]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
sr: Made the dev_info_get return value const
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "sigrok.h"
31#include "sigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPES "rf10"
41#define NUM_PROBES 16
42
43static GSList *dev_insts = NULL;
44
45static uint64_t supported_samplerates[] = {
46 SR_KHZ(200),
47 SR_KHZ(250),
48 SR_KHZ(500),
49 SR_MHZ(1),
50 SR_MHZ(5),
51 SR_MHZ(10),
52 SR_MHZ(25),
53 SR_MHZ(50),
54 SR_MHZ(100),
55 SR_MHZ(200),
56 0,
57};
58
59/*
60 * Probe numbers seem to go from 1-16, according to this image:
61 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
62 * (the cable has two additional GND pins, and a TI and TO pin)
63 */
64static const char *probe_names[NUM_PROBES + 1] = {
65 "1",
66 "2",
67 "3",
68 "4",
69 "5",
70 "6",
71 "7",
72 "8",
73 "9",
74 "10",
75 "11",
76 "12",
77 "13",
78 "14",
79 "15",
80 "16",
81 NULL,
82};
83
84static struct sr_samplerates samplerates = {
85 0,
86 0,
87 0,
88 supported_samplerates,
89};
90
91static const int hwcaps[] = {
92 SR_HWCAP_LOGIC_ANALYZER,
93 SR_HWCAP_SAMPLERATE,
94 SR_HWCAP_CAPTURE_RATIO,
95 SR_HWCAP_PROBECONFIG,
96
97 SR_HWCAP_LIMIT_MSEC,
98 0,
99};
100
101/* Force the FPGA to reboot. */
102static uint8_t suicide[] = {
103 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
104};
105
106/* Prepare to upload firmware (FPGA specific). */
107static uint8_t init[] = {
108 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
109};
110
111/* Initialize the logic analyzer mode. */
112static uint8_t logic_mode_start[] = {
113 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
114 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
115};
116
117static const char *firmware_files[] = {
118 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
119 "asix-sigma-100.fw", /* 100 MHz */
120 "asix-sigma-200.fw", /* 200 MHz */
121 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
122 "asix-sigma-phasor.fw", /* Frequency counter */
123};
124
125static int hw_dev_acquisition_stop(int dev_index, void *cb_data);
126
127static int sigma_read(void *buf, size_t size, struct context *ctx)
128{
129 int ret;
130
131 ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size);
132 if (ret < 0) {
133 sr_err("sigma: ftdi_read_data failed: %s",
134 ftdi_get_error_string(&ctx->ftdic));
135 }
136
137 return ret;
138}
139
140static int sigma_write(void *buf, size_t size, struct context *ctx)
141{
142 int ret;
143
144 ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size);
145 if (ret < 0) {
146 sr_err("sigma: ftdi_write_data failed: %s",
147 ftdi_get_error_string(&ctx->ftdic));
148 } else if ((size_t) ret != size) {
149 sr_err("sigma: ftdi_write_data did not complete write.");
150 }
151
152 return ret;
153}
154
155static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
156 struct context *ctx)
157{
158 size_t i;
159 uint8_t buf[len + 2];
160 int idx = 0;
161
162 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
163 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
164
165 for (i = 0; i < len; ++i) {
166 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
167 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
168 }
169
170 return sigma_write(buf, idx, ctx);
171}
172
173static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx)
174{
175 return sigma_write_register(reg, &value, 1, ctx);
176}
177
178static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
179 struct context *ctx)
180{
181 uint8_t buf[3];
182
183 buf[0] = REG_ADDR_LOW | (reg & 0xf);
184 buf[1] = REG_ADDR_HIGH | (reg >> 4);
185 buf[2] = REG_READ_ADDR;
186
187 sigma_write(buf, sizeof(buf), ctx);
188
189 return sigma_read(data, len, ctx);
190}
191
192static uint8_t sigma_get_register(uint8_t reg, struct context *ctx)
193{
194 uint8_t value;
195
196 if (1 != sigma_read_register(reg, &value, 1, ctx)) {
197 sr_err("sigma: sigma_get_register: 1 byte expected");
198 return 0;
199 }
200
201 return value;
202}
203
204static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
205 struct context *ctx)
206{
207 uint8_t buf[] = {
208 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
209
210 REG_READ_ADDR | NEXT_REG,
211 REG_READ_ADDR | NEXT_REG,
212 REG_READ_ADDR | NEXT_REG,
213 REG_READ_ADDR | NEXT_REG,
214 REG_READ_ADDR | NEXT_REG,
215 REG_READ_ADDR | NEXT_REG,
216 };
217 uint8_t result[6];
218
219 sigma_write(buf, sizeof(buf), ctx);
220
221 sigma_read(result, sizeof(result), ctx);
222
223 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
224 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
225
226 /* Not really sure why this must be done, but according to spec. */
227 if ((--*stoppos & 0x1ff) == 0x1ff)
228 stoppos -= 64;
229
230 if ((*--triggerpos & 0x1ff) == 0x1ff)
231 triggerpos -= 64;
232
233 return 1;
234}
235
236static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
237 uint8_t *data, struct context *ctx)
238{
239 size_t i;
