]> sigrok.org Git - libsigrok.git/blame - hardware/common/dmm/es519xx.c
Centralise duplicated logging helper defines.
[libsigrok.git] / hardware / common / dmm / es519xx.c
CommitLineData
c01bdebc
AJ
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5 * Copyright (C) 2013 Aurelien Jacobs <aurel@gnuage.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/*
23 * Cyrustek ES519XX protocol parser.
24 *
25 * Communication parameters: Unidirectional, 2400/7o1 or 19230/7o1
26 */
27
28#include <string.h>
29#include <ctype.h>
30#include <math.h>
31#include <glib.h>
32#include "libsigrok.h"
33#include "libsigrok-internal.h"
34
3544f848 35#define LOG_PREFIX "es519xx"
c01bdebc
AJ
36
37/* Factors for the respective measurement mode (0 means "invalid"). */
72e1672f 38static const float factors_2400_11b[8][8] = {
c01bdebc
AJ
39 {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0 }, /* V */
40 {1e-7, 1e-6, 0, 0, 0, 0, 0, 0 }, /* uA */
41 {1e-5, 1e-4, 0, 0, 0, 0, 0, 0 }, /* mA */
42 {1e-2, 0, 0, 0, 0, 0, 0, 0 }, /* A */
43 {1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 0, 0 }, /* RPM */
44 {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0 }, /* Resistance */
45 {1, 1e1, 1e2, 1e3, 1e4, 1e5, 0, 0 }, /* Frequency */
46 {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
47};
72e1672f 48static const float factors_19200_11b_5digits[8][8] = {
c01bdebc
AJ
49 {1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */
50 {1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */
51 {1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */
52 {0, 1e-3, 0, 0, 0, 0, 0, 0}, /* A */
53 {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */
54 {1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */
55 {1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */
56 {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
57};
72e1672f 58static const float factors_19200_11b_clampmeter[8][8] = {
c01bdebc
AJ
59 {1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */
60 {1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */
61 {1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */
62 {1e-2, 0, 0, 0, 0, 0, 0, 0}, /* A */
63 {1e-3, 1e-2, 1e-1, 1, 0, 0, 0, 0}, /* Manual A */
64 {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */
65 {1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */
66 {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
67};
72e1672f 68static const float factors_19200_11b[8][8] = {
c01bdebc
AJ
69 {1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */
70 {1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */
71 {1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */
72 {1e-3, 1e-2, 0, 0, 0, 0, 0, 0}, /* A */
73 {0, 0, 0, 0, 0, 0, 0, 0}, /* Manual A */
74 {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */
75 {1, 1e1, 1e2, 1e3, 1e4, 0, 0, 0}, /* Frequency */
76 {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 0}, /* Capacitance */
77};
72e1672f 78static const float factors_19200_14b[8][8] = {
c01bdebc
AJ
79 {1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */
80 {1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */
81 {1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */
