]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
sr/drivers: fix off-by-one if frontend-initiated probe configuration
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPES "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *adi = &asix_sigma_driver_info;
45
46static const uint64_t supported_samplerates[] = {
47 SR_KHZ(200),
48 SR_KHZ(250),
49 SR_KHZ(500),
50 SR_MHZ(1),
51 SR_MHZ(5),
52 SR_MHZ(10),
53 SR_MHZ(25),
54 SR_MHZ(50),
55 SR_MHZ(100),
56 SR_MHZ(200),
57 0,
58};
59
60/*
61 * Probe numbers seem to go from 1-16, according to this image:
62 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63 * (the cable has two additional GND pins, and a TI and TO pin)
64 */
65static const char *probe_names[NUM_PROBES + 1] = {
66 "1",
67 "2",
68 "3",
69 "4",
70 "5",
71 "6",
72 "7",
73 "8",
74 "9",
75 "10",
76 "11",
77 "12",
78 "13",
79 "14",
80 "15",
81 "16",
82 NULL,
83};
84
85static const struct sr_samplerates samplerates = {
86 0,
87 0,
88 0,
89 supported_samplerates,
90};
91
92static const int hwcaps[] = {
93 SR_HWCAP_LOGIC_ANALYZER,
94 SR_HWCAP_SAMPLERATE,
95 SR_HWCAP_CAPTURE_RATIO,
96 SR_HWCAP_PROBECONFIG,
97
98 SR_HWCAP_LIMIT_MSEC,
99 0,
100};
101
102/* Force the FPGA to reboot. */
103static uint8_t suicide[] = {
104 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
105};
106
107/* Prepare to upload firmware (FPGA specific). */
108static uint8_t init[] = {
109 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
110};
111
112/* Initialize the logic analyzer mode. */
113static uint8_t logic_mode_start[] = {
114 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
115 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
116};
117
118static const char *firmware_files[] = {
119 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
120 "asix-sigma-100.fw", /* 100 MHz */
121 "asix-sigma-200.fw", /* 200 MHz */
122 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
123 "asix-sigma-phasor.fw", /* Frequency counter */
124};
125
126static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
127 void *cb_data);
128
129static int sigma_read(void *buf, size_t size, struct context *ctx)
130{
131 int ret;
132
133 ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size);
134 if (ret < 0) {
135 sr_err("sigma: ftdi_read_data failed: %s",
136 ftdi_get_error_string(&ctx->ftdic));
137 }
138
139 return ret;
140}
141
142static int sigma_write(void *buf, size_t size, struct context *ctx)
143{
144 int ret;
145
146 ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size);
147 if (ret < 0) {
148 sr_err("sigma: ftdi_write_data failed: %s",
149 ftdi_get_error_string(&ctx->ftdic));
150 } else if ((size_t) ret != size) {
151 sr_err("sigma: ftdi_write_data did not complete write.");
152 }
153
154 return ret;
155}
156
157static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
158 struct context *ctx)
159{
160 size_t i;
161 uint8_t buf[len + 2];
162 int idx = 0;
163
164 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
165 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
166
167 for (i = 0; i < len; ++i) {
168 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
169 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
170 }
171
172 return sigma_write(buf, idx, ctx);
173}
174
175static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx)
176{
177 return sigma_write_register(reg, &value, 1, ctx);
178}
179
180static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
181 struct context *ctx)
182{
183 uint8_t buf[3];
184
185 buf[0] = REG_ADDR_LOW | (reg & 0xf);
186 buf[1] = REG_ADDR_HIGH | (reg >> 4);
187 buf[2] = REG_READ_ADDR;
188
189 sigma_write(buf, sizeof(buf), ctx);
190
191 return sigma_read(data, len, ctx);
192}
193
194static uint8_t sigma_get_register(uint8_t reg, struct context *ctx)
195{
196 uint8_t value;
197
198 if (1 != sigma_read_register(reg, &value, 1, ctx)) {
199 sr_err("sigma: sigma_get_register: 1 byte expected");
200 return 0;
201 }
202
203 return value;
204}
205
206static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
207 struct context *ctx)
208{
209 uint8_t buf[] = {
210 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
211
212 REG_READ_ADDR | NEXT_REG,
213 REG_READ_ADDR | NEXT_REG,
214 REG_READ_ADDR | NEXT_REG,
215 REG_READ_ADDR | NEXT_REG,
216 REG_READ_ADDR | NEXT_REG,
217 REG_READ_ADDR | NEXT_REG,
218 };
219 uint8_t result[6];