240 uint8_t buf[4096];
241 int idx = 0;
242
243 /* Send the startchunk. Index start with 1. */
244 buf[0] = startchunk >> 8;
245 buf[1] = startchunk & 0xff;
246 sigma_write_register(WRITE_MEMROW, buf, 2, ctx);
247
248 /* Read the DRAM. */
249 buf[idx++] = REG_DRAM_BLOCK;
250 buf[idx++] = REG_DRAM_WAIT_ACK;
251
252 for (i = 0; i < numchunks; ++i) {
253 /* Alternate bit to copy from DRAM to cache. */
254 if (i != (numchunks - 1))
255 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
256
257 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
258
259 if (i != (numchunks - 1))
260 buf[idx++] = REG_DRAM_WAIT_ACK;
261 }
262
263 sigma_write(buf, idx, ctx);
264
265 return sigma_read(data, numchunks * CHUNK_SIZE, ctx);
266}
267
268/* Upload trigger look-up tables to Sigma. */
269static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx)
270{
271 int i;
272 uint8_t tmp[2];
273 uint16_t bit;
274
275 /* Transpose the table and send to Sigma. */
276 for (i = 0; i < 16; ++i) {
277 bit = 1 << i;
278
279 tmp[0] = tmp[1] = 0;
280
281 if (lut->m2d[0] & bit)
282 tmp[0] |= 0x01;
283 if (lut->m2d[1] & bit)
284 tmp[0] |= 0x02;
285 if (lut->m2d[2] & bit)
286 tmp[0] |= 0x04;
287 if (lut->m2d[3] & bit)
288 tmp[0] |= 0x08;
289
290 if (lut->m3 & bit)
291 tmp[0] |= 0x10;
292 if (lut->m3s & bit)
293 tmp[0] |= 0x20;
294 if (lut->m4 & bit)
295 tmp[0] |= 0x40;
296
297 if (lut->m0d[0] & bit)
298 tmp[1] |= 0x01;
299 if (lut->m0d[1] & bit)
300 tmp[1] |= 0x02;
301 if (lut->m0d[2] & bit)
302 tmp[1] |= 0x04;
303 if (lut->m0d[3] & bit)
304 tmp[1] |= 0x08;
305
306 if (lut->m1d[0] & bit)
307 tmp[1] |= 0x10;
308 if (lut->m1d[1] & bit)
309 tmp[1] |= 0x20;
310 if (lut->m1d[2] & bit)
311 tmp[1] |= 0x40;
312 if (lut->m1d[3] & bit)
313 tmp[1] |= 0x80;
314
315 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
316 ctx);
317 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx);
318 }
319
320 /* Send the parameters */
321 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
322 sizeof(lut->params), ctx);
323
324 return SR_OK;
325}
326
327/* Generate the bitbang stream for programming the FPGA. */
328static int bin2bitbang(const char *filename,
329 unsigned char **buf, size_t *buf_size)
330{
331 FILE *f;
332 unsigned long file_size;
333 unsigned long offset = 0;
334 unsigned char *p;
335 uint8_t *firmware;
336 unsigned long fwsize = 0;
337 const int buffer_size = 65536;
338 size_t i;
339 int c, bit, v;
340 uint32_t imm = 0x3f6df2ab;
341
342 f = g_fopen(filename, "rb");
343 if (!f) {
344 sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename);
345 return SR_ERR;
346 }
347
348 if (-1 == fseek(f, 0, SEEK_END)) {
349 sr_err("sigma: fseek on %s failed", filename);
350 fclose(f);
351 return SR_ERR;
352 }
353
354 file_size = ftell(f);
355
356 fseek(f, 0, SEEK_SET);
357
358 if (!(firmware = g_try_malloc(buffer_size))) {
359 sr_err("sigma: %s: firmware malloc failed", __func__);
360 fclose(f);
361 return SR_ERR_MALLOC;
362 }
363
364 while ((c = getc(f)) != EOF) {
365 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
366 firmware[fwsize++] = c ^ imm;
367 }
368 fclose(f);
369
370 if(fwsize != file_size) {
371 sr_err("sigma: %s: Error reading firmware", filename);
372 fclose(f);
373 g_free(firmware);
374 return SR_ERR;
375 }
376
377 *buf_size = fwsize * 2 * 8;
378
379 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
380 if (!p) {
381 sr_err("sigma: %s: buf/p malloc failed", __func__);
382 g_free(firmware);
383 return SR_ERR_MALLOC;
384 }
385
386 for (i = 0; i < fwsize; ++i) {
387 for (bit = 7; bit >= 0; --bit) {
388 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
389 p[offset++] = v | 0x01;
390 p[offset++] = v;
391 }
392 }
393
394 g_free(firmware);
395
396 if (offset != *buf_size) {
397 g_free(*buf);
398 sr_err("sigma: Error reading firmware %s "
399 "offset=%ld, file_size=%ld, buf_size=%zd.",
400 filename, offset, file_size, *buf_size);
401
402 return SR_ERR;
403 }
404
405 return SR_OK;
406}
407
408static int hw_init(const char *devinfo)
409{
410 struct sr_dev_inst *sdi;
411 struct context *ctx;
412 struct ftdi_device_list *devlist;
413 char serial_txt[10];
414 uint32_t serial;
415
416 /* Avoid compiler warnings. */
417 (void)devinfo;
418
419 if (!(ctx = g_try_malloc(sizeof(struct context)))) {
420 sr_err("sigma: %s: ctx malloc failed", __func__);
421 return SR_ERR_MALLOC;
422 }
423
424 ftdi_init(&ctx->ftdic);
425
426 /* Look for SIGMAs. */
427
428 if (ftdi_usb_find_all(&ctx->ftdic, &devlist,
429 USB_VENDOR, USB_PRODUCT) <= 0)
430 goto free;
431
432 /* Make sure it's a version 1 or 2 SIGMA. */
433 ftdi_usb_get_strings(&ctx->ftdic, devlist->dev, NULL, 0, NULL, 0,
434 serial_txt, sizeof(serial_txt));
435 sscanf(serial_txt, "%x", &serial);
436
437 if (serial < 0xa6010000 || serial > 0xa602ffff) {
438 sr_err("sigma: Only SIGMA and SIGMA2 are supported "
439 "in this version of sigrok.");
440 goto free;
441 }
442
443 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
444