82 {1e-3, 0, 0, 0, 0, 0, 0, 0}, /* A */
83 {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */
84 {1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */
85 {1e-2, 1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4}, /* Frequency */
86 {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
87};
88
89static int parse_value(const uint8_t *buf, struct es519xx_info *info,
90 float *result)
91{
72e1672f 92 int i, intval, num_digits;
c01bdebc
AJ
93 float floatval;
94
72e1672f
UH
95 num_digits = 4 + ((info->packet_size == 14) ? 1 : 0);
96
c01bdebc
AJ
97 /* Bytes 1-4 (or 5): Value (4 or 5 decimal digits) */
98 if (info->is_ol) {
99 sr_spew("Over limit.");
100 *result = INFINITY;
101 return SR_OK;
102 } else if (info->is_ul) {
103 sr_spew("Under limit.");
104 *result = INFINITY;
105 return SR_OK;
106 } else if (!isdigit(buf[1]) || !isdigit(buf[2]) ||
107 !isdigit(buf[3]) || !isdigit(buf[4]) ||
72e1672f 108 (num_digits == 5 && !isdigit(buf[5]))) {
c01bdebc
AJ
109 sr_err("Value contained invalid digits: %02x %02x %02x %02x "
110 "(%c %c %c %c).", buf[1], buf[2], buf[3], buf[4],
111 buf[1], buf[2], buf[3], buf[4]);
112 return SR_ERR;
113 }
72e1672f
UH
114 intval = (info->is_digit4) ? 1 : 0;
115 for (i = 0; i < num_digits; i++)
116 intval = 10 * intval + (buf[i + 1] - '0');
c01bdebc
AJ
117
118 /* Apply sign. */
119 intval *= info->is_sign ? -1 : 1;
120
121 floatval = (float)intval;
122
123 /* Note: The decimal point position will be parsed later. */
124
125 sr_spew("The display value is %f.", floatval);
126
127 *result = floatval;
72e1672f 128
c01bdebc
AJ
129 return SR_OK;
130}
131
132static int parse_range(uint8_t b, float *floatval,
133 const struct es519xx_info *info)
134{
72e1672f 135 int idx, mode;
c01bdebc
AJ
136 float factor = 0;
137
72e1672f
UH
138 idx = b - '0';
139
c01bdebc
AJ
140 if (idx < 0 || idx > 7) {
141 sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx);
142 return SR_ERR;
143 }
144
145 /* Parse range byte (depends on the measurement mode). */
146 if (info->is_voltage)
147 mode = 0; /* V */
148 else if (info->is_current && info->is_micro)
149 mode = 1; /* uA */
150 else if (info->is_current && info->is_milli)
151 mode = 2; /* mA */
152 else if (info->is_current && info->is_auto)
153 mode = 3; /* A */
72e1672f 154 else if (info->is_current && !info->is_auto)
c01bdebc
AJ
155 mode = 4; /* Manual A */
156 else if (info->is_rpm)
72e1672f 157 /* Not a typo, it's really index 4 in factors_2400_11b[][]. */
c01bdebc
AJ
158 mode = 4; /* RPM */
159 else if (info->is_resistance)
160 mode = 5; /* Resistance */
161 else if (info->is_frequency)
162 mode = 6; /* Frequency */
163 else if (info->is_capacitance)
164 mode = 7; /* Capacitance */
165 else {
166 sr_dbg("Invalid mode, range byte was: 0x%02x.", b);
167 return SR_ERR;
168 }
169
170 if (info->is_vbar) {
171 if (info->is_micro)
72e1672f 172 factor = (const float[]){1e-1, 1}[idx];
c01bdebc 173 else if (info->is_milli)
72e1672f 174 factor = (const float[]){1e-2, 1e-1}[idx];
c01bdebc
AJ
175 }
176 else if (info->baudrate == 2400)
72e1672f 177 factor = factors_2400_11b[mode][idx];
c01bdebc 178 else if (info->fivedigits)
72e1672f 179 factor = factors_19200_11b_5digits[mode][idx];