220
221 sigma_write(buf, sizeof(buf), ctx);
222
223 sigma_read(result, sizeof(result), ctx);
224
225 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
226 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
227
228 /* Not really sure why this must be done, but according to spec. */
229 if ((--*stoppos & 0x1ff) == 0x1ff)
230 stoppos -= 64;
231
232 if ((*--triggerpos & 0x1ff) == 0x1ff)
233 triggerpos -= 64;
234
235 return 1;
236}
237
238static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
239 uint8_t *data, struct context *ctx)
240{
241 size_t i;
242 uint8_t buf[4096];
243 int idx = 0;
244
245 /* Send the startchunk. Index start with 1. */
246 buf[0] = startchunk >> 8;
247 buf[1] = startchunk & 0xff;
248 sigma_write_register(WRITE_MEMROW, buf, 2, ctx);
249
250 /* Read the DRAM. */
251 buf[idx++] = REG_DRAM_BLOCK;
252 buf[idx++] = REG_DRAM_WAIT_ACK;
253
254 for (i = 0; i < numchunks; ++i) {
255 /* Alternate bit to copy from DRAM to cache. */
256 if (i != (numchunks - 1))
257 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
258
259 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
260
261 if (i != (numchunks - 1))
262 buf[idx++] = REG_DRAM_WAIT_ACK;
263 }
264
265 sigma_write(buf, idx, ctx);
266
267 return sigma_read(data, numchunks * CHUNK_SIZE, ctx);
268}
269
270/* Upload trigger look-up tables to Sigma. */
271static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx)
272{
273 int i;
274 uint8_t tmp[2];
275 uint16_t bit;
276
277 /* Transpose the table and send to Sigma. */
278 for (i = 0; i < 16; ++i) {
279 bit = 1 << i;
280
281 tmp[0] = tmp[1] = 0;
282
283 if (lut->m2d[0] & bit)
284 tmp[0] |= 0x01;
285 if (lut->m2d[1] & bit)
286 tmp[0] |= 0x02;
287 if (lut->m2d[2] & bit)
288 tmp[0] |= 0x04;
289 if (lut->m2d[3] & bit)
290 tmp[0] |= 0x08;
291
292 if (lut->m3 & bit)
293 tmp[0] |= 0x10;
294 if (lut->m3s & bit)
295 tmp[0] |= 0x20;
296 if (lut->m4 & bit)
297 tmp[0] |= 0x40;
298
299 if (lut->m0d[0] & bit)
300 tmp[1] |= 0x01;
301 if (lut->m0d[1] & bit)
302 tmp[1] |= 0x02;
303 if (lut->m0d[2] & bit)
304 tmp[1] |= 0x04;
305 if (lut->m0d[3] & bit)
306 tmp[1] |= 0x08;
307
308 if (lut->m1d[0] & bit)
309 tmp[1] |= 0x10;
310 if (lut->m1d[1] & bit)
311 tmp[1] |= 0x20;
312 if (lut->m1d[2] & bit)
313 tmp[1] |= 0x40;
314 if (lut->m1d[3] & bit)
315 tmp[1] |= 0x80;
316
317 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
318 ctx);
319 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx);
320 }
321
322 /* Send the parameters */
323 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
324 sizeof(lut->params), ctx);
325
326 return SR_OK;
327}
328
329/* Generate the bitbang stream for programming the FPGA. */
330static int bin2bitbang(const char *filename,
331 unsigned char **buf, size_t *buf_size)
332{
333 FILE *f;
334 unsigned long file_size;
335 unsigned long offset = 0;
336 unsigned char *p;
337 uint8_t *firmware;
338 unsigned long fwsize = 0;
339 const int buffer_size = 65536;
340 size_t i;
341 int c, bit, v;
342 uint32_t imm = 0x3f6df2ab;
343
344 f = g_fopen(filename, "rb");
345 if (!f) {
346 sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename);
347 return SR_ERR;
348 }
349
350 if (-1 == fseek(f, 0, SEEK_END)) {
351 sr_err("sigma: fseek on %s failed", filename);
352 fclose(f);
353 return SR_ERR;
354 }
355
356 file_size = ftell(f);
357
358 fseek(f, 0, SEEK_SET);
359
360 if (!(firmware = g_try_malloc(buffer_size))) {
361 sr_err("sigma: %s: firmware malloc failed", __func__);
362 fclose(f);
363 return SR_ERR_MALLOC;
364 }
365
366 while ((c = getc(f)) != EOF) {
367 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
368 firmware[fwsize++] = c ^ imm;
369 }
370 fclose(f);
371
372 if(fwsize != file_size) {
373 sr_err("sigma: %s: Error reading firmware", filename);
374 fclose(f);
375 g_free(firmware);
376 return SR_ERR;
377 }
378
379 *buf_size = fwsize * 2 * 8;
380
381 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
382 if (!p) {
383 sr_err("sigma: %s: buf/p malloc failed", __func__);
384 g_free(firmware);
385 return SR_ERR_MALLOC;
386 }
387
388 for (i = 0; i < fwsize; ++i) {
389 for (bit = 7; bit >= 0; --bit) {
390 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
391 p[offset++] = v | 0x01;
392 p[offset++] = v;
393 }
394 }
395
396 g_free(firmware);
397
398 if (offset != *buf_size) {
399 g_free(*buf);
400 sr_err("sigma: Error reading firmware %s "