445 ctx->cur_samplerate = 0;
446 ctx->period_ps = 0;
447 ctx->limit_msec = 0;
448 ctx->cur_firmware = -1;
449 ctx->num_probes = 0;
450 ctx->samples_per_event = 0;
451 ctx->capture_ratio = 50;
452 ctx->use_triggers = 0;
453
454 /* Register SIGMA device. */
455 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
456 USB_MODEL_NAME, USB_MODEL_VERSION))) {
457 sr_err("sigma: %s: sdi was NULL", __func__);
458 goto free;
459 }
460
461 sdi->priv = ctx;
462
463 dev_insts = g_slist_append(dev_insts, sdi);
464
465 /* We will open the device again when we need it. */
466 ftdi_list_free(&devlist);
467
468 return 1;
469
470free:
471 g_free(ctx);
472 return 0;
473}
474
475static int upload_firmware(int firmware_idx, struct context *ctx)
476{
477 int ret;
478 unsigned char *buf;
479 unsigned char pins;
480 size_t buf_size;
481 unsigned char result[32];
482 char firmware_path[128];
483
484 /* Make sure it's an ASIX SIGMA. */
485 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
486 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
487 sr_err("sigma: ftdi_usb_open failed: %s",
488 ftdi_get_error_string(&ctx->ftdic));
489 return 0;
490 }
491
492 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
493 sr_err("sigma: ftdi_set_bitmode failed: %s",
494 ftdi_get_error_string(&ctx->ftdic));
495 return 0;
496 }
497
498 /* Four times the speed of sigmalogan - Works well. */
499 if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) {
500 sr_err("sigma: ftdi_set_baudrate failed: %s",
501 ftdi_get_error_string(&ctx->ftdic));
502 return 0;
503 }
504
505 /* Force the FPGA to reboot. */
506 sigma_write(suicide, sizeof(suicide), ctx);
507 sigma_write(suicide, sizeof(suicide), ctx);
508 sigma_write(suicide, sizeof(suicide), ctx);
509 sigma_write(suicide, sizeof(suicide), ctx);
510
511 /* Prepare to upload firmware (FPGA specific). */
512 sigma_write(init, sizeof(init), ctx);
513
514 ftdi_usb_purge_buffers(&ctx->ftdic);
515
516 /* Wait until the FPGA asserts INIT_B. */
517 while (1) {
518 ret = sigma_read(result, 1, ctx);
519 if (result[0] & 0x20)
520 break;
521 }
522
523 /* Prepare firmware. */
524 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
525 firmware_files[firmware_idx]);
526
527 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
528 sr_err("sigma: An error occured while reading the firmware: %s",
529 firmware_path);
530 return ret;
531 }
532
533 /* Upload firmare. */
534 sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]);
535 sigma_write(buf, buf_size, ctx);
536
537 g_free(buf);
538
539 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) {
540 sr_err("sigma: ftdi_set_bitmode failed: %s",
541 ftdi_get_error_string(&ctx->ftdic));
542 return SR_ERR;
543 }
544
545 ftdi_usb_purge_buffers(&ctx->ftdic);
546
547 /* Discard garbage. */
548 while (1 == sigma_read(&pins, 1, ctx))
549 ;
550
551 /* Initialize the logic analyzer mode. */
552 sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx);
553
554 /* Expect a 3 byte reply. */
555 ret = sigma_read(result, 3, ctx);
556 if (ret != 3 ||
557 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
558 sr_err("sigma: Configuration failed. Invalid reply received.");
559 return SR_ERR;
560 }
561
562 ctx->cur_firmware = firmware_idx;
563
564 sr_info("sigma: Firmware uploaded");
565
566 return SR_OK;
567}
568
569static int hw_dev_open(int dev_index)
570{
571 struct sr_dev_inst *sdi;
572 struct context *ctx;
573 int ret;
574
575 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
576 return SR_ERR;
577
578 ctx = sdi->priv;
579
580 /* Make sure it's an ASIX SIGMA. */
581 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
582 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
583
584 sr_err("sigma: ftdi_usb_open failed: %s",
585 ftdi_get_error_string(&ctx->ftdic));
586
587 return 0;
588 }
589
590 sdi->status = SR_ST_ACTIVE;
591
592 return SR_OK;
593}
594
595static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate)
596{
597 int i, ret;
598 struct context *ctx = sdi->priv;
599
600 for (i = 0; supported_samplerates[i]; i++) {
601 if (supported_samplerates[i] == samplerate)
602 break;
603 }
604 if (supported_samplerates[i] == 0)
605 return SR_ERR_SAMPLERATE;
606
607 if (samplerate <= SR_MHZ(50)) {
608 ret = upload_firmware(0, ctx);
609 ctx->num_probes = 16;
610 }
611 if (samplerate == SR_MHZ(100)) {
612 ret = upload_firmware(1, ctx);
613 ctx->num_probes = 8;
614 }
615 else if (samplerate == SR_MHZ(200)) {
616 ret = upload_firmware(2, ctx);
617 ctx->num_probes = 4;
618 }
619
620 ctx->cur_samplerate = samplerate;
621 ctx->period_ps = 1000000000000 / samplerate;
622 ctx->samples_per_event = 16 / ctx->num_probes;
623 ctx->state.state = SIGMA_IDLE;
624
625 return ret;
626}
627
628/*
629 * In 100 and 200 MHz mode, only a single pin rising/falling can be
630 * set as trigger. In other modes, two rising/falling triggers can be set,
631 * in addition to value/mask trigger for any number of probes.