c01bdebc 180 else if (info->clampmeter)
72e1672f 181 factor = factors_19200_11b_clampmeter[mode][idx];
c01bdebc 182 else if (info->packet_size == 11)
72e1672f 183 factor = factors_19200_11b[mode][idx];
c01bdebc 184 else if (info->packet_size == 14)
72e1672f 185 factor = factors_19200_14b[mode][idx];
c01bdebc
AJ
186
187 if (factor == 0) {
188 sr_dbg("Invalid factor for range byte: 0x%02x.", b);
189 return SR_ERR;
190 }
191
192 /* Apply respective factor (mode-dependent) on the value. */
193 *floatval *= factor;
194 sr_dbg("Applying factor %f, new value is %f.", factor, *floatval);
195
196 return SR_OK;
197}
198
199static void parse_flags(const uint8_t *buf, struct es519xx_info *info)
200{
72e1672f 201 int function, status;
c01bdebc 202
72e1672f
UH
203 function = 5 + ((info->packet_size == 14) ? 1 : 0);
204 status = function + 1;
205
206 /* Status byte */
c01bdebc
AJ
207 if (info->alt_functions) {
208 info->is_sign = (buf[status] & (1 << 3)) != 0;
72e1672f
UH
209 info->is_batt = (buf[status] & (1 << 2)) != 0; /* Bat. low */
210 info->is_ol = (buf[status] & (1 << 1)) != 0; /* Overflow */
211 info->is_ol |= (buf[status] & (1 << 0)) != 0; /* Overflow */
c01bdebc
AJ
212 } else {
213 info->is_judge = (buf[status] & (1 << 3)) != 0;
214 info->is_sign = (buf[status] & (1 << 2)) != 0;
72e1672f
UH
215 info->is_batt = (buf[status] & (1 << 1)) != 0; /* Bat. low */
216 info->is_ol = (buf[status] & (1 << 0)) != 0; /* Overflow */
c01bdebc
AJ
217 }
218
219 if (info->packet_size == 14) {
72e1672f
UH
220 /* Option 1 byte */
221 info->is_max = (buf[8] & (1 << 3)) != 0;
222 info->is_min = (buf[8] & (1 << 2)) != 0;
223 info->is_rel = (buf[8] & (1 << 1)) != 0;
224 info->is_rmr = (buf[8] & (1 << 0)) != 0;
225
226 /* Option 2 byte */
227 info->is_ul = (buf[9] & (1 << 3)) != 0; /* Underflow */
228 info->is_pmax = (buf[9] & (1 << 2)) != 0; /* Max. peak value */
229 info->is_pmin = (buf[9] & (1 << 1)) != 0; /* Min. peak value */
230
231 /* Option 3 byte */
232 info->is_dc = (buf[10] & (1 << 3)) != 0;
233 info->is_ac = (buf[10] & (1 << 2)) != 0;
234 info->is_auto = (buf[10] & (1 << 1)) != 0;
235 info->is_vahz = (buf[10] & (1 << 0)) != 0;
236
237 /* LPF: Low-pass filter(s) */
c01bdebc 238 if (info->selectable_lpf) {
72e1672f
UH
239 /* Option 4 byte */
240 info->is_hold = (buf[11] & (1 << 3)) != 0;
241 info->is_vbar = (buf[11] & (1 << 2)) != 0;
242 info->is_lpf1 = (buf[11] & (1 << 1)) != 0;
243 info->is_lpf0 = (buf[11] & (1 << 0)) != 0;
c01bdebc 244 } else {
72e1672f
UH
245 /* Option 4 byte */
246 info->is_vbar = (buf[11] & (1 << 2)) != 0;
247 info->is_hold = (buf[11] & (1 << 1)) != 0;
248 info->is_lpf1 = (buf[11] & (1 << 0)) != 0;
c01bdebc
AJ
249 }
250 } else if (info->alt_functions) {
72e1672f
UH
251 /* Option 2 byte */
252 info->is_dc = (buf[8] & (1 << 3)) != 0;
253 info->is_auto = (buf[8] & (1 << 2)) != 0;
254 info->is_apo = (buf[8] & (1 << 0)) != 0;
255 info->is_ac = !info->is_dc;
c01bdebc 256 } else {
72e1672f 257 /* Option 1 byte */
c01bdebc
AJ
258 if (info->baudrate == 2400) {
259 info->is_pmax = (buf[7] & (1 << 3)) != 0;
260 info->is_pmin = (buf[7] & (1 << 2)) != 0;
261 info->is_vahz = (buf[7] & (1 << 0)) != 0;