401 "offset=%ld, file_size=%ld, buf_size=%zd.",
402 filename, offset, file_size, *buf_size);
403
404 return SR_ERR;
405 }
406
407 return SR_OK;
408}
409
410static void clear_instances(void)
411{
412 GSList *l;
413 struct sr_dev_inst *sdi;
414 struct context *ctx;
415
416 /* Properly close all devices. */
417 for (l = adi->instances; l; l = l->next) {
418 if (!(sdi = l->data)) {
419 /* Log error, but continue cleaning up the rest. */
420 sr_err("sigma: %s: sdi was NULL, continuing", __func__);
421 continue;
422 }
423 if (sdi->priv) {
424 ctx = sdi->priv;
425 ftdi_free(&ctx->ftdic);
426 g_free(ctx);
427 }
428 sr_dev_inst_free(sdi);
429 }
430 g_slist_free(adi->instances);
431 adi->instances = NULL;
432
433}
434
435static int hw_init(void)
436{
437
438 /* Nothing to do. */
439
440 return SR_OK;
441}
442
443static GSList *hw_scan(GSList *options)
444{
445 struct sr_dev_inst *sdi;
446 struct context *ctx;
447 GSList *devices;
448 struct ftdi_device_list *devlist;
449 char serial_txt[10];
450 uint32_t serial;
451 int ret;
452
453 (void)options;
454 devices = NULL;
455 clear_instances();
456
457 if (!(ctx = g_try_malloc(sizeof(struct context)))) {
458 sr_err("sigma: %s: ctx malloc failed", __func__);
459 return NULL;
460 }
461
462 ftdi_init(&ctx->ftdic);
463
464 /* Look for SIGMAs. */
465
466 if ((ret = ftdi_usb_find_all(&ctx->ftdic, &devlist,
467 USB_VENDOR, USB_PRODUCT)) <= 0) {
468 if (ret < 0)
469 sr_err("ftdi_usb_find_all(): %d", ret);
470 goto free;
471 }
472
473 /* Make sure it's a version 1 or 2 SIGMA. */
474 ftdi_usb_get_strings(&ctx->ftdic, devlist->dev, NULL, 0, NULL, 0,
475 serial_txt, sizeof(serial_txt));
476 sscanf(serial_txt, "%x", &serial);
477
478 if (serial < 0xa6010000 || serial > 0xa602ffff) {
479 sr_err("sigma: Only SIGMA and SIGMA2 are supported "
480 "in this version of sigrok.");
481 goto free;
482 }
483
484 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
485
486 ctx->cur_samplerate = 0;
487 ctx->period_ps = 0;
488 ctx->limit_msec = 0;
489 ctx->cur_firmware = -1;
490 ctx->num_probes = 0;
491 ctx->samples_per_event = 0;
492 ctx->capture_ratio = 50;
493 ctx->use_triggers = 0;
494
495 /* Register SIGMA device. */
496 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
497 USB_MODEL_NAME, USB_MODEL_VERSION))) {
498 sr_err("sigma: %s: sdi was NULL", __func__);
499 goto free;
500 }
501 sdi->driver = adi;
502 devices = g_slist_append(devices, sdi);
503 adi->instances = g_slist_append(adi->instances, sdi);
504 sdi->priv = ctx;
505
506 /* We will open the device again when we need it. */
507 ftdi_list_free(&devlist);
508
509 return devices;
510
511free:
512 ftdi_deinit(&ctx->ftdic);
513 g_free(ctx);
514 return NULL;
515}
516
517static int upload_firmware(int firmware_idx, struct context *ctx)
518{
519 int ret;
520 unsigned char *buf;
521 unsigned char pins;
522 size_t buf_size;
523 unsigned char result[32];
524 char firmware_path[128];
525
526 /* Make sure it's an ASIX SIGMA. */
527 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
528 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
529 sr_err("sigma: ftdi_usb_open failed: %s",
530 ftdi_get_error_string(&ctx->ftdic));
531 return 0;
532 }
533
534 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
535 sr_err("sigma: ftdi_set_bitmode failed: %s",
536 ftdi_get_error_string(&ctx->ftdic));
537 return 0;
538 }
539
540 /* Four times the speed of sigmalogan - Works well. */
541 if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) {
542 sr_err("sigma: ftdi_set_baudrate failed: %s",
543 ftdi_get_error_string(&ctx->ftdic));
544 return 0;
545 }
546
547 /* Force the FPGA to reboot. */
548 sigma_write(suicide, sizeof(suicide), ctx);
549 sigma_write(suicide, sizeof(suicide), ctx);
550 sigma_write(suicide, sizeof(suicide), ctx);
551 sigma_write(suicide, sizeof(suicide), ctx);
552
553 /* Prepare to upload firmware (FPGA specific). */
554 sigma_write(init, sizeof(init), ctx);
555
556 ftdi_usb_purge_buffers(&ctx->ftdic);
557
558 /* Wait until the FPGA asserts INIT_B. */
559 while (1) {
560 ret = sigma_read(result, 1, ctx);
561 if (result[0] & 0x20)
562 break;
563 }
564
565 /* Prepare firmware. */
566 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
567 firmware_files[firmware_idx]);
568
569 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
