]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
Sigma: Never send empty packets.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX Sigma Logic Analyzer Driver
24 */
25
26#include <ftdi.h>
27#include <string.h>
28#include <zlib.h>
29#include <sigrok.h>
30#include "asix-sigma.h"
31
32#define USB_VENDOR 0xa600
33#define USB_PRODUCT 0xa000
34#define USB_DESCRIPTION "ASIX SIGMA"
35#define USB_VENDOR_NAME "ASIX"
36#define USB_MODEL_NAME "SIGMA"
37#define USB_MODEL_VERSION ""
38#define TRIGGER_TYPES "rf10"
39
40static GSList *device_instances = NULL;
41
42static uint64_t supported_samplerates[] = {
43 KHZ(200),
44 KHZ(250),
45 KHZ(500),
46 MHZ(1),
47 MHZ(5),
48 MHZ(10),
49 MHZ(25),
50 MHZ(50),
51 MHZ(100),
52 MHZ(200),
53 0,
54};
55
56static struct samplerates samplerates = {
57 KHZ(200),
58 MHZ(200),
59 0,
60 supported_samplerates,
61};
62
63static int capabilities[] = {
64 HWCAP_LOGIC_ANALYZER,
65 HWCAP_SAMPLERATE,
66 HWCAP_CAPTURE_RATIO,
67 HWCAP_PROBECONFIG,
68
69 HWCAP_LIMIT_MSEC,
70 0,
71};
72
73/* Force the FPGA to reboot. */
74static uint8_t suicide[] = {
75 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
76};
77
78/* Prepare to upload firmware (FPGA specific). */
79static uint8_t init[] = {
80 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
81};
82
83/* Initialize the logic analyzer mode. */
84static uint8_t logic_mode_start[] = {
85 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
86 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
87};
88
89static const char *firmware_files[] = {
90 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
91 "asix-sigma-100.fw", /* 100 MHz */
92 "asix-sigma-200.fw", /* 200 MHz */
93 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
94 "asix-sigma-phasor.fw", /* Frequency counter */
95};
96
97static void hw_stop_acquisition(int device_index, gpointer session_device_id);
98
99static int sigma_read(void *buf, size_t size, struct sigma *sigma)
100{
101 int ret;
102
103 ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
104 if (ret < 0) {
105 g_warning("ftdi_read_data failed: %s",
106 ftdi_get_error_string(&sigma->ftdic));
107 }
108
109 return ret;
110}
111
112static int sigma_write(void *buf, size_t size, struct sigma *sigma)
113{
114 int ret;
115
116 ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
117 if (ret < 0) {
118 g_warning("ftdi_write_data failed: %s",
119 ftdi_get_error_string(&sigma->ftdic));
120 } else if ((size_t) ret != size) {
121 g_warning("ftdi_write_data did not complete write\n");
122 }
123
124 return ret;
125}
126
127static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
128 struct sigma *sigma)
129{
130 size_t i;
131 uint8_t buf[len + 2];
132 int idx = 0;
133
134 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
135 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
136
137 for (i = 0; i < len; ++i) {
138 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
139 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
140 }
141
142 return sigma_write(buf, idx, sigma);
143}
144
145static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
146{
147 return sigma_write_register(reg, &value, 1, sigma);
148}
149
150static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
151 struct sigma *sigma)
152{
153 uint8_t buf[3];
154
155 buf[0] = REG_ADDR_LOW | (reg & 0xf);
156 buf[1] = REG_ADDR_HIGH | (reg >> 4);
157 buf[2] = REG_READ_ADDR;
158
159 sigma_write(buf, sizeof(buf), sigma);
160
161 return sigma_read(data, len, sigma);
162}
163
164static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
165{
166 uint8_t value;
167
168 if (1 != sigma_read_register(reg, &value, 1, sigma)) {
169 g_warning("Sigma_get_register: 1 byte expected");
170 return 0;
171 }
172
173 return value;
174}
175
176static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
177 struct sigma *sigma)
178{
179 uint8_t buf[] = {
180 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
181
182 REG_READ_ADDR | NEXT_REG,
183 REG_READ_ADDR | NEXT_REG,
184 REG_READ_ADDR | NEXT_REG,
185 REG_READ_ADDR | NEXT_REG,
186 REG_READ_ADDR | NEXT_REG,
187 REG_READ_ADDR | NEXT_REG,
188 };
189 uint8_t result[6];
190
191 sigma_write(buf, sizeof(buf), sigma);
192
193 sigma_read(result, sizeof(result), sigma);
194
195 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
196 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
197
198 /* Not really sure why this must be done, but according to spec. */
199 if ((--*stoppos & 0x1ff) == 0x1ff)
200 stoppos -= 64;
201
202 if ((*--triggerpos & 0x1ff) == 0x1ff)
203 triggerpos -= 64;
204
205 return 1;
206}
207
208static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