262 } else if (info->fivedigits) {
263 info->is_ul = (buf[7] & (1 << 3)) != 0;
264 info->is_pmax = (buf[7] & (1 << 2)) != 0;
265 info->is_pmin = (buf[7] & (1 << 1)) != 0;
266 info->is_digit4 = (buf[7] & (1 << 0)) != 0;
267 } else if (info->clampmeter) {
268 info->is_ul = (buf[7] & (1 << 3)) != 0;
269 info->is_vasel = (buf[7] & (1 << 2)) != 0;
270 info->is_vbar = (buf[7] & (1 << 1)) != 0;
271 } else {
272 info->is_hold = (buf[7] & (1 << 3)) != 0;
273 info->is_max = (buf[7] & (1 << 2)) != 0;
274 info->is_min = (buf[7] & (1 << 1)) != 0;
275 }
276
72e1672f
UH
277 /* Option 2 byte */
278 info->is_dc = (buf[8] & (1 << 3)) != 0;
279 info->is_ac = (buf[8] & (1 << 2)) != 0;
280 info->is_auto = (buf[8] & (1 << 1)) != 0;
c01bdebc
AJ
281 if (info->baudrate == 2400)
282 info->is_apo = (buf[8] & (1 << 0)) != 0;
283 else
284 info->is_vahz = (buf[8] & (1 << 0)) != 0;
285 }
286
72e1672f 287 /* Function byte */
c01bdebc
AJ
288 if (info->alt_functions) {
289 switch (buf[function]) {
290 case 0x3f: /* A */
291 info->is_current = info->is_auto = TRUE;
292 break;
293 case 0x3e: /* uA */
294 info->is_current = info->is_micro = info->is_auto = TRUE;
295 break;
296 case 0x3d: /* mA */
297 info->is_current = info->is_milli = info->is_auto = TRUE;
298 break;
299 case 0x3c: /* V */
300 info->is_voltage = TRUE;
301 break;
302 case 0x37: /* Resistance */
303 info->is_resistance = TRUE;
304 break;
305 case 0x36: /* Continuity */
306 info->is_continuity = TRUE;
307 break;
308 case 0x3b: /* Diode */
309 info->is_diode = TRUE;
310 break;
311 case 0x3a: /* Frequency */
312 info->is_frequency = TRUE;
313 break;
314 case 0x34: /* ADP0 */
315 case 0x35: /* ADP0 */
316 info->is_adp0 = TRUE;
317 break;
318 case 0x38: /* ADP1 */
319 case 0x39: /* ADP1 */
320 info->is_adp1 = TRUE;
321 break;
322 case 0x32: /* ADP2 */
323 case 0x33: /* ADP2 */
324 info->is_adp2 = TRUE;
325 break;
326 case 0x30: /* ADP3 */
327 case 0x31: /* ADP3 */
328 info->is_adp3 = TRUE;
329 break;
330 default:
331 sr_err("Invalid function byte: 0x%02x.", buf[function]);
332 break;
333 }
334 } else {
72e1672f 335 /* Note: Some of these mappings are fixed up later. */
c01bdebc
AJ
336 switch (buf[function]) {
337 case 0x3b: /* V */
338 info->is_voltage = TRUE;
339 break;
340 case 0x3d: /* uA */
341 info->is_current = info->is_micro = info->is_auto = TRUE;
342 break;
343 case 0x3f: /* mA */
344 info->is_current = info->is_milli = info->is_auto = TRUE;
345 break;
346 case 0x30: /* A */
347 info->is_current = info->is_auto = TRUE;
348 break;
349 case 0x39: /* Manual A */
350 info->is_current = TRUE;
351 info->is_auto = FALSE; /* Manual mode */
352 break;
353 case 0x33: /* Resistance */
354 info->is_resistance = TRUE;
355 break;
356 case 0x35: /* Continuity */
357 info->is_continuity = TRUE;
358 break;
359 case 0x31: /* Diode */
360 info->is_diode = TRUE;
361 break;
362 case 0x32: /* Frequency / RPM / duty cycle */
363 if (info->packet_size == 14) {
364 if (info->is_judge)
365 info->is_frequency = TRUE;
366 else
367 info->is_duty_cycle = TRUE;
368 } else {
369 if (info->is_judge)
370 info->is_rpm = TRUE;
371 else
372 info->is_frequency = TRUE;
373 }
374 break;
375 case 0x36: /* Capacitance */