632 *
633 * The Sigma supports complex triggers using boolean expressions, but this
634 * has not been implemented yet.
635 */
636static int configure_probes(struct sr_dev_inst *sdi, GSList *probes)
637{
638 struct context *ctx = sdi->priv;
639 struct sr_probe *probe;
640 GSList *l;
641 int trigger_set = 0;
642 int probebit;
643
644 memset(&ctx->trigger, 0, sizeof(struct sigma_trigger));
645
646 for (l = probes; l; l = l->next) {
647 probe = (struct sr_probe *)l->data;
648 probebit = 1 << (probe->index - 1);
649
650 if (!probe->enabled || !probe->trigger)
651 continue;
652
653 if (ctx->cur_samplerate >= SR_MHZ(100)) {
654 /* Fast trigger support. */
655 if (trigger_set) {
656 sr_err("sigma: ASIX SIGMA only supports a single "
657 "pin trigger in 100 and 200MHz mode.");
658 return SR_ERR;
659 }
660 if (probe->trigger[0] == 'f')
661 ctx->trigger.fallingmask |= probebit;
662 else if (probe->trigger[0] == 'r')
663 ctx->trigger.risingmask |= probebit;
664 else {
665 sr_err("sigma: ASIX SIGMA only supports "
666 "rising/falling trigger in 100 "
667 "and 200MHz mode.");
668 return SR_ERR;
669 }
670
671 ++trigger_set;
672 } else {
673 /* Simple trigger support (event). */
674 if (probe->trigger[0] == '1') {
675 ctx->trigger.simplevalue |= probebit;
676 ctx->trigger.simplemask |= probebit;
677 }
678 else if (probe->trigger[0] == '0') {
679 ctx->trigger.simplevalue &= ~probebit;
680 ctx->trigger.simplemask |= probebit;
681 }
682 else if (probe->trigger[0] == 'f') {
683 ctx->trigger.fallingmask |= probebit;
684 ++trigger_set;
685 }
686 else if (probe->trigger[0] == 'r') {
687 ctx->trigger.risingmask |= probebit;
688 ++trigger_set;
689 }
690
691 /*
692 * Actually, Sigma supports 2 rising/falling triggers,
693 * but they are ORed and the current trigger syntax
694 * does not permit ORed triggers.
695 */
696 if (trigger_set > 1) {
697 sr_err("sigma: ASIX SIGMA only supports 1 "
698 "rising/falling triggers.");
699 return SR_ERR;
700 }
701 }
702
703 if (trigger_set)
704 ctx->use_triggers = 1;
705 }
706
707 return SR_OK;
708}
709
710static int hw_dev_close(int dev_index)
711{
712 struct sr_dev_inst *sdi;
713 struct context *ctx;
714
715 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
716 sr_err("sigma: %s: sdi was NULL", __func__);
717 return SR_ERR_BUG;
718 }
719
720 if (!(ctx = sdi->priv)) {
721 sr_err("sigma: %s: sdi->priv was NULL", __func__);
722 return SR_ERR_BUG;
723 }
724
725 /* TODO */
726 if (sdi->status == SR_ST_ACTIVE)
727 ftdi_usb_close(&ctx->ftdic);
728
729 sdi->status = SR_ST_INACTIVE;
730
731 return SR_OK;
732}
733
734static int hw_cleanup(void)
735{
736 GSList *l;
737 struct sr_dev_inst *sdi;
738 int ret = SR_OK;
739
740 /* Properly close all devices. */
741 for (l = dev_insts; l; l = l->next) {
742 if (!(sdi = l->data)) {
743 /* Log error, but continue cleaning up the rest. */
744 sr_err("sigma: %s: sdi was NULL, continuing", __func__);
745 ret = SR_ERR_BUG;
746 continue;
747 }
748 sr_dev_inst_free(sdi);
749 }
750 g_slist_free(dev_insts);
751 dev_insts = NULL;
752
753 return ret;
754}
755
756static const void *hw_dev_info_get(int dev_index, int dev_info_id)
757{
758 struct sr_dev_inst *sdi;
759 struct context *ctx;
760 const void *info = NULL;
761
762 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
763 sr_err("sigma: %s: sdi was NULL", __func__);
764 return NULL;
765 }
766
767 ctx = sdi->priv;
768
769 switch (dev_info_id) {
770 case SR_DI_INST:
771 info = sdi;
772 break;
773 case SR_DI_NUM_PROBES:
774 info = GINT_TO_POINTER(NUM_PROBES);
775 break;
776 case SR_DI_PROBE_NAMES:
777 info = probe_names;
778 break;
779 case SR_DI_SAMPLERATES:
780 info = &samplerates;
781 break;
782 case SR_DI_TRIGGER_TYPES:
783 info = (char *)TRIGGER_TYPES;
784 break;
785 case SR_DI_CUR_SAMPLERATE:
786 info = &ctx->cur_samplerate;
787 break;
788 }
789
790 return info;
791}
792
793static int hw_dev_status_get(int dev_index)
794{
795 struct sr_dev_inst *sdi;
796
797 sdi = sr_dev_inst_get(dev_insts, dev_index);
798 if (sdi)
799 return sdi->status;
800 else
801 return SR_ST_NOT_FOUND;
802}
803
804static const int *hw_hwcap_get_all(void)
805{
806 return hwcaps;
807}
808
809static int hw_dev_config_set(int dev_index, int hwcap, void *value)
810{
811 struct sr_dev_inst *sdi;
812 struct context *ctx;
813 int ret;
814
815 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