209 uint8_t *data, struct sigma *sigma)
210{
211 size_t i;
212 uint8_t buf[4096];
213 int idx = 0;
214
215 /* Send the startchunk. Index start with 1. */
216 buf[0] = startchunk >> 8;
217 buf[1] = startchunk & 0xff;
218 sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
219
220 /* Read the DRAM. */
221 buf[idx++] = REG_DRAM_BLOCK;
222 buf[idx++] = REG_DRAM_WAIT_ACK;
223
224 for (i = 0; i < numchunks; ++i) {
225 /* Alternate bit to copy from DRAM to cache. */
226 if (i != (numchunks - 1))
227 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
228
229 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
230
231 if (i != (numchunks - 1))
232 buf[idx++] = REG_DRAM_WAIT_ACK;
233 }
234
235 sigma_write(buf, idx, sigma);
236
237 return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
238}
239
240/* Upload trigger look-up tables to Sigma. */
241static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
242{
243 int i;
244 uint8_t tmp[2];
245 uint16_t bit;
246
247 /* Transpose the table and send to Sigma. */
248 for (i = 0; i < 16; ++i) {
249 bit = 1 << i;
250
251 tmp[0] = tmp[1] = 0;
252
253 if (lut->m2d[0] & bit)
254 tmp[0] |= 0x01;
255 if (lut->m2d[1] & bit)
256 tmp[0] |= 0x02;
257 if (lut->m2d[2] & bit)
258 tmp[0] |= 0x04;
259 if (lut->m2d[3] & bit)
260 tmp[0] |= 0x08;
261
262 if (lut->m3 & bit)
263 tmp[0] |= 0x10;
264 if (lut->m3s & bit)
265 tmp[0] |= 0x20;
266 if (lut->m4 & bit)
267 tmp[0] |= 0x40;
268
269 if (lut->m0d[0] & bit)
270 tmp[1] |= 0x01;
271 if (lut->m0d[1] & bit)
272 tmp[1] |= 0x02;
273 if (lut->m0d[2] & bit)
274 tmp[1] |= 0x04;
275 if (lut->m0d[3] & bit)
276 tmp[1] |= 0x08;
277
278 if (lut->m1d[0] & bit)
279 tmp[1] |= 0x10;
280 if (lut->m1d[1] & bit)
281 tmp[1] |= 0x20;
282 if (lut->m1d[2] & bit)
283 tmp[1] |= 0x40;
284 if (lut->m1d[3] & bit)
285 tmp[1] |= 0x80;
286
287 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
288 sigma);
289 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
290 }
291
292 /* Send the parameters */
293 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
294 sizeof(lut->params), sigma);
295
296 return SIGROK_OK;
297}
298
299/* Generate the bitbang stream for programming the FPGA. */
300static int bin2bitbang(const char *filename,
301 unsigned char **buf, size_t *buf_size)
302{
303 FILE *f;
304 long file_size;
305 unsigned long offset = 0;
306 unsigned char *p;
307 uint8_t *compressed_buf, *firmware;
308 uLongf csize, fwsize;
309 const int buffer_size = 65536;
310 size_t i;
311 int c, ret, bit, v;
312 uint32_t imm = 0x3f6df2ab;
313
314 f = fopen(filename, "r");
315 if (!f) {
316 g_warning("fopen(\"%s\", \"r\")", filename);
317 return -1;
318 }
319
320 if (-1 == fseek(f, 0, SEEK_END)) {
321 g_warning("fseek on %s failed", filename);
322 fclose(f);
323 return -1;
324 }
325
326 file_size = ftell(f);
327
328 fseek(f, 0, SEEK_SET);
329
330 compressed_buf = g_malloc(file_size);
331 firmware = g_malloc(buffer_size);
332
333 if (!compressed_buf || !firmware) {
334 g_warning("Error allocating buffers");
335 return -1;
336 }
337
338 csize = 0;
339 while ((c = getc(f)) != EOF) {
340 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
341 compressed_buf[csize++] = c ^ imm;
342 }
343 fclose(f);
344
345 fwsize = buffer_size;
346 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
347 if (ret < 0) {
348 g_free(compressed_buf);
349 g_free(firmware);
350 g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret);
351 return -1;
352 }
353
354 g_free(compressed_buf);
355
356 *buf_size = fwsize * 2 * 8;
357
358 *buf = p = (unsigned char *)g_malloc(*buf_size);
359
360 if (!p) {
361 g_warning("Error allocating buffers");
362 return -1;
363 }
364
365 for (i = 0; i < fwsize; ++i) {
366 for (bit = 7; bit >= 0; --bit) {
367 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
368 p[offset++] = v | 0x01;
369 p[offset++] = v;
370 }
371 }
372
373 g_free(firmware);
374
375 if (offset != *buf_size) {
376 g_free(*buf);
377 g_warning("Error reading firmware %s "
378 "offset=%ld, file_size=%ld, buf_size=%zd\n",
379 filename, offset, file_size, *buf_size);
380
381 return -1;
382 }
383
384 return 0;
385}
386
387static int hw_init(char *deviceinfo)
388{
389 struct sigrok_device_instance *sdi;
390 struct sigma *sigma = g_malloc(sizeof(struct sigma));
391
392 deviceinfo = deviceinfo;
393
394 if (!sigma)
395 return 0;
396
397 ftdi_init(&sigma->ftdic);
398
399 /* Look for SIGMAs. */
400 if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
401 USB_DESCRIPTION, NULL) < 0)
402 goto free;
403
404 sigma->cur_samplerate = 0;
405 sigma->limit_msec = 0;
406 sigma->cur_firmware = -1;
407 sigma->num_probes = 0;
408 sigma->samples_per_event = 0;
409 sigma->capture_ratio = 50;
410