376 info->is_capacitance = TRUE;
377 break;
378 case 0x34: /* Temperature */
379 info->is_temperature = TRUE;
380 if (info->is_judge)
381 info->is_celsius = TRUE;
382 else
383 info->is_fahrenheit = TRUE;
72e1672f 384 /* IMPORTANT: The digits always represent Celsius! */
c01bdebc
AJ
385 break;
386 case 0x3e: /* ADP0 */
387 info->is_adp0 = TRUE;
388 break;
389 case 0x3c: /* ADP1 */
390 info->is_adp1 = TRUE;
391 break;
392 case 0x38: /* ADP2 */
393 info->is_adp2 = TRUE;
394 break;
395 case 0x3a: /* ADP3 */
396 info->is_adp3 = TRUE;
397 break;
398 default:
399 sr_err("Invalid function byte: 0x%02x.", buf[function]);
400 break;
401 }
402 }
403
404 if (info->is_current && (info->is_micro || info->is_milli) && info->is_vasel) {
405 info->is_current = info->is_auto = FALSE;
406 info->is_voltage = TRUE;
407 }
408
409 if (info->baudrate == 2400) {
72e1672f 410 /* Inverted mapping between mA and A, and no manual A. */
c01bdebc
AJ
411 if (info->is_current && (info->is_milli || !info->is_auto)) {
412 info->is_milli = !info->is_milli;
413 info->is_auto = TRUE;
414 }
415 }
416}
417
418static void handle_flags(struct sr_datafeed_analog *analog,
72e1672f 419 float *floatval, const struct es519xx_info *info)
c01bdebc
AJ
420{
421 /*
422 * Note: is_micro etc. are not used directly to multiply/divide
423 * floatval, this is handled via parse_range() and factors[][].
424 */
425
426 /* Measurement modes */
427 if (info->is_voltage) {
428 analog->mq = SR_MQ_VOLTAGE;
429 analog->unit = SR_UNIT_VOLT;
430 }
431 if (info->is_current) {
432 analog->mq = SR_MQ_CURRENT;
433 analog->unit = SR_UNIT_AMPERE;
434 }
435 if (info->is_resistance) {
436 analog->mq = SR_MQ_RESISTANCE;
437 analog->unit = SR_UNIT_OHM;
438 }
439 if (info->is_frequency) {
440 analog->mq = SR_MQ_FREQUENCY;
441 analog->unit = SR_UNIT_HERTZ;
442 }
443 if (info->is_capacitance) {
444 analog->mq = SR_MQ_CAPACITANCE;
445 analog->unit = SR_UNIT_FARAD;
446 }
447 if (info->is_temperature && info->is_celsius) {
448 analog->mq = SR_MQ_TEMPERATURE;
449 analog->unit = SR_UNIT_CELSIUS;
450 }
451 if (info->is_temperature && info->is_fahrenheit) {
452 analog->mq = SR_MQ_TEMPERATURE;
453 analog->unit = SR_UNIT_FAHRENHEIT;
454 }
455 if (info->is_continuity) {
456 analog->mq = SR_MQ_CONTINUITY;
457 analog->unit = SR_UNIT_BOOLEAN;
458 *floatval = (*floatval < 0.0) ? 0.0 : 1.0;
459 }
460 if (info->is_diode) {
461 analog->mq = SR_MQ_VOLTAGE;
462 analog->unit = SR_UNIT_VOLT;
463 }
464 if (info->is_rpm) {
465 analog->mq = SR_MQ_FREQUENCY;
466 analog->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE;
467 }
468 if (info->is_duty_cycle) {
469 analog->mq = SR_MQ_DUTY_CYCLE;
470 analog->unit = SR_UNIT_PERCENTAGE;
471 }
472
473 /* Measurement related flags */
474 if (info->is_ac)
475 analog->mqflags |= SR_MQFLAG_AC;
476 if (info->is_dc)
477 analog->mqflags |= SR_MQFLAG_DC;
478 if (info->is_auto)
479 analog->mqflags |= SR_MQFLAG_AUTORANGE;
480 if (info->is_diode)
481 analog->mqflags |= SR_MQFLAG_DIODE;
482 if (info->is_hold)
72e1672f
UH
483 /*
484 * Note: HOLD only affects the number displayed on the LCD,
485 * but not the value sent via the protocol! It also does not
486 * affect the bargraph on the LCD.