570 sr_err("sigma: An error occured while reading the firmware: %s",
571 firmware_path);
572 return ret;
573 }
574
575 /* Upload firmare. */
576 sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]);
577 sigma_write(buf, buf_size, ctx);
578
579 g_free(buf);
580
581 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) {
582 sr_err("sigma: ftdi_set_bitmode failed: %s",
583 ftdi_get_error_string(&ctx->ftdic));
584 return SR_ERR;
585 }
586
587 ftdi_usb_purge_buffers(&ctx->ftdic);
588
589 /* Discard garbage. */
590 while (1 == sigma_read(&pins, 1, ctx))
591 ;
592
593 /* Initialize the logic analyzer mode. */
594 sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx);
595
596 /* Expect a 3 byte reply. */
597 ret = sigma_read(result, 3, ctx);
598 if (ret != 3 ||
599 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
600 sr_err("sigma: Configuration failed. Invalid reply received.");
601 return SR_ERR;
602 }
603
604 ctx->cur_firmware = firmware_idx;
605
606 sr_info("sigma: Firmware uploaded");
607
608 return SR_OK;
609}
610
611static int hw_dev_open(struct sr_dev_inst *sdi)
612{
613 struct context *ctx;
614 int ret;
615
616 ctx = sdi->priv;
617
618 /* Make sure it's an ASIX SIGMA. */
619 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
620 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
621
622 sr_err("sigma: ftdi_usb_open failed: %s",
623 ftdi_get_error_string(&ctx->ftdic));
624
625 return 0;
626 }
627
628 sdi->status = SR_ST_ACTIVE;
629
630 return SR_OK;
631}
632
633static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
634{
635 int i, ret;
636 struct context *ctx = sdi->priv;
637
638 for (i = 0; supported_samplerates[i]; i++) {
639 if (supported_samplerates[i] == samplerate)
640 break;
641 }
642 if (supported_samplerates[i] == 0)
643 return SR_ERR_SAMPLERATE;
644
645 if (samplerate <= SR_MHZ(50)) {
646 ret = upload_firmware(0, ctx);
647 ctx->num_probes = 16;
648 }
649 if (samplerate == SR_MHZ(100)) {
650 ret = upload_firmware(1, ctx);
651 ctx->num_probes = 8;
652 }
653 else if (samplerate == SR_MHZ(200)) {
654 ret = upload_firmware(2, ctx);
655 ctx->num_probes = 4;
656 }
657
658 ctx->cur_samplerate = samplerate;
659 ctx->period_ps = 1000000000000 / samplerate;
660 ctx->samples_per_event = 16 / ctx->num_probes;
661 ctx->state.state = SIGMA_IDLE;
662
663 return ret;
664}
665
666/*
667 * In 100 and 200 MHz mode, only a single pin rising/falling can be
668 * set as trigger. In other modes, two rising/falling triggers can be set,
669 * in addition to value/mask trigger for any number of probes.
670 *
671 * The Sigma supports complex triggers using boolean expressions, but this
672 * has not been implemented yet.
673 */
674static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
675{
676 struct context *ctx = sdi->priv;
677 const struct sr_probe *probe;
678 const GSList *l;
679 int trigger_set = 0;
680 int probebit;
681
682 memset(&ctx->trigger, 0, sizeof(struct sigma_trigger));
683
684 for (l = probes; l; l = l->next) {
685 probe = (struct sr_probe *)l->data;
686 probebit = 1 << (probe->index);
687
688 if (!probe->enabled || !probe->trigger)
689 continue;
690
691 if (ctx->cur_samplerate >= SR_MHZ(100)) {
692 /* Fast trigger support. */
693 if (trigger_set) {
694 sr_err("sigma: ASIX SIGMA only supports a single "
695 "pin trigger in 100 and 200MHz mode.");
696 return SR_ERR;
697 }
698 if (probe->trigger[0] == 'f')
699 ctx->trigger.fallingmask |= probebit;
700 else if (probe->trigger[0] == 'r')
701 ctx->trigger.risingmask |= probebit;
702 else {
703 sr_err("sigma: ASIX SIGMA only supports "
704 "rising/falling trigger in 100 "
705 "and 200MHz mode.");
706 return SR_ERR;
707 }
708
709 ++trigger_set;
710 } else {
711 /* Simple trigger support (event). */
712 if (probe->trigger[0] == '1') {
713 ctx->trigger.simplevalue |= probebit;
714 ctx->trigger.simplemask |= probebit;
715 }
716 else if (probe->trigger[0] == '0') {
717 ctx->trigger.simplevalue &= ~probebit;
718 ctx->trigger.simplemask |= probebit;
719 }
720 else if (probe->trigger[0] == 'f') {
721 ctx->trigger.fallingmask |= probebit;
722 ++trigger_set;
723 }
724 else if (probe->trigger[0] == 'r') {
725 ctx->trigger.risingmask |= probebit;
726 ++trigger_set;
727 }
728
729 /*
730 * Actually, Sigma supports 2 rising/falling triggers,
731 * but they are ORed and the current trigger syntax
732 * does not permit ORed triggers.