411 /* Register SIGMA device. */
412 sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
413 USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
414 if (!sdi)
415 goto free;
416
417 sdi->priv = sigma;
418
419 device_instances = g_slist_append(device_instances, sdi);
420
421 /* We will open the device again when we need it. */
422 ftdi_usb_close(&sigma->ftdic);
423
424 return 1;
425free:
426 free(sigma);
427 return 0;
428}
429
430static int upload_firmware(int firmware_idx, struct sigma *sigma)
431{
432 int ret;
433 unsigned char *buf;
434 unsigned char pins;
435 size_t buf_size;
436 unsigned char result[32];
437 char firmware_path[128];
438
439 /* Make sure it's an ASIX SIGMA. */
440 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
441 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
442 g_warning("ftdi_usb_open failed: %s",
443 ftdi_get_error_string(&sigma->ftdic));
444 return 0;
445 }
446
447 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
448 g_warning("ftdi_set_bitmode failed: %s",
449 ftdi_get_error_string(&sigma->ftdic));
450 return 0;
451 }
452
453 /* Four times the speed of sigmalogan - Works well. */
454 if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
455 g_warning("ftdi_set_baudrate failed: %s",
456 ftdi_get_error_string(&sigma->ftdic));
457 return 0;
458 }
459
460 /* Force the FPGA to reboot. */
461 sigma_write(suicide, sizeof(suicide), sigma);
462 sigma_write(suicide, sizeof(suicide), sigma);
463 sigma_write(suicide, sizeof(suicide), sigma);
464 sigma_write(suicide, sizeof(suicide), sigma);
465
466 /* Prepare to upload firmware (FPGA specific). */
467 sigma_write(init, sizeof(init), sigma);
468
469 ftdi_usb_purge_buffers(&sigma->ftdic);
470
471 /* Wait until the FPGA asserts INIT_B. */
472 while (1) {
473 ret = sigma_read(result, 1, sigma);
474 if (result[0] & 0x20)
475 break;
476 }
477
478 /* Prepare firmware. */
479 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
480 firmware_files[firmware_idx]);
481
482 if (-1 == bin2bitbang(firmware_path, &buf, &buf_size)) {
483 g_warning("An error occured while reading the firmware: %s",
484 firmware_path);
485 return SIGROK_ERR;
486 }
487
488 /* Upload firmare. */
489 sigma_write(buf, buf_size, sigma);
490
491 g_free(buf);
492
493 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
494 g_warning("ftdi_set_bitmode failed: %s",
495 ftdi_get_error_string(&sigma->ftdic));
496 return SIGROK_ERR;
497 }
498
499 ftdi_usb_purge_buffers(&sigma->ftdic);
500
501 /* Discard garbage. */
502 while (1 == sigma_read(&pins, 1, sigma))
503 ;
504
505 /* Initialize the logic analyzer mode. */
506 sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
507
508 /* Expect a 3 byte reply. */
509 ret = sigma_read(result, 3, sigma);
510 if (ret != 3 ||
511 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
512 g_warning("Configuration failed. Invalid reply received.");
513 return SIGROK_ERR;
514 }
515
516 sigma->cur_firmware = firmware_idx;
517
518 return SIGROK_OK;
519}
520
521static int hw_opendev(int device_index)
522{
523 struct sigrok_device_instance *sdi;
524 struct sigma *sigma;
525 int ret;
526
527 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
528 return SIGROK_ERR;
529
530 sigma = sdi->priv;
531
532 /* Make sure it's an ASIX SIGMA. */
533 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
534 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
535
536 g_warning("ftdi_usb_open failed: %s",
537 ftdi_get_error_string(&sigma->ftdic));
538
539 return 0;
540 }
541
542 sdi->status = ST_ACTIVE;
543
544 return SIGROK_OK;
545}
546
547static int set_samplerate(struct sigrok_device_instance *sdi,
548 uint64_t samplerate)
549{
550 int i, ret;
551 struct sigma *sigma = sdi->priv;
552
553 for (i = 0; supported_samplerates[i]; i++) {
554 if (supported_samplerates[i] == samplerate)
555 break;
556 }
557 if (supported_samplerates[i] == 0)
558 return SIGROK_ERR_SAMPLERATE;
559
560 if (samplerate <= MHZ(50)) {
561 ret = upload_firmware(0, sigma);
562 sigma->num_probes = 16;
563 }
564 if (samplerate == MHZ(100)) {
565 ret = upload_firmware(1, sigma);
566 sigma->num_probes = 8;
567 }
568 else if (samplerate == MHZ(200)) {
569 ret = upload_firmware(2, sigma);
570 sigma->num_probes = 4;
571 }
572
573 sigma->cur_samplerate = samplerate;
574 sigma->samples_per_event = 16 / sigma->num_probes;
575 sigma->state.state = SIGMA_IDLE;
576
577 g_message("Firmware uploaded");
578
579 return ret;
580}
581
582/*
583 * In 100 and 200 MHz mode, only a single pin rising/falling can be
584 * set as trigger. In other modes, two rising/falling triggers can be set,
585 * in addition to value/mask trigger for any number of probes.