487 */
c01bdebc
AJ
488 analog->mqflags |= SR_MQFLAG_HOLD;
489 if (info->is_max)
490 analog->mqflags |= SR_MQFLAG_MAX;
491 if (info->is_min)
492 analog->mqflags |= SR_MQFLAG_MIN;
493 if (info->is_rel)
494 analog->mqflags |= SR_MQFLAG_RELATIVE;
495
496 /* Other flags */
497 if (info->is_judge)
498 sr_spew("Judge bit is set.");
499 if (info->is_batt)
500 sr_spew("Battery is low.");
501 if (info->is_ol)
502 sr_spew("Input overflow.");
503 if (info->is_ul)
504 sr_spew("Input underflow.");
505 if (info->is_pmax)
506 sr_spew("pMAX active, LCD shows max. peak value.");
507 if (info->is_pmin)
508 sr_spew("pMIN active, LCD shows min. peak value.");
509 if (info->is_vahz)
510 sr_spew("VAHZ active.");
511 if (info->is_apo)
512 sr_spew("Auto-Power-Off enabled.");
513 if (info->is_vbar)
514 sr_spew("VBAR active.");
515 if ((!info->selectable_lpf && info->is_lpf1) ||
516 (info->selectable_lpf && (!info->is_lpf0 || !info->is_lpf1)))
517 sr_spew("Low-pass filter feature is active.");
518}
519
520static gboolean flags_valid(const struct es519xx_info *info)
521{
522 int count;
523
524 /* Does the packet have more than one multiplier? */
72e1672f
UH
525 count = (info->is_micro) ? 1 : 0;
526 count += (info->is_milli) ? 1 : 0;
c01bdebc
AJ
527 if (count > 1) {
528 sr_err("More than one multiplier detected in packet.");
529 return FALSE;
530 }
531
532 /* Does the packet "measure" more than one type of value? */
72e1672f
UH
533 count = (info->is_voltage) ? 1 : 0;
534 count += (info->is_current) ? 1 : 0;
535 count += (info->is_resistance) ? 1 : 0;
536 count += (info->is_frequency) ? 1 : 0;
537 count += (info->is_capacitance) ? 1 : 0;
538 count += (info->is_temperature) ? 1 : 0;
539 count += (info->is_continuity) ? 1 : 0;
540 count += (info->is_diode) ? 1 : 0;
541 count += (info->is_rpm) ? 1 : 0;
c01bdebc
AJ
542 if (count > 1) {
543 sr_err("More than one measurement type detected in packet.");
544 return FALSE;
545 }
546
547 /* Both AC and DC set? */
548 if (info->is_ac && info->is_dc) {
549 sr_err("Both AC and DC flags detected in packet.");
550 return FALSE;
551 }
552
553 return TRUE;
554}
555
556static gboolean sr_es519xx_packet_valid(const uint8_t *buf,
557 struct es519xx_info *info)
558{
72e1672f
UH
559 int s;
560
561 s = info->packet_size;
c01bdebc 562
72e1672f 563 if (s == 11 && memcmp(buf, buf + s, s))
c01bdebc
AJ
564 return FALSE;
565
72e1672f 566 if (buf[s - 2] != '\r' || buf[s - 1] != '\n')
c01bdebc
AJ
567 return FALSE;
568
569 parse_flags(buf, info);
570
571 if (!flags_valid(info))
572 return FALSE;
573
574 return TRUE;
575}
576
577static int sr_es519xx_parse(const uint8_t *buf, float *floatval,
578 struct sr_datafeed_analog *analog,
579 struct es519xx_info *info)
580{
581 int ret;
582
583 if (!sr_es519xx_packet_valid(buf, info))
584 return SR_ERR;
585
586 if ((ret = parse_value(buf, info, floatval)) != SR_OK) {
587 sr_err("Error parsing value: %d.", ret);
588 return ret;
589 }
590
591 handle_flags(analog, floatval, info);
592
593 return parse_range(buf[0], floatval, info);
594}
595
c01bdebc 596/*
72e1672f 597 * Functions for 2400 baud / 11 bytes protocols.