733 */
734 if (trigger_set > 1) {
735 sr_err("sigma: ASIX SIGMA only supports 1 "
736 "rising/falling triggers.");
737 return SR_ERR;
738 }
739 }
740
741 if (trigger_set)
742 ctx->use_triggers = 1;
743 }
744
745 return SR_OK;
746}
747
748static int hw_dev_close(struct sr_dev_inst *sdi)
749{
750 struct context *ctx;
751
752 if (!(ctx = sdi->priv)) {
753 sr_err("sigma: %s: sdi->priv was NULL", __func__);
754 return SR_ERR_BUG;
755 }
756
757 /* TODO */
758 if (sdi->status == SR_ST_ACTIVE)
759 ftdi_usb_close(&ctx->ftdic);
760
761 sdi->status = SR_ST_INACTIVE;
762
763 return SR_OK;
764}
765
766static int hw_cleanup(void)
767{
768
769 clear_instances();
770
771 return SR_OK;
772}
773
774static int hw_info_get(int info_id, const void **data,
775 const struct sr_dev_inst *sdi)
776{
777 struct context *ctx;
778
779 switch (info_id) {
780 case SR_DI_INST:
781 *data = sdi;
782 break;
783 case SR_DI_HWCAPS:
784 *data = hwcaps;
785 break;
786 case SR_DI_NUM_PROBES:
787 *data = GINT_TO_POINTER(NUM_PROBES);
788 break;
789 case SR_DI_PROBE_NAMES:
790 *data = probe_names;
791 break;
792 case SR_DI_SAMPLERATES:
793 *data = &samplerates;
794 break;
795 case SR_DI_TRIGGER_TYPES:
796 *data = (char *)TRIGGER_TYPES;
797 break;
798 case SR_DI_CUR_SAMPLERATE:
799 if (sdi) {
800 ctx = sdi->priv;
801 *data = &ctx->cur_samplerate;
802 } else
803 return SR_ERR;
804 break;
805 default:
806 return SR_ERR_ARG;
807 }
808
809 return SR_OK;
810}
811
812static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
813 const void *value)
814{
815 struct context *ctx;
816 int ret;
817
818 ctx = sdi->priv;
819
820 if (hwcap == SR_HWCAP_SAMPLERATE) {
821 ret = set_samplerate(sdi, *(const uint64_t *)value);
822 } else if (hwcap == SR_HWCAP_PROBECONFIG) {
823 ret = configure_probes(sdi, value);
824 } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
825 ctx->limit_msec = *(const uint64_t *)value;
826 if (ctx->limit_msec > 0)
827 ret = SR_OK;
828 else
829 ret = SR_ERR;
830 } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
831 ctx->capture_ratio = *(const uint64_t *)value;
832 if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100)
833 ret = SR_ERR;
834 else
835 ret = SR_OK;
836 } else {
837 ret = SR_ERR;
838 }
839
840 return ret;
841}
842
843/* Software trigger to determine exact trigger position. */
844static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
845 struct sigma_trigger *t)
846{
847 int i;
848
849 for (i = 0; i < 8; ++i) {
850 if (i > 0)
851 last_sample = samples[i-1];
852
853 /* Simple triggers. */
854 if ((samples[i] & t->simplemask) != t->simplevalue)
855 continue;
856
857 /* Rising edge. */
858 if ((last_sample & t->risingmask) != 0 || (samples[i] &
859 t->risingmask) != t->risingmask)
860 continue;
861
862 /* Falling edge. */
863 if ((last_sample & t->fallingmask) != t->fallingmask ||
864 (samples[i] & t->fallingmask) != 0)
865 continue;
866
867 break;
868 }
869
870 /* If we did not match, return original trigger pos. */
871 return i & 0x7;
872}
873
874/*
875 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
876 * Each event is 20ns apart, and can contain multiple samples.
877 *
878 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
879 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
880 * For 50 MHz and below, events contain one sample for each channel,
881 * spread 20 ns apart.
882 */
883static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
884 uint16_t *lastsample, int triggerpos,
885 uint16_t limit_chunk, void *cb_data)
886{
887 struct sr_dev_inst *sdi = cb_data;
888 struct context *ctx = sdi->priv;
889 uint16_t tsdiff, ts;
890 uint16_t samples[65536 * ctx->samples_per_event];
891 struct sr_datafeed_packet packet;
892 struct sr_datafeed_logic logic;
893 int i, j, k, l, numpad, tosend;
894 size_t n = 0, sent = 0;
895 int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event;
896 uint16_t *event;
897 uint16_t cur_sample;
898 int triggerts = -1;
899
900 /* Check if trigger is in this chunk. */
901 if (triggerpos != -1) {
902 if (ctx->cur_samplerate <= SR_MHZ(50))
903 triggerpos -= EVENTS_PER_CLUSTER - 1;
904
905 if (triggerpos < 0)
906 triggerpos = 0;
907
908 /* Find in which cluster the trigger occured. */
909 triggerts = triggerpos / 7;
910 }
911
912 /* For each ts. */
913 for (i = 0; i < 64; ++i) {
914 ts = *(uint16_t *) &buf[i * 16];
915 tsdiff = ts - *lastts;
916 *lastts = ts;
917
918 /* Decode partial chunk. */
919 if (limit_chunk && ts > limit_chunk)
920 return SR_OK;
921
922 /* Pad last sample up to current point. */
923 numpad = tsdiff * ctx->samples_per_event - clustersize;
924 if (numpad > 0) {
925 for (j = 0; j < numpad; ++j)
926 samples[j] = *lastsample;
927
928 n = numpad;
929 }
930
931 /* Send samples between previous and this timestamp to sigrok. */
932 sent = 0;
933 while (sent < n) {
934 tosend = MIN(2048, n - sent);
935
936 packet.type = SR_DF_LOGIC;
937 packet.payload = &logic;
938 logic.length = tosend * sizeof(uint16_t);
939 logic.unitsize = 2;
940 logic.data = samples + sent;
941 sr_session_send(ctx->session_dev_id, &packet);
942
943 sent += tosend;
944 }
945 n = 0;
946
947 event = (uint16_t *) &buf[i * 16 + 2];
948 cur_sample = 0;
949
950 /* For each event in cluster. */
951 for (j = 0; j < 7; ++j) {
952
953 /* For each sample in event. */
954 for (k = 0; k < ctx->samples_per_event; ++k) {
955 cur_sample = 0;
956
957 /* For each probe. */
958 for (l = 0; l < ctx->num_probes; ++l)
959 cur_sample |= (!!(event[j] & (1 << (l *
960 ctx->samples_per_event + k)))) << l;
961
962 samples[n++] = cur_sample;
963 }
964 }
965
966 /* Send data up to trigger point (if triggered). */
967 sent = 0;
968 if (i == triggerts) {
969 /*
970 * Trigger is not always accurate to sample because of
971 * pipeline delay. However, it always triggers before
972 * the actual event. We therefore look at the next
973 * samples to pinpoint the exact position of the trigger.