586 *
587 * The Sigma supports complex triggers using boolean expressions, but this
588 * has not been implemented yet.
589 */
590static int configure_probes(struct sigrok_device_instance *sdi, GSList *probes)
591{
592 struct sigma *sigma = sdi->priv;
593 struct probe *probe;
594 GSList *l;
595 int trigger_set = 0;
596 int probebit;
597
598 memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
599
600 for (l = probes; l; l = l->next) {
601 probe = (struct probe *)l->data;
602 probebit = 1 << (probe->index - 1);
603
604 if (!probe->enabled || !probe->trigger)
605 continue;
606
607 if (sigma->cur_samplerate >= MHZ(100)) {
608 /* Fast trigger support. */
609 if (trigger_set) {
610 g_warning("Asix Sigma only supports a single "
611 "pin trigger in 100 and 200 "
612 "MHz mode.");
613 return SIGROK_ERR;
614 }
615 if (probe->trigger[0] == 'f')
616 sigma->trigger.fallingmask |= probebit;
617 else if (probe->trigger[0] == 'r')
618 sigma->trigger.risingmask |= probebit;
619 else {
620 g_warning("Asix Sigma only supports "
621 "rising/falling trigger in 100 "
622 "and 200 MHz mode.");
623 return SIGROK_ERR;
624 }
625
626 ++trigger_set;
627 } else {
628 /* Simple trigger support (event). */
629 if (probe->trigger[0] == '1') {
630 sigma->trigger.simplevalue |= probebit;
631 sigma->trigger.simplemask |= probebit;
632 }
633 else if (probe->trigger[0] == '0') {
634 sigma->trigger.simplevalue &= ~probebit;
635 sigma->trigger.simplemask |= probebit;
636 }
637 else if (probe->trigger[0] == 'f') {
638 sigma->trigger.fallingmask |= probebit;
639 ++trigger_set;
640 }
641 else if (probe->trigger[0] == 'r') {
642 sigma->trigger.risingmask |= probebit;
643 ++trigger_set;
644 }
645
646 /*
647 * Actually, Sigma supports 2 rising/falling triggers,
648 * but they are ORed and the current trigger syntax
649 * does not permit ORed triggers.
650 */
651 if (trigger_set > 1) {
652 g_warning("Asix Sigma only supports 1 rising/"
653 "falling triggers.");
654 return SIGROK_ERR;
655 }
656 }
657 }
658
659 return SIGROK_OK;
660}
661
662static void hw_closedev(int device_index)
663{
664 struct sigrok_device_instance *sdi;
665 struct sigma *sigma;
666
667 if ((sdi = get_sigrok_device_instance(device_instances, device_index)))
668 {
669 sigma = sdi->priv;
670 if (sdi->status == ST_ACTIVE)
671 ftdi_usb_close(&sigma->ftdic);
672
673 sdi->status = ST_INACTIVE;
674 }
675}
676
677static void hw_cleanup(void)
678{
679 GSList *l;
680 struct sigrok_device_instance *sdi;
681
682 /* Properly close all devices. */
683 for (l = device_instances; l; l = l->next) {
684 sdi = l->data;
685 if (sdi->priv != NULL)
686 free(sdi->priv);
687 sigrok_device_instance_free(sdi);
688 }
689 g_slist_free(device_instances);
690 device_instances = NULL;
691}
692
693static void *hw_get_device_info(int device_index, int device_info_id)
694{
695 struct sigrok_device_instance *sdi;
696 struct sigma *sigma;
697 void *info = NULL;
698
699 if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
700 fprintf(stderr, "It's NULL.\n");
701 return NULL;
702 }
703
704 sigma = sdi->priv;
705
706 switch (device_info_id) {
707 case DI_INSTANCE:
708 info = sdi;
709 break;
710 case DI_NUM_PROBES:
711 info = GINT_TO_POINTER(16);
712 break;
713 case DI_SAMPLERATES:
714 info = &samplerates;
715 break;
716 case DI_TRIGGER_TYPES:
717 info = (char *)TRIGGER_TYPES;
718 break;
719 case DI_CUR_SAMPLERATE:
720 info = &sigma->cur_samplerate;
721 break;
722 }
723
724 return info;
725}
726
727static int hw_get_status(int device_index)
728{
729 struct sigrok_device_instance *sdi;
730
731 sdi = get_sigrok_device_instance(device_instances, device_index);
732 if (sdi)
733 return sdi->status;
734 else
735 return ST_NOT_FOUND;
736}
737
738static int *hw_get_capabilities(void)
739{
740 return capabilities;
741}
742
743static int hw_set_configuration(int device_index, int capability, void *value)
744{
745 struct sigrok_device_instance *sdi;
746 struct sigma *sigma;
747 int ret;
748
749 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
750 return SIGROK_ERR;
751
752 sigma = sdi->priv;
753