c01bdebc
AJ
598 * This includes ES51962, ES51971, ES51972, ES51978 and ES51989.
599 */
72e1672f 600SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf)
c01bdebc 601{
94e9021b 602 struct es519xx_info info = { 0 };
72e1672f
UH
603
604 info.baudrate = 2400;
605 info.packet_size = 11;
606
c01bdebc
AJ
607 return sr_es519xx_packet_valid(buf, &info);
608}
609
72e1672f
UH
610SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval,
611 struct sr_datafeed_analog *analog, void *info)
c01bdebc 612{
72e1672f
UH
613 struct es519xx_info *info_local;
614
615 info_local = info;
94e9021b 616 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
617 info_local->baudrate = 2400;
618 info_local->packet_size = 11;
619
c01bdebc
AJ
620 return sr_es519xx_parse(buf, floatval, analog, info);
621}
622
c01bdebc 623/*
72e1672f 624 * Functions for 2400 baud / 11 byte protocols.
c01bdebc
AJ
625 * This includes ES51960, ES51977 and ES51988.
626 */
72e1672f 627SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf)
c01bdebc 628{
94e9021b 629 struct es519xx_info info = { 0 };
72e1672f
UH
630
631 info.baudrate = 2400;
632 info.packet_size = 11;
633 info.alt_functions = TRUE;
634
c01bdebc
AJ
635 return sr_es519xx_packet_valid(buf, &info);
636}
637
72e1672f
UH
638SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf,
639 float *floatval, struct sr_datafeed_analog *analog, void *info)
c01bdebc 640{
72e1672f
UH
641 struct es519xx_info *info_local;
642
643 info_local = info;
94e9021b 644 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
645 info_local->baudrate = 2400;
646 info_local->packet_size = 11;
647 info_local->alt_functions = TRUE;
648
c01bdebc
AJ
649 return sr_es519xx_parse(buf, floatval, analog, info);
650}
651
c01bdebc 652/*
72e1672f 653 * Functions for 19200 baud / 11 bytes protocols with 5 digits display.
c01bdebc
AJ
654 * This includes ES51911, ES51916 and ES51918.
655 */
72e1672f 656SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf)
c01bdebc 657{
94e9021b 658 struct es519xx_info info = { 0 };
72e1672f
UH
659
660 info.baudrate = 19200;
661 info.packet_size = 11;
662 info.fivedigits = TRUE;
663
c01bdebc
AJ
664 return sr_es519xx_packet_valid(buf, &info);
665}
666
93d719cd 667SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf,
72e1672f 668 float *floatval, struct sr_datafeed_analog *analog, void *info)
c01bdebc 669{
72e1672f
UH
670 struct es519xx_info *info_local;
671
672 info_local = info;
94e9021b 673 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
674 info_local->baudrate = 19200;
675 info_local->packet_size = 11;
676 info_local->fivedigits = TRUE;
677
c01bdebc
AJ
678 return sr_es519xx_parse(buf, floatval, analog, info);
679}
680
c01bdebc 681/*
72e1672f 682 * Functions for 19200 baud / 11 bytes protocols with clamp meter support.
c01bdebc
AJ
683 * This includes ES51967 and ES51969.