974 */
975 tosend = get_trigger_offset(samples, *lastsample,
976 &ctx->trigger);
977
978 if (tosend > 0) {
979 packet.type = SR_DF_LOGIC;
980 packet.payload = &logic;
981 logic.length = tosend * sizeof(uint16_t);
982 logic.unitsize = 2;
983 logic.data = samples;
984 sr_session_send(ctx->session_dev_id, &packet);
985
986 sent += tosend;
987 }
988
989 /* Only send trigger if explicitly enabled. */
990 if (ctx->use_triggers) {
991 packet.type = SR_DF_TRIGGER;
992 sr_session_send(ctx->session_dev_id, &packet);
993 }
994 }
995
996 /* Send rest of the chunk to sigrok. */
997 tosend = n - sent;
998
999 if (tosend > 0) {
1000 packet.type = SR_DF_LOGIC;
1001 packet.payload = &logic;
1002 logic.length = tosend * sizeof(uint16_t);
1003 logic.unitsize = 2;
1004 logic.data = samples + sent;
1005 sr_session_send(ctx->session_dev_id, &packet);
1006 }
1007
1008 *lastsample = samples[n - 1];
1009 }
1010
1011 return SR_OK;
1012}
1013
1014static int receive_data(int fd, int revents, void *cb_data)
1015{
1016 struct sr_dev_inst *sdi = cb_data;
1017 struct context *ctx = sdi->priv;
1018 struct sr_datafeed_packet packet;
1019 const int chunks_per_read = 32;
1020 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1021 int bufsz, numchunks, i, newchunks;
1022 uint64_t running_msec;
1023 struct timeval tv;
1024
1025 /* Avoid compiler warnings. */
1026 (void)fd;
1027 (void)revents;
1028
1029 /* Get the current position. */
1030 sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
1031
1032 numchunks = (ctx->state.stoppos + 511) / 512;
1033
1034 if (ctx->state.state == SIGMA_IDLE)
1035 return TRUE;
1036
1037 if (ctx->state.state == SIGMA_CAPTURE) {
1038 /* Check if the timer has expired, or memory is full. */
1039 gettimeofday(&tv, 0);
1040 running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 +
1041 (tv.tv_usec - ctx->start_tv.tv_usec) / 1000;
1042
1043 if (running_msec < ctx->limit_msec && numchunks < 32767)
1044 return TRUE; /* While capturing... */
1045 else
1046 hw_dev_acquisition_stop(sdi, sdi);
1047
1048 } else if (ctx->state.state == SIGMA_DOWNLOAD) {
1049 if (ctx->state.chunks_downloaded >= numchunks) {
1050 /* End of samples. */
1051 packet.type = SR_DF_END;
1052 sr_session_send(ctx->session_dev_id, &packet);
1053
1054 ctx->state.state = SIGMA_IDLE;
1055
1056 return TRUE;
1057 }
1058
1059 newchunks = MIN(chunks_per_read,
1060 numchunks - ctx->state.chunks_downloaded);
1061
1062 sr_info("sigma: Downloading sample data: %.0f %%",
1063 100.0 * ctx->state.chunks_downloaded / numchunks);
1064
1065 bufsz = sigma_read_dram(ctx->state.chunks_downloaded,
1066 newchunks, buf, ctx);
1067 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1068 (void)bufsz;
1069
1070 /* Find first ts. */
1071 if (ctx->state.chunks_downloaded == 0) {
1072 ctx->state.lastts = *(uint16_t *) buf - 1;
1073 ctx->state.lastsample = 0;
1074 }
1075
1076 /* Decode chunks and send them to sigrok. */
1077 for (i = 0; i < newchunks; ++i) {
1078 int limit_chunk = 0;
1079
1080 /* The last chunk may potentially be only in part. */
1081 if (ctx->state.chunks_downloaded == numchunks - 1) {
1082 /* Find the last valid timestamp */
1083 limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts;
1084 }
1085
1086 if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk)
1087 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1088 &ctx->state.lastts,
1089 &ctx->state.lastsample,
1090 ctx->state.triggerpos & 0x1ff,
1091 limit_chunk, sdi);
1092 else
1093 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1094 &ctx->state.lastts,
1095 &ctx->state.lastsample,
1096 -1, limit_chunk, sdi);
1097
1098 ++ctx->state.chunks_downloaded;
1099 }
1100 }
1101
1102 return TRUE;
1103}
1104
1105/* Build a LUT entry used by the trigger functions. */
1106static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1107{
1108 int i, j, k, bit;
1109
1110 /* For each quad probe. */
1111 for (i = 0; i < 4; ++i) {
1112 entry[i] = 0xffff;
1113
1114 /* For each bit in LUT. */
1115 for (j = 0; j < 16; ++j)
1116
1117 /* For each probe in quad. */
1118 for (k = 0; k < 4; ++k) {
1119 bit = 1 << (i * 4 + k);
1120
1121 /* Set bit in entry */
1122 if ((mask & bit) &&
1123 ((!(value & bit)) !=
1124 (!(j & (1 << k)))))
1125 entry[i] &= ~(1 << j);
1126 }
1127 }
1128}
1129
1130/* Add a logical function to LUT mask. */