754 if (capability == HWCAP_SAMPLERATE) {
755 ret = set_samplerate(sdi, *(uint64_t*) value);
756 } else if (capability == HWCAP_PROBECONFIG) {
757 ret = configure_probes(sdi, value);
758 } else if (capability == HWCAP_LIMIT_MSEC) {
759 sigma->limit_msec = strtoull(value, NULL, 10);
760 ret = SIGROK_OK;
761 } else if (capability == HWCAP_CAPTURE_RATIO) {
762 sigma->capture_ratio = strtoull(value, NULL, 10);
763 ret = SIGROK_OK;
764 } else {
765 ret = SIGROK_ERR;
766 }
767
768 return ret;
769}
770
771/* Software trigger to determine exact trigger position. */
772static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
773 struct sigma_trigger *t)
774{
775 int i;
776
777 for (i = 0; i < 8; ++i) {
778 if (i > 0)
779 last_sample = samples[i-1];
780
781 /* Simple triggers. */
782 if ((samples[i] & t->simplemask) != t->simplevalue)
783 continue;
784
785 /* Rising edge. */
786 if ((last_sample & t->risingmask) != 0 || (samples[i] &
787 t->risingmask) != t->risingmask)
788 continue;
789
790 /* Falling edge. */
791 if ((last_sample & t->fallingmask) != t->fallingmask ||
792 (samples[i] & t->fallingmask) != 0)
793 continue;
794
795 break;
796 }
797
798 /* If we did not match, return original trigger pos. */
799 return i & 0x7;
800}
801
802/*
803 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
804 * Each event is 20ns apart, and can contain multiple samples.
805 *
806 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
807 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
808 * For 50 MHz and below, events contain one sample for each channel,
809 * spread 20 ns apart.
810 */
811static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
812 uint16_t *lastsample, int triggerpos,
813 uint16_t limit_chunk, void *user_data)
814{
815 struct sigrok_device_instance *sdi = user_data;
816 struct sigma *sigma = sdi->priv;
817 uint16_t tsdiff, ts;
818 uint16_t samples[65536 * sigma->samples_per_event];
819 struct datafeed_packet packet;
820 int i, j, k, l, numpad, tosend;
821 size_t n = 0, sent = 0;
822 int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
823 uint16_t *event;
824 uint16_t cur_sample;
825 int triggerts = -1;
826
827 /* Check if trigger is in this chunk. */
828 if (triggerpos != -1) {
829 if (sigma->cur_samplerate <= MHZ(50))
830 triggerpos -= EVENTS_PER_CLUSTER - 1;
831
832 if (triggerpos < 0)
833 triggerpos = 0;
834
835 /* Find in which cluster the trigger occured. */
836 triggerts = triggerpos / 7;
837 }
838
839 /* For each ts. */
840 for (i = 0; i < 64; ++i) {
841 ts = *(uint16_t *) &buf[i * 16];
842 tsdiff = ts - *lastts;
843 *lastts = ts;
844
845 /* Decode partial chunk. */
846 if (limit_chunk && ts > limit_chunk)
847 return SIGROK_OK;
848
849 /* Pad last sample up to current point. */
850 numpad = tsdiff * sigma->samples_per_event - clustersize;
851 if (numpad > 0) {
852 for (j = 0; j < numpad; ++j)
853 samples[j] = *lastsample;
854
855 n = numpad;
856 }
857
858 /* Send samples between previous and this timestamp to sigrok. */
859 sent = 0;
860 while (sent < n) {
861 tosend = MIN(2048, n - sent);
862
863 packet.type = DF_LOGIC;
864 packet.length = tosend * sizeof(uint16_t);
865 packet.unitsize = 2;
866 packet.payload = samples + sent;
867 session_bus(sigma->session_id, &packet);
868
869 sent += tosend;
870 }
871 n = 0;
872
873 event = (uint16_t *) &buf[i * 16 + 2];
874 cur_sample = 0;
875
876 /* For each event in cluster. */
877 for (j = 0; j < 7; ++j) {
878
879 /* For each sample in event. */
880 for (k = 0; k < sigma->samples_per_event; ++k) {
881 cur_sample = 0;
882
883 /* For each probe. */
884 for (l = 0; l < sigma->num_probes; ++l)
885 cur_sample |= (!!(event[j] & (1 << (l *
886 sigma->samples_per_event
887 + k))))
888 << l;
889
890 samples[n++] = cur_sample;
891 }
892 }
893
894 /* Send data up to trigger point (if triggered). */
895 sent = 0;
896 if (i == triggerts) {
897 /*
898 * Trigger is not always accurate to sample because of
899 * pipeline delay. However, it always triggers before
900 * the actual event. We therefore look at the next
901 * samples to pinpoint the exact position of the trigger.
