two memory leaks.
[libsigrok.git] / src / analog.c
CommitLineData
fb019a0e
BV
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
6ec6c43b 20#include <config.h>
c2a25ebb
BV
21#include <stdio.h>
22#include <stdint.h>
fb019a0e 23#include <string.h>
c2a25ebb 24#include <ctype.h>
962172e4 25#include <math.h>
c1aae900 26#include <libsigrok/libsigrok.h>
fb019a0e
BV
27#include "libsigrok-internal.h"
28
e00b3f58 29/** @cond PRIVATE */
fb019a0e 30#define LOG_PREFIX "analog"
e00b3f58
UH
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Handling and converting analog data.
37 */
38
39/**
40 * @defgroup grp_analog Analog data handling
41 *
42 * Handling and converting analog data.
43 *
44 * @{
45 */
fb019a0e 46
a5892391
BV
47struct unit_mq_string {
48 uint64_t value;
2c240774 49 const char *str;
a5892391
BV
50};
51
ca7dbb56 52/* Please use the same order as in enum sr_unit (libsigrok.h). */
a5892391
BV
53static struct unit_mq_string unit_strings[] = {
54 { SR_UNIT_VOLT, "V" },
55 { SR_UNIT_AMPERE, "A" },
56 { SR_UNIT_OHM, "\xe2\x84\xa6" },
57 { SR_UNIT_FARAD, "F" },
a5892391
BV
58 { SR_UNIT_KELVIN, "K" },
59 { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
60 { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
61 { SR_UNIT_HERTZ, "Hz" },
62 { SR_UNIT_PERCENTAGE, "%" },
f7bcc686 63 { SR_UNIT_BOOLEAN, "" },
a5892391
BV
64 { SR_UNIT_SECOND, "s" },
65 { SR_UNIT_SIEMENS, "S" },
cdc31195
AJ
66 { SR_UNIT_DECIBEL_MW, "dBm" },
67 { SR_UNIT_DECIBEL_VOLT, "dBV" },
f7bcc686 68 { SR_UNIT_UNITLESS, "" },
a5892391
BV
69 { SR_UNIT_DECIBEL_SPL, "dB" },
70 { SR_UNIT_CONCENTRATION, "ppm" },
71 { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
72 { SR_UNIT_VOLT_AMPERE, "VA" },
73 { SR_UNIT_WATT, "W" },
74 { SR_UNIT_WATT_HOUR, "Wh" },
75 { SR_UNIT_METER_SECOND, "m/s" },
76 { SR_UNIT_HECTOPASCAL, "hPa" },
77 { SR_UNIT_HUMIDITY_293K, "%rF" },
78 { SR_UNIT_DEGREE, "\xc2\xb0" },
f7bcc686
UH
79 { SR_UNIT_HENRY, "H" },
80 { SR_UNIT_GRAM, "g" },
81 { SR_UNIT_CARAT, "ct" },
82 { SR_UNIT_OUNCE, "oz" },
83 { SR_UNIT_TROY_OUNCE, "oz t" },
84 { SR_UNIT_POUND, "lb" },
85 { SR_UNIT_PENNYWEIGHT, "dwt" },
86 { SR_UNIT_GRAIN, "gr" },
87 { SR_UNIT_TAEL, "tael" },
88 { SR_UNIT_MOMME, "momme" },
89 { SR_UNIT_TOLA, "tola" },
90 { SR_UNIT_PIECE, "pcs" },
a5892391
BV
91 ALL_ZERO
92};
93
ca7dbb56 94/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
a5892391 95static struct unit_mq_string mq_strings[] = {
a5892391
BV
96 { SR_MQFLAG_AC, " AC" },
97 { SR_MQFLAG_DC, " DC" },
98 { SR_MQFLAG_RMS, " RMS" },
99 { SR_MQFLAG_DIODE, " DIODE" },
100 { SR_MQFLAG_HOLD, " HOLD" },
101 { SR_MQFLAG_MAX, " MAX" },
102 { SR_MQFLAG_MIN, " MIN" },
103 { SR_MQFLAG_AUTORANGE, " AUTO" },
104 { SR_MQFLAG_RELATIVE, " REL" },
f7bcc686
UH
105 { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
106 { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
107 { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
108 { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
109 { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
110 { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
111 { SR_MQFLAG_SPL_LAT, " LAT" },
112 /* Not a standard function for SLMs, so this is a made-up notation. */
113 { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
114 { SR_MQFLAG_DURATION, " DURATION" },
a5892391
BV
115 { SR_MQFLAG_AVG, " AVG" },
116 { SR_MQFLAG_REFERENCE, " REF" },
f7bcc686 117 { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
6d5cd3bd 118 { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
a5892391
BV
119 ALL_ZERO
120};
121
f200d59e 122/** @private */