684 */
72e1672f 685SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf)
c01bdebc 686{
94e9021b 687 struct es519xx_info info = { 0 };
72e1672f
UH
688
689 info.baudrate = 19200;
690 info.packet_size = 11;
691 info.clampmeter = TRUE;
692
c01bdebc
AJ
693 return sr_es519xx_packet_valid(buf, &info);
694}
695
72e1672f
UH
696SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf,
697 float *floatval, struct sr_datafeed_analog *analog, void *info)
c01bdebc 698{
72e1672f
UH
699 struct es519xx_info *info_local;
700
701 info_local = info;
94e9021b 702 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
703 info_local->baudrate = 19200;
704 info_local->packet_size = 11;
705 info_local->clampmeter = TRUE;
706
c01bdebc
AJ
707 return sr_es519xx_parse(buf, floatval, analog, info);
708}
709
c01bdebc 710/*
72e1672f 711 * Functions for 19200 baud / 11 bytes protocols.
c01bdebc
AJ
712 * This includes ES51981, ES51982, ES51983, ES51984 and ES51986.
713 */
72e1672f 714SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf)
c01bdebc 715{
94e9021b 716 struct es519xx_info info = { 0 };
72e1672f
UH
717
718 info.baudrate = 19200;
719 info.packet_size = 11;
720
c01bdebc
AJ
721 return sr_es519xx_packet_valid(buf, &info);
722}
723
72e1672f
UH
724SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval,
725 struct sr_datafeed_analog *analog, void *info)
c01bdebc 726{
72e1672f
UH
727 struct es519xx_info *info_local;
728
729 info_local = info;
94e9021b 730 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
731 info_local->baudrate = 19200;
732 info_local->packet_size = 11;
733
c01bdebc
AJ
734 return sr_es519xx_parse(buf, floatval, analog, info);
735}
736
c01bdebc 737/*
72e1672f 738 * Functions for 19200 baud / 14 bytes protocols.
c01bdebc
AJ
739 * This includes ES51921 and ES51922.
740 */
72e1672f 741SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf)
c01bdebc 742{
94e9021b 743 struct es519xx_info info = { 0 };
72e1672f
UH
744
745 info.baudrate = 19200;
746 info.packet_size = 14;
747
c01bdebc
AJ
748 return sr_es519xx_packet_valid(buf, &info);
749}
750
72e1672f
UH
751SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval,
752 struct sr_datafeed_analog *analog, void *info)
c01bdebc 753{
72e1672f
UH
754 struct es519xx_info *info_local;
755
756 info_local = info;
94e9021b 757 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
758 info_local->baudrate = 19200;
759 info_local->packet_size = 14;
760
c01bdebc
AJ
761 return sr_es519xx_parse(buf, floatval, analog, info);
762}
763
c01bdebc 764/*
72e1672f 765 * Functions for 19200 baud / 14 bytes protocols with selectable LPF.
c01bdebc
AJ
766 * This includes ES51931 and ES51932.
767 */
72e1672f 768SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf)
c01bdebc 769{
94e9021b 770 struct es519xx_info info = { 0 };
72e1672f
UH
771
772 info.baudrate = 19200;
773 info.packet_size = 14;
774 info.selectable_lpf = TRUE;
775
c01bdebc
AJ
776 return sr_es519xx_packet_valid(buf, &info);
777}
778
72e1672f
UH
779SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf,
780 float *floatval, struct sr_datafeed_analog *analog, void *info)
c01bdebc 781{
72e1672f
UH
782 struct es519xx_info *info_local;
783
784 info_local = info;
94e9021b 785 memset(info_local, 0, sizeof(struct es519xx_info));
72e1672f
UH
786 info_local->baudrate = 19200;
787 info_local->packet_size = 14;
788 info_local->selectable_lpf = TRUE;
789
c01bdebc
AJ
790 return sr_es519xx_parse(buf, floatval, analog, info);
791}