816 return SR_ERR;
817
818 ctx = sdi->priv;
819
820 if (hwcap == SR_HWCAP_SAMPLERATE) {
821 ret = set_samplerate(sdi, *(uint64_t *)value);
822 } else if (hwcap == SR_HWCAP_PROBECONFIG) {
823 ret = configure_probes(sdi, value);
824 } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
825 ctx->limit_msec = *(uint64_t *)value;
826 if (ctx->limit_msec > 0)
827 ret = SR_OK;
828 else
829 ret = SR_ERR;
830 } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
831 ctx->capture_ratio = *(uint64_t *)value;
832 if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100)
833 ret = SR_ERR;
834 else
835 ret = SR_OK;
836 } else {
837 ret = SR_ERR;
838 }
839
840 return ret;
841}
842
843/* Software trigger to determine exact trigger position. */
844static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
845 struct sigma_trigger *t)
846{
847 int i;
848
849 for (i = 0; i < 8; ++i) {
850 if (i > 0)
851 last_sample = samples[i-1];
852
853 /* Simple triggers. */
854 if ((samples[i] & t->simplemask) != t->simplevalue)
855 continue;
856
857 /* Rising edge. */
858 if ((last_sample & t->risingmask) != 0 || (samples[i] &
859 t->risingmask) != t->risingmask)
860 continue;
861
862 /* Falling edge. */
863 if ((last_sample & t->fallingmask) != t->fallingmask ||
864 (samples[i] & t->fallingmask) != 0)
865 continue;
866
867 break;
868 }
869
870 /* If we did not match, return original trigger pos. */
871 return i & 0x7;
872}
873
874/*
875 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
876 * Each event is 20ns apart, and can contain multiple samples.
877 *
878 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
879 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
880 * For 50 MHz and below, events contain one sample for each channel,
881 * spread 20 ns apart.
882 */
883static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
884 uint16_t *lastsample, int triggerpos,
885 uint16_t limit_chunk, void *cb_data)
886{
887 struct sr_dev_inst *sdi = cb_data;
888 struct context *ctx = sdi->priv;
889 uint16_t tsdiff, ts;
890 uint16_t samples[65536 * ctx->samples_per_event];
891 struct sr_datafeed_packet packet;
892 struct sr_datafeed_logic logic;
893 int i, j, k, l, numpad, tosend;
894 size_t n = 0, sent = 0;
895 int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event;
896 uint16_t *event;
897 uint16_t cur_sample;
898 int triggerts = -1;
899
900 /* Check if trigger is in this chunk. */
901 if (triggerpos != -1) {
902 if (ctx->cur_samplerate <= SR_MHZ(50))
903 triggerpos -= EVENTS_PER_CLUSTER - 1;
904
905 if (triggerpos < 0)
906 triggerpos = 0;
907
908 /* Find in which cluster the trigger occured. */
909 triggerts = triggerpos / 7;
910 }
911
912 /* For each ts. */
913 for (i = 0; i < 64; ++i) {
914 ts = *(uint16_t *) &buf[i * 16];
915 tsdiff = ts - *lastts;
916 *lastts = ts;
917
918 /* Decode partial chunk. */
919 if (limit_chunk && ts > limit_chunk)
920 return SR_OK;
921
922 /* Pad last sample up to current point. */
923 numpad = tsdiff * ctx->samples_per_event - clustersize;
924 if (numpad > 0) {
925 for (j = 0; j < numpad; ++j)
926 samples[j] = *lastsample;
927
928 n = numpad;
929 }
930
931 /* Send samples between previous and this timestamp to sigrok. */
932 sent = 0;
933 while (sent < n) {
934 tosend = MIN(2048, n - sent);
935
936 packet.type = SR_DF_LOGIC;
937 packet.payload = &logic;
938 logic.length = tosend * sizeof(uint16_t);
939 logic.unitsize = 2;
940 logic.data = samples + sent;
941 sr_session_send(ctx->session_dev_id, &packet);
942
943 sent += tosend;
944 }
945 n = 0;
946
947 event = (uint16_t *) &buf[i * 16 + 2];
948 cur_sample = 0;
949
950 /* For each event in cluster. */
951 for (j = 0; j < 7; ++j) {
952
953 /* For each sample in event. */
954 for (k = 0; k < ctx->samples_per_event; ++k) {
955 cur_sample = 0;
956
957 /* For each probe. */
958 for (l = 0; l < ctx->num_probes; ++l)
959 cur_sample |= (!!(event[j] & (1 << (l *
960 ctx->samples_per_event + k)))) << l;
961
962 samples[n++] = cur_sample;
963 }
964 }
965
966 /* Send data up to trigger point (if triggered). */
967 sent = 0;
968 if (i == triggerts) {
969 /*
970 * Trigger is not always accurate to sample because of
971 * pipeline delay. However, it always triggers before
972 * the actual event. We therefore look at the next
973 * samples to pinpoint the exact position of the trigger.