edb691fc 123SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
41caa319
AJ
124 struct sr_analog_encoding *encoding,
125 struct sr_analog_meaning *meaning,
126 struct sr_analog_spec *spec,
127 int digits)
128{
129 memset(analog, 0, sizeof(*analog));
130 memset(encoding, 0, sizeof(*encoding));
131 memset(meaning, 0, sizeof(*meaning));
132 memset(spec, 0, sizeof(*spec));
133
134 analog->encoding = encoding;
135 analog->meaning = meaning;
136 analog->spec = spec;
137
138 encoding->unitsize = sizeof(float);
139 encoding->is_float = TRUE;
140#ifdef WORDS_BIGENDIAN
141 encoding->is_bigendian = TRUE;
142#else
143 encoding->is_bigendian = FALSE;
144#endif
145 encoding->digits = digits;
146 encoding->is_digits_decimal = TRUE;
147 encoding->scale.p = 1;
148 encoding->scale.q = 1;
149 encoding->offset.p = 0;
150 encoding->offset.q = 1;
151
152 spec->spec_digits = digits;
153
154 return SR_OK;
155}
156
22fb1bff
UH
157/**
158 * Convert an analog datafeed payload to an array of floats.
159 *
8dc423b0
UH
160 * Sufficient memory for outbuf must have been pre-allocated by the caller,
161 * who is also responsible for freeing it when no longer needed.
162 *
22fb1bff
UH
163 * @param[in] analog The analog payload to convert. Must not be NULL.
164 * analog->data, analog->meaning, and analog->encoding
165 * must not be NULL.
166 * @param[out] outbuf Memory where to store the result. Must not be NULL.
167 *
22fb1bff
UH
168 * @retval SR_OK Success.
169 * @retval SR_ERR Unsupported encoding.
170 * @retval SR_ERR_ARG Invalid argument.
171 *
172 * @since 0.4.0
173 */
edb691fc 174SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
4b4fdeea 175 float *outbuf)
fb019a0e
BV
176{
177 float offset;
5cee3d08 178 unsigned int b, i, count;
fb019a0e 179 gboolean bigendian;
5cee3d08
UH
180
181 if (!analog || !(analog->data) || !(analog->meaning)
182 || !(analog->encoding) || !outbuf)
183 return SR_ERR_ARG;
184
185 count = analog->num_samples * g_slist_length(analog->meaning->channels);
fb019a0e
BV
186
187#ifdef WORDS_BIGENDIAN
188 bigendian = TRUE;
189#else
190 bigendian = FALSE;
191#endif
8dc423b0 192
fb019a0e 193 if (!analog->encoding->is_float) {
4d376e08
SB
194 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
195 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
196 gboolean is_signed = analog->encoding->is_signed;
197 gboolean is_bigendian = analog->encoding->is_bigendian;
198 int8_t *data8 = (int8_t *)(analog->data);
199 int16_t *data16 = (int16_t *)(analog->data);
200 int32_t *data32 = (int32_t *)(analog->data);
201
202 switch (analog->encoding->unitsize) {
203 case 1:
204 if (is_signed) {
205 for (unsigned int i = 0; i < count; i++) {
206 outbuf[i] = scale * data8[i];
207 outbuf[i] += offset;
208 }
209 } else {
210 for (unsigned int i = 0; i < count; i++) {
211 outbuf[i] = scale * R8(data8 + i);
212 outbuf[i] += offset;
213 }
214 }
215 break;
216 case 2:
217 if (is_signed && is_bigendian) {
218 for (unsigned int i = 0; i < count; i++) {
219 outbuf[i] = scale * RB16S(&data16[i]);
220 outbuf[i] += offset;
221 }
222 } else if (is_bigendian) {
223 for (unsigned int i = 0; i < count; i++) {
224 outbuf[i] = scale * RB16(&data16[i]);
225 outbuf[i] += offset;
226 }
227 } else if (is_signed) {
228 for (unsigned int i = 0; i < count; i++) {
229 outbuf[i] = scale * RL16S(&data16[i]);
230 outbuf[i] += offset;
231 }
232 } else {
233 for (unsigned int i = 0; i < count; i++) {
234 outbuf[i] = scale * RL16(&data16[i]);
235 outbuf[i] += offset;
236 }
237 }
238 break;
239 case 4:
240 if (is_signed && is_bigendian) {