1131static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1132 int index, int neg, uint16_t *mask)
1133{
1134 int i, j;
1135 int x[2][2], tmp, a, b, aset, bset, rset;
1136
1137 memset(x, 0, 4 * sizeof(int));
1138
1139 /* Trigger detect condition. */
1140 switch (oper) {
1141 case OP_LEVEL:
1142 x[0][1] = 1;
1143 x[1][1] = 1;
1144 break;
1145 case OP_NOT:
1146 x[0][0] = 1;
1147 x[1][0] = 1;
1148 break;
1149 case OP_RISE:
1150 x[0][1] = 1;
1151 break;
1152 case OP_FALL:
1153 x[1][0] = 1;
1154 break;
1155 case OP_RISEFALL:
1156 x[0][1] = 1;
1157 x[1][0] = 1;
1158 break;
1159 case OP_NOTRISE:
1160 x[1][1] = 1;
1161 x[0][0] = 1;
1162 x[1][0] = 1;
1163 break;
1164 case OP_NOTFALL:
1165 x[1][1] = 1;
1166 x[0][0] = 1;
1167 x[0][1] = 1;
1168 break;
1169 case OP_NOTRISEFALL:
1170 x[1][1] = 1;
1171 x[0][0] = 1;
1172 break;
1173 }
1174
1175 /* Transpose if neg is set. */
1176 if (neg) {
1177 for (i = 0; i < 2; ++i) {
1178 for (j = 0; j < 2; ++j) {
1179 tmp = x[i][j];
1180 x[i][j] = x[1-i][1-j];
1181 x[1-i][1-j] = tmp;
1182 }
1183 }
1184 }
1185
1186 /* Update mask with function. */
1187 for (i = 0; i < 16; ++i) {
1188 a = (i >> (2 * index + 0)) & 1;
1189 b = (i >> (2 * index + 1)) & 1;
1190
1191 aset = (*mask >> i) & 1;
1192 bset = x[b][a];
1193
1194 if (func == FUNC_AND || func == FUNC_NAND)
1195 rset = aset & bset;
1196 else if (func == FUNC_OR || func == FUNC_NOR)
1197 rset = aset | bset;
1198 else if (func == FUNC_XOR || func == FUNC_NXOR)
1199 rset = aset ^ bset;
1200
1201 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1202 rset = !rset;
1203
1204 *mask &= ~(1 << i);
1205
1206 if (rset)
1207 *mask |= 1 << i;
1208 }
1209}
1210
1211/*
1212 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1213 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1214 * set at any time, but a full mask and value can be set (0/1).
1215 */
1216static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
1217{
1218 int i,j;
1219 uint16_t masks[2] = { 0, 0 };
1220
1221 memset(lut, 0, sizeof(struct triggerlut));
1222
1223 /* Contant for simple triggers. */
1224 lut->m4 = 0xa000;
1225
1226 /* Value/mask trigger support. */
1227 build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask,
1228 lut->m2d);
1229
1230 /* Rise/fall trigger support. */
1231 for (i = 0, j = 0; i < 16; ++i) {
1232 if (ctx->trigger.risingmask & (1 << i) ||
1233 ctx->trigger.fallingmask & (1 << i))
1234 masks[j++] = 1 << i;
1235 }
1236
1237 build_lut_entry(masks[0], masks[0], lut->m0d);
1238 build_lut_entry(masks[1], masks[1], lut->m1d);
1239
1240 /* Add glue logic */
1241 if (masks[0] || masks[1]) {
1242 /* Transition trigger. */
1243 if (masks[0] & ctx->trigger.risingmask)
1244 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1245 if (masks[0] & ctx->trigger.fallingmask)
1246 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1247 if (masks[1] & ctx->trigger.risingmask)
1248 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1249 if (masks[1] & ctx->trigger.fallingmask)
1250 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1251 } else {
1252 /* Only value/mask trigger. */
1253 lut->m3 = 0xffff;
1254 }
1255
1256 /* Triggertype: event. */
1257 lut->params.selres = 3;
1258
1259 return SR_OK;
1260}
1261
1262static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1263 void *cb_data)
1264{
1265 struct context *ctx;
1266 struct sr_datafeed_packet *packet;
1267 struct sr_datafeed_header *header;
1268 struct sr_datafeed_meta_logic meta;
1269 struct clockselect_50 clockselect;
1270 int frac, triggerpin, ret;
1271 uint8_t triggerselect;
1272 struct triggerinout triggerinout_conf;
1273 struct triggerlut lut;
1274
1275 ctx = sdi->priv;
1276
1277 /* If the samplerate has not been set, default to 200 kHz. */
1278 if (ctx->cur_firmware == -1) {
1279 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1280 return ret;
1281 }
1282
1283 /* Enter trigger programming mode. */
1284 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx);
1285
1286 /* 100 and 200 MHz mode. */
1287 if (ctx->cur_samplerate >= SR_MHZ(100)) {
1288 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx);
1289
1290 /* Find which pin to trigger on from mask. */
1291 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1292 if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) &
1293 (1 << triggerpin))
1294 break;
1295
1296 /* Set trigger pin and light LED on trigger. */