974 */
975 tosend = get_trigger_offset(samples, *lastsample,
976 &ctx->trigger);
977
978 if (tosend > 0) {
979 packet.type = SR_DF_LOGIC;
980 packet.payload = &logic;
981 logic.length = tosend * sizeof(uint16_t);
982 logic.unitsize = 2;
983 logic.data = samples;
984 sr_session_send(ctx->session_dev_id, &packet);
985
986 sent += tosend;
987 }
988
989 /* Only send trigger if explicitly enabled. */
990 if (ctx->use_triggers) {
991 packet.type = SR_DF_TRIGGER;
992 sr_session_send(ctx->session_dev_id, &packet);
993 }
994 }
995
996 /* Send rest of the chunk to sigrok. */
997 tosend = n - sent;
998
999 if (tosend > 0) {
1000 packet.type = SR_DF_LOGIC;
1001 packet.payload = &logic;
1002 logic.length = tosend * sizeof(uint16_t);
1003 logic.unitsize = 2;
1004 logic.data = samples + sent;
1005 sr_session_send(ctx->session_dev_id, &packet);
1006 }
1007
1008 *lastsample = samples[n - 1];
1009 }
1010
1011 return SR_OK;
1012}
1013
1014static int receive_data(int fd, int revents, void *cb_data)
1015{
1016 struct sr_dev_inst *sdi = cb_data;
1017 struct context *ctx = sdi->priv;
1018 struct sr_datafeed_packet packet;
1019 const int chunks_per_read = 32;
1020 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1021 int bufsz, numchunks, i, newchunks;
1022 uint64_t running_msec;
1023 struct timeval tv;
1024
1025 /* Avoid compiler warnings. */
1026 (void)fd;
1027 (void)revents;
1028
1029 /* Get the current position. */
1030 sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
1031
1032 numchunks = (ctx->state.stoppos + 511) / 512;
1033
1034 if (ctx->state.state == SIGMA_IDLE)
1035 return TRUE;
1036
1037 if (ctx->state.state == SIGMA_CAPTURE) {
1038 /* Check if the timer has expired, or memory is full. */
1039 gettimeofday(&tv, 0);
1040 running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 +
1041 (tv.tv_usec - ctx->start_tv.tv_usec) / 1000;
1042
1043 if (running_msec < ctx->limit_msec && numchunks < 32767)
1044 return TRUE; /* While capturing... */
1045 else
1046 hw_dev_acquisition_stop(sdi->index, sdi);
1047
1048 } else if (ctx->state.state == SIGMA_DOWNLOAD) {
1049 if (ctx->state.chunks_downloaded >= numchunks) {
1050 /* End of samples. */
1051 packet.type = SR_DF_END;
1052 sr_session_send(ctx->session_dev_id, &packet);
1053
1054 ctx->state.state = SIGMA_IDLE;
1055
1056 return TRUE;
1057 }
1058
1059 newchunks = MIN(chunks_per_read,
1060 numchunks - ctx->state.chunks_downloaded);
1061
1062 sr_info("sigma: Downloading sample data: %.0f %%",
1063 100.0 * ctx->state.chunks_downloaded / numchunks);
1064
1065 bufsz = sigma_read_dram(ctx->state.chunks_downloaded,
1066 newchunks, buf, ctx);
1067 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1068 (void)bufsz;
1069
1070 /* Find first ts. */
1071 if (ctx->state.chunks_downloaded == 0) {
1072 ctx->state.lastts = *(uint16_t *) buf - 1;
1073 ctx->state.lastsample = 0;
1074 }
1075
1076 /* Decode chunks and send them to sigrok. */
1077 for (i = 0; i < newchunks; ++i) {
1078 int limit_chunk = 0;
1079
1080 /* The last chunk may potentially be only in part. */
1081 if (ctx->state.chunks_downloaded == numchunks - 1) {
1082 /* Find the last valid timestamp */
1083 limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts;
1084 }
1085
1086 if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk)
1087 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1088 &ctx->state.lastts,
1089 &ctx->state.lastsample,
1090 ctx->state.triggerpos & 0x1ff,
1091 limit_chunk, sdi);
1092 else
1093 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1094 &ctx->state.lastts,
1095 &ctx->state.lastsample,
1096 -1, limit_chunk, sdi);
1097
1098 ++ctx->state.chunks_downloaded;
1099 }
1100 }
1101
1102 return TRUE;
1103}
1104
1105/* Build a LUT entry used by the trigger functions. */
1106static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1107{
1108 int i, j, k, bit;
1109
1110 /* For each quad probe. */
1111 for (i = 0; i < 4; ++i) {
1112 entry[i] = 0xffff;
1113
1114 /* For each bit in LUT. */
1115 for (j = 0; j < 16; ++j)
1116
1117 /* For each probe in quad. */
1118 for (k = 0; k < 4; ++k) {
1119 bit = 1 << (i * 4 + k);
1120
1121 /* Set bit in entry */
1122 if ((mask & bit) &&
1123 ((!(value & bit)) !=
1124 (!(j & (1 << k)))))
1125 entry[i] &= ~(1 << j);
1126 }
1127 }
1128}
1129
1130/* Add a logical function to LUT mask. */
1131static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1132 int index, int neg, uint16_t *mask)
1133{
1134 int i, j;