241 for (unsigned int i = 0; i < count; i++) {
242 outbuf[i] = scale * RB32S(&data32[i]);
243 outbuf[i] += offset;
244 }
245 } else if (is_bigendian) {
246 for (unsigned int i = 0; i < count; i++) {
247 outbuf[i] = scale * RB32(&data32[i]);
248 outbuf[i] += offset;
249 }
250 } else if (is_signed) {
251 for (unsigned int i = 0; i < count; i++) {
252 outbuf[i] = scale * RL32S(&data32[i]);
253 outbuf[i] += offset;
254 }
255 } else {
256 for (unsigned int i = 0; i < count; i++) {
257 outbuf[i] = scale * RL32(&data32[i]);
258 outbuf[i] += offset;
259 }
260 }
261 break;
262 default:
8dc423b0
UH
263 sr_err("Unsupported unit size '%d' for analog-to-float"
264 " conversion.", analog->encoding->unitsize);
4d376e08
SB
265 return SR_ERR;
266 }
267 return SR_OK;
fb019a0e
BV
268 }
269
270 if (analog->encoding->unitsize == sizeof(float)
271 && analog->encoding->is_bigendian == bigendian
b07a1b04
ML
272 && analog->encoding->scale.p == 1
273 && analog->encoding->scale.q == 1
4b4fdeea 274 && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
fb019a0e 275 /* The data is already in the right format. */
7d65dd3a 276 memcpy(outbuf, analog->data, count * sizeof(float));
fb019a0e 277 } else {
7d65dd3a 278 for (i = 0; i < count; i += analog->encoding->unitsize) {
fb019a0e
BV
279 for (b = 0; b < analog->encoding->unitsize; b++) {
280 if (analog->encoding->is_bigendian == bigendian)
3e277549
ML
281 ((uint8_t *)outbuf)[i + b] =
282 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 283 else
3e277549
ML
284 ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
285 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 286 }
b07a1b04
ML
287 if (analog->encoding->scale.p != 1
288 || analog->encoding->scale.q != 1)
4b4fdeea
BV
289 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
290 offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
291 outbuf[i] += offset;
fb019a0e
BV
292 }
293 }
294
295 return SR_OK;
296}
c2a25ebb 297
962172e4
AJ
298/**
299 * Scale a float value to the appropriate SI prefix.
300 *
301 * @param[in,out] value The float value to convert to appropriate SI prefix.
302 * @param[in,out] digits The number of significant decimal digits in value.
303 *
304 * @return The SI prefix to which value was scaled, as a printable string.
305 *
306 * @since 0.5.0
307 */
308SR_API const char *sr_analog_si_prefix(float *value, int *digits)
309{
f200d59e 310/** @cond PRIVATE */
962172e4
AJ
311#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
312#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
f200d59e 313/** @endcond */
8dc423b0 314 static const char *prefixes[] = { "f", "p", "n", "µ", "m", "", "k", "M", "G", "T" };
962172e4 315
8dc423b0 316 if (!value || !digits || isnan(*value))
962172e4
AJ
317 return prefixes[NEG_PREFIX_COUNT];
318
319 float logval = log10f(fabsf(*value));
320 int prefix = (logval / 3) - (logval < 1);
321
8dc423b0
UH
322 if (prefix < -NEG_PREFIX_COUNT)
323 prefix = -NEG_PREFIX_COUNT;
324 if (3 * prefix < -*digits)
325 prefix = (-*digits + 2 * (*digits < 0)) / 3;
326 if (prefix > POS_PREFIX_COUNT)
327 prefix = POS_PREFIX_COUNT;
962172e4
AJ
328
329 *value *= powf(10, -3 * prefix);
330 *digits += 3 * prefix;
8dc423b0 331
962172e4
AJ
332 return prefixes[prefix + NEG_PREFIX_COUNT];
333}
334
5728718b
AJ
335/**
336 * Check if a unit "accepts" an SI prefix.
337 *
338 * E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
339 * SR_UNIT_PERCENTAGE are not.
340 *
341 * @param[in] unit The unit to check for SI prefix "friendliness".
342 *
343 * @return TRUE if the unit "accept" an SI prefix.