1297 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1298
1299 /* Default rising edge. */
1300 if (ctx->trigger.fallingmask)
1301 triggerselect |= 1 << 3;
1302
1303 /* All other modes. */
1304 } else if (ctx->cur_samplerate <= SR_MHZ(50)) {
1305 build_basic_trigger(&lut, ctx);
1306
1307 sigma_write_trigger_lut(&lut, ctx);
1308
1309 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1310 }
1311
1312 /* Setup trigger in and out pins to default values. */
1313 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1314 triggerinout_conf.trgout_bytrigger = 1;
1315 triggerinout_conf.trgout_enable = 1;
1316
1317 sigma_write_register(WRITE_TRIGGER_OPTION,
1318 (uint8_t *) &triggerinout_conf,
1319 sizeof(struct triggerinout), ctx);
1320
1321 /* Go back to normal mode. */
1322 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx);
1323
1324 /* Set clock select register. */
1325 if (ctx->cur_samplerate == SR_MHZ(200))
1326 /* Enable 4 probes. */
1327 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx);
1328 else if (ctx->cur_samplerate == SR_MHZ(100))
1329 /* Enable 8 probes. */
1330 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx);
1331 else {
1332 /*
1333 * 50 MHz mode (or fraction thereof). Any fraction down to
1334 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1335 */
1336 frac = SR_MHZ(50) / ctx->cur_samplerate - 1;
1337
1338 clockselect.async = 0;
1339 clockselect.fraction = frac;
1340 clockselect.disabled_probes = 0;
1341
1342 sigma_write_register(WRITE_CLOCK_SELECT,
1343 (uint8_t *) &clockselect,
1344 sizeof(clockselect), ctx);
1345 }
1346
1347 /* Setup maximum post trigger time. */
1348 sigma_set_register(WRITE_POST_TRIGGER,
1349 (ctx->capture_ratio * 255) / 100, ctx);
1350
1351 /* Start acqusition. */
1352 gettimeofday(&ctx->start_tv, 0);
1353 sigma_set_register(WRITE_MODE, 0x0d, ctx);
1354
1355 ctx->session_dev_id = cb_data;
1356
1357 if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1358 sr_err("sigma: %s: packet malloc failed.", __func__);
1359 return SR_ERR_MALLOC;
1360 }
1361
1362 if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1363 sr_err("sigma: %s: header malloc failed.", __func__);
1364 return SR_ERR_MALLOC;
1365 }
1366
1367 /* Send header packet to the session bus. */
1368 packet->type = SR_DF_HEADER;
1369 packet->payload = header;
1370 header->feed_version = 1;
1371 gettimeofday(&header->starttime, NULL);
1372 sr_session_send(ctx->session_dev_id, packet);
1373
1374 /* Send metadata about the SR_DF_LOGIC packets to come. */
1375 packet->type = SR_DF_META_LOGIC;
1376 packet->payload = &meta;
1377 meta.samplerate = ctx->cur_samplerate;
1378 meta.num_probes = ctx->num_probes;
1379 sr_session_send(ctx->session_dev_id, packet);
1380
1381 /* Add capture source. */
1382 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1383
1384 g_free(header);
1385 g_free(packet);
1386
1387 ctx->state.state = SIGMA_CAPTURE;
1388
1389 return SR_OK;
1390}
1391
1392static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
1393 void *cb_data)
1394{
1395 struct context *ctx;
1396 uint8_t modestatus;
1397
1398 /* Avoid compiler warnings. */
1399 (void)cb_data;
1400
1401 if (!(ctx = sdi->priv)) {
1402 sr_err("sigma: %s: sdi->priv was NULL", __func__);
1403 return SR_ERR_BUG;
1404 }
1405
1406 /* Stop acquisition. */
1407 sigma_set_register(WRITE_MODE, 0x11, ctx);
1408
1409 /* Set SDRAM Read Enable. */
1410 sigma_set_register(WRITE_MODE, 0x02, ctx);
1411
1412 /* Get the current position. */
1413 sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
1414
1415 /* Check if trigger has fired. */
1416 modestatus = sigma_get_register(READ_MODE, ctx);
1417 if (modestatus & 0x20)
1418 ctx->state.triggerchunk = ctx->state.triggerpos / 512;
1419 else
1420 ctx->state.triggerchunk = -1;
1421
1422 ctx->state.chunks_downloaded = 0;
1423
1424 ctx->state.state = SIGMA_DOWNLOAD;
1425
1426 return SR_OK;
1427}
1428
1429SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1430 .name = "asix-sigma",
1431 .longname = "ASIX SIGMA/SIGMA2",
1432 .api_version = 1,
1433 .init = hw_init,
1434 .cleanup = hw_cleanup,
1435 .scan = hw_scan,
1436 .dev_open = hw_dev_open,
1437 .dev_close = hw_dev_close,
1438 .info_get = hw_info_get,
1439 .dev_config_set = hw_dev_config_set,
1440 .dev_acquisition_start = hw_dev_acquisition_start,
1441 .dev_acquisition_stop = hw_dev_acquisition_stop,
1442 .instances = NULL,
1443};