1135 int x[2][2], tmp, a, b, aset, bset, rset;
1136
1137 memset(x, 0, 4 * sizeof(int));
1138
1139 /* Trigger detect condition. */
1140 switch (oper) {
1141 case OP_LEVEL:
1142 x[0][1] = 1;
1143 x[1][1] = 1;
1144 break;
1145 case OP_NOT:
1146 x[0][0] = 1;
1147 x[1][0] = 1;
1148 break;
1149 case OP_RISE:
1150 x[0][1] = 1;
1151 break;
1152 case OP_FALL:
1153 x[1][0] = 1;
1154 break;
1155 case OP_RISEFALL:
1156 x[0][1] = 1;
1157 x[1][0] = 1;
1158 break;
1159 case OP_NOTRISE:
1160 x[1][1] = 1;
1161 x[0][0] = 1;
1162 x[1][0] = 1;
1163 break;
1164 case OP_NOTFALL:
1165 x[1][1] = 1;
1166 x[0][0] = 1;
1167 x[0][1] = 1;
1168 break;
1169 case OP_NOTRISEFALL:
1170 x[1][1] = 1;
1171 x[0][0] = 1;
1172 break;
1173 }
1174
1175 /* Transpose if neg is set. */
1176 if (neg) {
1177 for (i = 0; i < 2; ++i) {
1178 for (j = 0; j < 2; ++j) {
1179 tmp = x[i][j];
1180 x[i][j] = x[1-i][1-j];
1181 x[1-i][1-j] = tmp;
1182 }
1183 }
1184 }
1185
1186 /* Update mask with function. */
1187 for (i = 0; i < 16; ++i) {
1188 a = (i >> (2 * index + 0)) & 1;
1189 b = (i >> (2 * index + 1)) & 1;
1190
1191 aset = (*mask >> i) & 1;
1192 bset = x[b][a];
1193
1194 if (func == FUNC_AND || func == FUNC_NAND)
1195 rset = aset & bset;
1196 else if (func == FUNC_OR || func == FUNC_NOR)
1197 rset = aset | bset;
1198 else if (func == FUNC_XOR || func == FUNC_NXOR)
1199 rset = aset ^ bset;
1200
1201 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1202 rset = !rset;
1203
1204 *mask &= ~(1 << i);
1205
1206 if (rset)
1207 *mask |= 1 << i;
1208 }
1209}
1210
1211/*
1212 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1213 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1214 * set at any time, but a full mask and value can be set (0/1).
1215 */
1216static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
1217{
1218 int i,j;
1219 uint16_t masks[2] = { 0, 0 };
1220
1221 memset(lut, 0, sizeof(struct triggerlut));
1222
1223 /* Contant for simple triggers. */
1224 lut->m4 = 0xa000;
1225
1226 /* Value/mask trigger support. */
1227 build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask,
1228 lut->m2d);
1229
1230 /* Rise/fall trigger support. */
1231 for (i = 0, j = 0; i < 16; ++i) {
1232 if (ctx->trigger.risingmask & (1 << i) ||
1233 ctx->trigger.fallingmask & (1 << i))
1234 masks[j++] = 1 << i;
1235 }
1236
1237 build_lut_entry(masks[0], masks[0], lut->m0d);
1238 build_lut_entry(masks[1], masks[1], lut->m1d);
1239
1240 /* Add glue logic */
1241 if (masks[0] || masks[1]) {
1242 /* Transition trigger. */
1243 if (masks[0] & ctx->trigger.risingmask)
1244 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1245 if (masks[0] & ctx->trigger.fallingmask)
1246 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1247 if (masks[1] & ctx->trigger.risingmask)
1248 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1249 if (masks[1] & ctx->trigger.fallingmask)
1250 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1251 } else {
1252 /* Only value/mask trigger. */
1253 lut->m3 = 0xffff;
1254 }
1255
1256 /* Triggertype: event. */
1257 lut->params.selres = 3;
1258
1259 return SR_OK;
1260}
1261
1262static int hw_dev_acquisition_start(int dev_index, void *cb_data)
1263{
1264 struct sr_dev_inst *sdi;
1265 struct context *ctx;
1266 struct sr_datafeed_packet *packet;
1267 struct sr_datafeed_header *header;
1268 struct sr_datafeed_meta_logic meta;
1269 struct clockselect_50 clockselect;
1270 int frac, triggerpin, ret;
1271 uint8_t triggerselect;
1272 struct triggerinout triggerinout_conf;
1273 struct triggerlut lut;
1274
1275 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
1276 return SR_ERR;
1277
1278 ctx = sdi->priv;
1279
1280 /* If the samplerate has not been set, default to 200 kHz. */
1281 if (ctx->cur_firmware == -1) {
1282 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1283 return ret;
1284 }
1285
1286 /* Enter trigger programming mode. */
1287 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx);
1288
1289 /* 100 and 200 MHz mode. */
1290 if (ctx->cur_samplerate >= SR_MHZ(100)) {
1291 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx);
1292
1293 /* Find which pin to trigger on from mask. */
1294 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1295 if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) &
1296 (1 << triggerpin))
1297 break;
1298
1299 /* Set trigger pin and light LED on trigger. */
1300 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1301
1302 /* Default rising edge. */
1303 if (ctx->trigger.fallingmask)