344 *
345 * @since 0.5.0
346 */
347SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
348{
349 static const enum sr_unit prefix_friendly_units[] = {
350 SR_UNIT_VOLT,
351 SR_UNIT_AMPERE,
352 SR_UNIT_OHM,
353 SR_UNIT_FARAD,
354 SR_UNIT_KELVIN,
355 SR_UNIT_HERTZ,
356 SR_UNIT_SECOND,
357 SR_UNIT_SIEMENS,
358 SR_UNIT_VOLT_AMPERE,
359 SR_UNIT_WATT,
360 SR_UNIT_WATT_HOUR,
361 SR_UNIT_METER_SECOND,
362 SR_UNIT_HENRY,
363 SR_UNIT_GRAM
364 };
365 unsigned int i;
366
367 for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
368 if (unit == prefix_friendly_units[i])
369 break;
370
371 if (unit != prefix_friendly_units[i])
372 return FALSE;
373
374 return TRUE;
375}
376
22fb1bff 377/**
a5892391
BV
378 * Convert the unit/MQ/MQ flags in the analog struct to a string.
379 *
8dc423b0
UH
380 * The string is allocated by the function and must be freed by the caller
381 * after use by calling g_free().
382 *
22fb1bff
UH
383 * @param[in] analog Struct containing the unit, MQ and MQ flags.
384 * Must not be NULL. analog->meaning must not be NULL.
385 * @param[out] result Pointer to store result. Must not be NULL.
a24da9a8 386 *
22fb1bff
UH
387 * @retval SR_OK Success.
388 * @retval SR_ERR_ARG Invalid argument.
a5892391
BV
389 *
390 * @since 0.4.0
391 */
edb691fc 392SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
a24da9a8 393 char **result)
a5892391 394{
a24da9a8 395 int i;
5cee3d08
UH
396 GString *buf;
397
398 if (!analog || !(analog->meaning) || !result)
399 return SR_ERR_ARG;
400
401 buf = g_string_new(NULL);
a5892391 402
a5892391
BV
403 for (i = 0; unit_strings[i].value; i++) {
404 if (analog->meaning->unit == unit_strings[i].value) {
a24da9a8 405 g_string_assign(buf, unit_strings[i].str);
a5892391
BV
406 break;
407 }
408 }
409
410 /* More than one MQ flag may apply. */
a24da9a8
ML
411 for (i = 0; mq_strings[i].value; i++)
412 if (analog->meaning->mqflags & mq_strings[i].value)
413 g_string_append(buf, mq_strings[i].str);
414
415 *result = buf->str;
416 g_string_free(buf, FALSE);
a5892391
BV
417
418 return SR_OK;
419}
420
22fb1bff 421/**
90cefe0c
BV
422 * Set sr_rational r to the given value.
423 *
22fb1bff
UH
424 * @param[out] r Rational number struct to set. Must not be NULL.
425 * @param[in] p Numerator.
426 * @param[in] q Denominator.
427 *
428 * @since 0.4.0
90cefe0c 429 */
53e5d3d1 430SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
90cefe0c 431{
5cee3d08
UH
432 if (!r)
433 return;
434
90cefe0c
BV
435 r->p = p;
436 r->q = q;
437}
438
bdba3626
SB
439#ifndef HAVE___INT128_T
440struct sr_int128_t {
441 int64_t high;
442 uint64_t low;
443};
444
445struct sr_uint128_t {
446 uint64_t high;
447 uint64_t low;
448};
449
450static void mult_int64(struct sr_int128_t *res, const int64_t a,
451 const int64_t b)
452{
453 uint64_t t1, t2, t3, t4;
454
455 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
456 t2 = (UINT32_MAX & a) * (b >> 32);
457 t3 = (a >> 32) * (UINT32_MAX & b);
458 t4 = (a >> 32) * (b >> 32);
459
460 res->low = t1 + (t2 << 32) + (t3 << 32);
461 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
462 res->high >>= 32;
463 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
464}
465
466static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
467 const uint64_t b)
468{
469 uint64_t t1, t2, t3, t4;
470
471 // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
472 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
473 t2 = (UINT32_MAX & a) * (b >> 32);
474 t3 = (a >> 32) * (UINT32_MAX & b);
475 t4 = (a >> 32) * (b >> 32);
476
477 res->low = t1 + (t2 << 32) + (t3 << 32);
478 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
479 res->high >>= 32;
480 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
481}
482#endif
483
484/**
8dc423b0 485 * Compare two sr_rational for equality.
bdba3626 486 *
8dc423b0 487 * The values are compared for numerical equality, i.e. 2/10 == 1/5.
bdba3626 488 *
8dc423b0
UH
489 * @param[in] a First value.