902 */
903 tosend = get_trigger_offset(samples, *lastsample,
904 &sigma->trigger);
905
906 if (tosend > 0) {
907 packet.type = DF_LOGIC;
908 packet.length = tosend * sizeof(uint16_t);
909 packet.unitsize = 2;
910 packet.payload = samples;
911 session_bus(sigma->session_id, &packet);
912
913 sent += tosend;
914 }
915
916 packet.type = DF_TRIGGER;
917 packet.length = 0;
918 packet.payload = 0;
919 session_bus(sigma->session_id, &packet);
920 }
921
922 /* Send rest of the chunk to sigrok. */
923 tosend = n - sent;
924
925 if (tosend > 0) {
926 packet.type = DF_LOGIC;
927 packet.length = tosend * sizeof(uint16_t);
928 packet.unitsize = 2;
929 packet.payload = samples + sent;
930 session_bus(sigma->session_id, &packet);
931 }
932
933 *lastsample = samples[n - 1];
934 }
935
936 return SIGROK_OK;
937}
938
939static int receive_data(int fd, int revents, void *user_data)
940{
941 struct sigrok_device_instance *sdi = user_data;
942 struct sigma *sigma = sdi->priv;
943 struct datafeed_packet packet;
944 const int chunks_per_read = 32;
945 unsigned char buf[chunks_per_read * CHUNK_SIZE];
946 int bufsz, numchunks, i, newchunks;
947 uint32_t running_msec;
948 struct timeval tv;
949
950 fd = fd;
951 revents = revents;
952
953 numchunks = (sigma->state.stoppos + 511) / 512;
954
955 if (sigma->state.state == SIGMA_IDLE)
956 return FALSE;
957
958 if (sigma->state.state == SIGMA_CAPTURE) {
959
960 /* Check if the timer has expired, or memory is full. */
961 gettimeofday(&tv, 0);
962 running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
963 (tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
964
965 if (running_msec < sigma->limit_msec && numchunks < 32767)
966 return FALSE;
967
968 hw_stop_acquisition(sdi->index, user_data);
969
970 return FALSE;
971
972 } else if (sigma->state.state == SIGMA_DOWNLOAD) {
973 if (sigma->state.chunks_downloaded >= numchunks) {
974 /* End of samples. */
975 packet.type = DF_END;
976 packet.length = 0;
977 session_bus(sigma->session_id, &packet);
978
979 sigma->state.state = SIGMA_IDLE;
980
981 return TRUE;
982 }
983
984 newchunks = MIN(chunks_per_read,
985 numchunks - sigma->state.chunks_downloaded);
986
987 g_message("Downloading sample data: %.0f %%",
988 100.0 * sigma->state.chunks_downloaded / numchunks);
989
990 bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
991 newchunks, buf, sigma);
992
993 /* Find first ts. */
994 if (sigma->state.chunks_downloaded == 0) {
995 sigma->state.lastts = *(uint16_t *) buf - 1;
996 sigma->state.lastsample = 0;
997 }
998
999 /* Decode chunks and send them to sigrok. */
1000 for (i = 0; i < newchunks; ++i) {
1001 int limit_chunk = 0;
1002
1003 /* The last chunk may potentially be only in part. */
1004 if (sigma->state.chunks_downloaded == numchunks - 1)
1005 {
1006 /* Find the last valid timestamp */
1007 limit_chunk = sigma->state.stoppos % 512 + sigma->state.lastts;
1008 }
1009
1010 if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
1011 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1012 &sigma->state.lastts,
1013 &sigma->state.lastsample,
1014 sigma->state.triggerpos & 0x1ff,
1015 limit_chunk, user_data);
1016 else
1017 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1018 &sigma->state.lastts,
1019 &sigma->state.lastsample,
1020 -1, limit_chunk, user_data);
1021
1022 ++sigma->state.chunks_downloaded;
1023 }
1024 }
1025
1026 return TRUE;
1027}
1028
1029/* Build a LUT entry used by the trigger functions. */
1030static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1031{
1032 int i, j, k, bit;
1033
1034 /* For each quad probe. */
1035 for (i = 0; i < 4; ++i) {
1036 entry[i] = 0xffff;
1037
1038 /* For each bit in LUT. */
1039 for (j = 0; j < 16; ++j)
1040
1041 /* For each probe in quad. */
1042 for (k = 0; k < 4; ++k) {
1043 bit = 1 << (i * 4 + k);
1044
1045 /* Set bit in entry */
1046 if ((mask & bit) &&
1047 ((!(value & bit)) !=
1048 (!(j & (1 << k)))))
1049 entry[i] &= ~(1 << j);
1050 }
1051 }
1052}
1053
1054/* Add a logical function to LUT mask. */
1055static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1056 int index, int neg, uint16_t *mask)