1304 triggerselect |= 1 << 3;
1305
1306 /* All other modes. */
1307 } else if (ctx->cur_samplerate <= SR_MHZ(50)) {
1308 build_basic_trigger(&lut, ctx);
1309
1310 sigma_write_trigger_lut(&lut, ctx);
1311
1312 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1313 }
1314
1315 /* Setup trigger in and out pins to default values. */
1316 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1317 triggerinout_conf.trgout_bytrigger = 1;
1318 triggerinout_conf.trgout_enable = 1;
1319
1320 sigma_write_register(WRITE_TRIGGER_OPTION,
1321 (uint8_t *) &triggerinout_conf,
1322 sizeof(struct triggerinout), ctx);
1323
1324 /* Go back to normal mode. */
1325 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx);
1326
1327 /* Set clock select register. */
1328 if (ctx->cur_samplerate == SR_MHZ(200))
1329 /* Enable 4 probes. */
1330 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx);
1331 else if (ctx->cur_samplerate == SR_MHZ(100))
1332 /* Enable 8 probes. */
1333 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx);
1334 else {
1335 /*
1336 * 50 MHz mode (or fraction thereof). Any fraction down to
1337 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1338 */
1339 frac = SR_MHZ(50) / ctx->cur_samplerate - 1;
1340
1341 clockselect.async = 0;
1342 clockselect.fraction = frac;
1343 clockselect.disabled_probes = 0;
1344
1345 sigma_write_register(WRITE_CLOCK_SELECT,
1346 (uint8_t *) &clockselect,
1347 sizeof(clockselect), ctx);
1348 }
1349
1350 /* Setup maximum post trigger time. */
1351 sigma_set_register(WRITE_POST_TRIGGER,
1352 (ctx->capture_ratio * 255) / 100, ctx);
1353
1354 /* Start acqusition. */
1355 gettimeofday(&ctx->start_tv, 0);
1356 sigma_set_register(WRITE_MODE, 0x0d, ctx);
1357
1358 ctx->session_dev_id = cb_data;
1359
1360 if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1361 sr_err("sigma: %s: packet malloc failed.", __func__);
1362 return SR_ERR_MALLOC;
1363 }
1364
1365 if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1366 sr_err("sigma: %s: header malloc failed.", __func__);
1367 return SR_ERR_MALLOC;
1368 }
1369
1370 /* Send header packet to the session bus. */
1371 packet->type = SR_DF_HEADER;
1372 packet->payload = header;
1373 header->feed_version = 1;
1374 gettimeofday(&header->starttime, NULL);
1375 sr_session_send(ctx->session_dev_id, packet);
1376
1377 /* Send metadata about the SR_DF_LOGIC packets to come. */
1378 packet->type = SR_DF_META_LOGIC;
1379 packet->payload = &meta;
1380 meta.samplerate = ctx->cur_samplerate;
1381 meta.num_probes = ctx->num_probes;
1382 sr_session_send(ctx->session_dev_id, packet);
1383
1384 /* Add capture source. */
1385 sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
1386
1387 g_free(header);
1388 g_free(packet);
1389
1390 ctx->state.state = SIGMA_CAPTURE;
1391
1392 return SR_OK;
1393}
1394
1395static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
1396{
1397 struct sr_dev_inst *sdi;
1398 struct context *ctx;
1399 uint8_t modestatus;
1400
1401 /* Avoid compiler warnings. */
1402 (void)cb_data;
1403
1404 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
1405 sr_err("sigma: %s: sdi was NULL", __func__);
1406 return SR_ERR_BUG;
1407 }
1408
1409 if (!(ctx = sdi->priv)) {
1410 sr_err("sigma: %s: sdi->priv was NULL", __func__);
1411 return SR_ERR_BUG;
1412 }
1413
1414 /* Stop acquisition. */
1415 sigma_set_register(WRITE_MODE, 0x11, ctx);
1416
1417 /* Set SDRAM Read Enable. */
1418 sigma_set_register(WRITE_MODE, 0x02, ctx);
1419
1420 /* Get the current position. */
1421 sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
1422
1423 /* Check if trigger has fired. */
1424 modestatus = sigma_get_register(READ_MODE, ctx);
1425 if (modestatus & 0x20)
1426 ctx->state.triggerchunk = ctx->state.triggerpos / 512;
1427 else
1428 ctx->state.triggerchunk = -1;
1429
1430 ctx->state.chunks_downloaded = 0;
1431
1432 ctx->state.state = SIGMA_DOWNLOAD;
1433
1434 return SR_OK;
1435}
1436
1437SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1438 .name = "asix-sigma",
1439 .longname = "ASIX SIGMA/SIGMA2",
1440 .api_version = 1,
1441 .init = hw_init,
1442 .cleanup = hw_cleanup,
1443 .dev_open = hw_dev_open,
1444 .dev_close = hw_dev_close,
1445 .dev_info_get = hw_dev_info_get,
1446 .dev_status_get = hw_dev_status_get,
1447 .hwcap_get_all = hw_hwcap_get_all,
1448 .dev_config_set = hw_dev_config_set,
1449 .dev_acquisition_start = hw_dev_acquisition_start,
1450 .dev_acquisition_stop = hw_dev_acquisition_stop,
1451};