490 * @param[in] b Second value.
bdba3626 491 *
8dc423b0
UH
492 * @retval 1 if both values are equal.
493 * @retval 0 Otherwise.
bdba3626
SB
494 *
495 * @since 0.5.0
496 */
497SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
498{
499#ifdef HAVE___INT128_T
500 __int128_t m1, m2;
501
502 /* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
503 m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
504 m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
505
506 return (m1 == m2);
507
508#else
509 struct sr_int128_t m1, m2;
510
511 mult_int64(&m1, a->q, b->p);
512 mult_int64(&m2, a->p, b->q);
513
514 return (m1.high == m2.high) && (m1.low == m2.low);
515#endif
516}
517
ee1b6054 518/**
8dc423b0 519 * Multiply two sr_rational.
ee1b6054
SB
520 *
521 * The resulting nominator/denominator are reduced if the result would not fit
522 * otherwise. If the resulting nominator/denominator are relatively prime,
523 * this may not be possible.
524 *
8dc423b0
UH
525 * It is safe to use the same variable for result and input values.
526 *
527 * @param[in] a First value.
528 * @param[in] b Second value.
529 * @param[out] res Result.
17d5a11c 530 *
ee1b6054 531 * @retval SR_OK Success.
8dc423b0 532 * @retval SR_ERR_ARG Resulting value too large.
ee1b6054
SB
533 *
534 * @since 0.5.0
535 */
536SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
537 const struct sr_rational *b)
538{
539#ifdef HAVE___INT128_T
540 __int128_t p;
541 __uint128_t q;
542
543 p = (__int128_t)(a->p) * (__int128_t)(b->p);
544 q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
545
546 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
547 while (!((p & 1) || (q & 1))) {
548 p /= 2;
549 q /= 2;
550 }
551 }
552
553 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
554 // TODO: determine gcd to do further reduction
555 return SR_ERR_ARG;
556 }
557
558 res->p = (int64_t)(p);
559 res->q = (uint64_t)(q);
560
561 return SR_OK;
562
563#else
564 struct sr_int128_t p;
565 struct sr_uint128_t q;
566
567 mult_int64(&p, a->p, b->p);
568 mult_uint64(&q, a->q, b->q);
569
570 while (!(p.low & 1) && !(q.low & 1)) {
571 p.low /= 2;
8dc423b0
UH
572 if (p.high & 1)
573 p.low |= (1ll << 63);
ee1b6054
SB
574 p.high >>= 1;
575 q.low /= 2;
8dc423b0
UH
576 if (q.high & 1)
577 q.low |= (1ll << 63);
ee1b6054
SB
578 q.high >>= 1;
579 }
580
581 if (q.high)
582 return SR_ERR_ARG;
583 if ((p.high >= 0) && (p.low > INT64_MAX))
584 return SR_ERR_ARG;
585 if (p.high < -1)
586 return SR_ERR_ARG;
587
588 res->p = (int64_t)p.low;
589 res->q = q.low;
590
591 return SR_OK;
592#endif
593}
594
17d5a11c 595/**
8dc423b0 596 * Divide rational a by rational b.
17d5a11c
SB
597 *
598 * The resulting nominator/denominator are reduced if the result would not fit
599 * otherwise. If the resulting nominator/denominator are relatively prime,
600 * this may not be possible.
601 *
8dc423b0
UH
602 * It is safe to use the same variable for result and input values.
603 *
604 * @param[in] num Numerator.
605 * @param[in] div Divisor.
606 * @param[out] res Result.
17d5a11c
SB
607 *
608 * @retval SR_OK Success.
8dc423b0
UH
609 * @retval SR_ERR_ARG Division by zero.
610 * @retval SR_ERR_ARG Denominator of divisor too large.
611 * @retval SR_ERR_ARG Resulting value too large.
17d5a11c
SB
612 *
613 * @since 0.5.0
614 */
615SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
616 const struct sr_rational *div)
617{
618 struct sr_rational t;
619
620 if (div->q > INT64_MAX)
621 return SR_ERR_ARG;
622 if (div->p == 0)
623 return SR_ERR_ARG;
624
625 if (div->p > 0) {
626 t.p = div->q;
627 t.q = div->p;
628 } else {
629 t.p = -div->q;
630 t.q = -div->p;
631 }
632
633 return sr_rational_mult(res, num, &t);
634}
635
e00b3f58 636/** @} */