1057{
1058 int i, j;
1059 int x[2][2], tmp, a, b, aset, bset, rset;
1060
1061 memset(x, 0, 4 * sizeof(int));
1062
1063 /* Trigger detect condition. */
1064 switch (oper) {
1065 case OP_LEVEL:
1066 x[0][1] = 1;
1067 x[1][1] = 1;
1068 break;
1069 case OP_NOT:
1070 x[0][0] = 1;
1071 x[1][0] = 1;
1072 break;
1073 case OP_RISE:
1074 x[0][1] = 1;
1075 break;
1076 case OP_FALL:
1077 x[1][0] = 1;
1078 break;
1079 case OP_RISEFALL:
1080 x[0][1] = 1;
1081 x[1][0] = 1;
1082 break;
1083 case OP_NOTRISE:
1084 x[1][1] = 1;
1085 x[0][0] = 1;
1086 x[1][0] = 1;
1087 break;
1088 case OP_NOTFALL:
1089 x[1][1] = 1;
1090 x[0][0] = 1;
1091 x[0][1] = 1;
1092 break;
1093 case OP_NOTRISEFALL:
1094 x[1][1] = 1;
1095 x[0][0] = 1;
1096 break;
1097 }
1098
1099 /* Transpose if neg is set. */
1100 if (neg) {
1101 for (i = 0; i < 2; ++i)
1102 for (j = 0; j < 2; ++j) {
1103 tmp = x[i][j];
1104 x[i][j] = x[1-i][1-j];
1105 x[1-i][1-j] = tmp;
1106 }
1107 }
1108
1109 /* Update mask with function. */
1110 for (i = 0; i < 16; ++i) {
1111 a = (i >> (2 * index + 0)) & 1;
1112 b = (i >> (2 * index + 1)) & 1;
1113
1114 aset = (*mask >> i) & 1;
1115 bset = x[b][a];
1116
1117 if (func == FUNC_AND || func == FUNC_NAND)
1118 rset = aset & bset;
1119 else if (func == FUNC_OR || func == FUNC_NOR)
1120 rset = aset | bset;
1121 else if (func == FUNC_XOR || func == FUNC_NXOR)
1122 rset = aset ^ bset;
1123
1124 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1125 rset = !rset;
1126
1127 *mask &= ~(1 << i);
1128
1129 if (rset)
1130 *mask |= 1 << i;
1131 }
1132}
1133
1134/*
1135 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1136 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1137 * set at any time, but a full mask and value can be set (0/1).
1138 */
1139static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
1140{
1141 int i,j;
1142 uint16_t masks[2] = { 0, 0 };
1143
1144 memset(lut, 0, sizeof(struct triggerlut));
1145
1146 /* Contant for simple triggers. */
1147 lut->m4 = 0xa000;
1148
1149 /* Value/mask trigger support. */
1150 build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
1151 lut->m2d);
1152
1153 /* Rise/fall trigger support. */
1154 for (i = 0, j = 0; i < 16; ++i) {
1155 if (sigma->trigger.risingmask & (1 << i) ||
1156 sigma->trigger.fallingmask & (1 << i))
1157 masks[j++] = 1 << i;
1158 }
1159
1160 build_lut_entry(masks[0], masks[0], lut->m0d);
1161 build_lut_entry(masks[1], masks[1], lut->m1d);
1162
1163 /* Add glue logic */
1164 if (masks[0] || masks[1]) {
1165 /* Transition trigger. */
1166 if (masks[0] & sigma->trigger.risingmask)
1167 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1168 if (masks[0] & sigma->trigger.fallingmask)
1169 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1170 if (masks[1] & sigma->trigger.risingmask)
1171 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1172 if (masks[1] & sigma->trigger.fallingmask)
1173 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1174 } else {
1175 /* Only value/mask trigger. */
1176 lut->m3 = 0xffff;
1177 }
1178
1179 /* Triggertype: event. */
1180 lut->params.selres = 3;
1181
1182 return SIGROK_OK;
1183}
1184
1185static int hw_start_acquisition(int device_index, gpointer session_device_id)
1186{
1187 struct sigrok_device_instance *sdi;
1188 struct sigma *sigma;
1189 struct datafeed_packet packet;
1190 struct datafeed_header header;
1191 struct clockselect_50 clockselect;
1192 int frac;
1193 uint8_t triggerselect;
1194 struct triggerinout triggerinout_conf;
1195 struct triggerlut lut;
1196 int triggerpin;
1197
1198 session_device_id = session_device_id;
1199
1200 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
1201 return SIGROK_ERR;
1202
1203 sigma = sdi->priv;
1204
1205 /* If the samplerate has not been set, default to 50 MHz. */
1206 if (sigma->cur_firmware == -1)
1207 set_samplerate(sdi, MHZ(50));
1208
1209 /* Enter trigger programming mode. */
1210 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
1211
1212 /* 100 and 200 MHz mode. */
1213 if (sigma->cur_samplerate >= MHZ(100)) {
1214 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
1215
1216 /* Find which pin to trigger on from mask. */
1217 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1218 if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
1219 (1 << triggerpin))
1220 break;
1221
1222 /* Set trigger pin and light LED on trigger. */
1223 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1224
1225 /* Default rising edge. */
1226 if (sigma->trigger.fallingmask)
1227 triggerselect |= 1 << 3;
1228
1229 /* All other modes. */
1230 } else if (sigma->cur_samplerate <= MHZ(50)) {
1231 build_basic_trigger(&lut, sigma);
1232
1233 sigma_write_trigger_lut(&lut, sigma);
1234
1235 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1236 }
1237
1238 /* Setup trigger in and out pins to default values. */
1239 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1240 triggerinout_conf.trgout_bytrigger = 1;
1241 triggerinout_conf.trgout_enable = 1;
1242
1243 sigma_write_register(WRITE_TRIGGER_OPTION,
1244 (uint8_t *) &triggerinout_conf,
1245 sizeof(struct triggerinout), sigma);
1246
1247 /* Go back to normal mode. */
1248 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
1249
1250 /* Set clock select register. */
1251 if (sigma->cur_samplerate == MHZ(200))
1252 /* Enable 4 probes. */
1253 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
1254 else if (sigma->cur_samplerate == MHZ(100))
1255 /* Enable 8 probes. */
1256 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
1257 else {
1258 /*
1259 * 50 MHz mode (or fraction thereof). Any fraction down to
1260 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1261 */
1262 frac = MHZ(50) / sigma->cur_samplerate - 1;
1263
1264 clockselect.async = 0;
1265 clockselect.fraction = frac;
1266 clockselect.disabled_probes = 0;
1267
1268 sigma_write_register(WRITE_CLOCK_SELECT,
1269 (uint8_t *) &clockselect,
1270 sizeof(clockselect), sigma);
1271 }
1272
1273 /* Setup maximum post trigger time. */
1274 sigma_set_register(WRITE_POST_TRIGGER,
1275 (sigma->capture_ratio * 255) / 100, sigma);
1276
1277 /* Start acqusition. */
1278 gettimeofday(&sigma->start_tv, 0);
1279 sigma_set_register(WRITE_MODE, 0x0d, sigma);
1280
1281 sigma->session_id = session_device_id;
1282
1283 /* Send header packet to the session bus. */
1284 packet.type = DF_HEADER;
1285 packet.length = sizeof(struct datafeed_header);
1286 packet.payload = &header;
1287 header.feed_version = 1;
1288 gettimeofday(&header.starttime, NULL);
1289 header.samplerate = sigma->cur_samplerate;
1290 header.protocol_id = PROTO_RAW;
1291 header.num_logic_probes = sigma->num_probes;
1292 header.num_analog_probes = 0;
1293 session_bus(session_device_id, &packet);
1294
1295 /* Add capture source. */
1296 source_add(0, G_IO_IN, 10, receive_data, sdi);
1297
1298 sigma->state.state = SIGMA_CAPTURE;
1299
1300 return SIGROK_OK;
1301}
1302
1303static void hw_stop_acquisition(int device_index, gpointer session_device_id)
1304{
1305 struct sigrok_device_instance *sdi;
1306 struct sigma *sigma;
1307 uint8_t modestatus;
1308
1309 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
1310 return;
1311
1312 sigma = sdi->priv;
1313
1314 session_device_id = session_device_id;
1315
1316 /* Stop acquisition. */
1317 sigma_set_register(WRITE_MODE, 0x11, sigma);
1318
1319 /* Set SDRAM Read Enable. */
1320 sigma_set_register(WRITE_MODE, 0x02, sigma);
1321
1322 /* Get the current position. */
1323 sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
1324
1325 /* Check if trigger has fired. */
1326 modestatus = sigma_get_register(READ_MODE, sigma);
1327 if (modestatus & 0x20) {
1328 sigma->state.triggerchunk = sigma->state.triggerpos / 512;
1329
1330 } else
1331 sigma->state.triggerchunk = -1;
1332
1333 sigma->state.chunks_downloaded = 0;
1334
1335 sigma->state.state = SIGMA_DOWNLOAD;
1336}
1337
1338struct device_plugin asix_sigma_plugin_info = {
1339 "asix-sigma",
1340 1,
1341 hw_init,
1342 hw_cleanup,
1343 hw_opendev,
1344 hw_closedev,
1345 hw_get_device_info,
1346 hw_get_status,
1347 hw_get_capabilities,
1348 hw_set_configuration,
1349 hw_start_acquisition,
1350 hw_stop_acquisition,
1351};