]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
Sigma: Merge storage of rise/fall triggers.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX Sigma Logic Analyzer Driver
24 */
25
26#include <ftdi.h>
27#include <string.h>
28#include <zlib.h>
29#include <sigrok.h>
30#include "asix-sigma.h"
31
32#define USB_VENDOR 0xa600
33#define USB_PRODUCT 0xa000
34#define USB_DESCRIPTION "ASIX SIGMA"
35#define USB_VENDOR_NAME "ASIX"
36#define USB_MODEL_NAME "SIGMA"
37#define USB_MODEL_VERSION ""
38#define TRIGGER_TYPES "rf10"
39
40static GSList *device_instances = NULL;
41
42// XXX These should be per device
43static struct ftdi_context ftdic;
44static uint64_t cur_samplerate = 0;
45static uint32_t limit_msec = 0;
46static struct timeval start_tv;
47static int cur_firmware = -1;
48static int num_probes = 0;
49static int samples_per_event = 0;
50static int capture_ratio = 50;
51static struct sigma_trigger trigger;
52
53static uint64_t supported_samplerates[] = {
54 KHZ(200),
55 KHZ(250),
56 KHZ(500),
57 MHZ(1),
58 MHZ(5),
59 MHZ(10),
60 MHZ(25),
61 MHZ(50),
62 MHZ(100),
63 MHZ(200),
64 0,
65};
66
67static struct samplerates samplerates = {
68 KHZ(200),
69 MHZ(200),
70 0,
71 supported_samplerates,
72};
73
74static int capabilities[] = {
75 HWCAP_LOGIC_ANALYZER,
76 HWCAP_SAMPLERATE,
77 HWCAP_CAPTURE_RATIO,
78 HWCAP_PROBECONFIG,
79
80 HWCAP_LIMIT_MSEC,
81 0,
82};
83
84/* Force the FPGA to reboot. */
85static uint8_t suicide[] = {
86 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
87};
88
89/* Prepare to upload firmware (FPGA specific). */
90static uint8_t init[] = {
91 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
92};
93
94/* Initialize the logic analyzer mode. */
95static uint8_t logic_mode_start[] = {
96 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
97 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
98};
99
100static const char *firmware_files[] = {
101 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
102 "asix-sigma-100.fw", /* 100 MHz */
103 "asix-sigma-200.fw", /* 200 MHz */
104 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
105 "asix-sigma-phasor.fw", /* Frequency counter */
106};
107
108static int sigma_read(void *buf, size_t size)
109{
110 int ret;
111
112 ret = ftdi_read_data(&ftdic, (unsigned char *)buf, size);
113 if (ret < 0) {
114 g_warning("ftdi_read_data failed: %s",
115 ftdi_get_error_string(&ftdic));
116 }
117
118 return ret;
119}
120
121static int sigma_write(void *buf, size_t size)
122{
123 int ret;
124
125 ret = ftdi_write_data(&ftdic, (unsigned char *)buf, size);
126 if (ret < 0) {
127 g_warning("ftdi_write_data failed: %s",
128 ftdi_get_error_string(&ftdic));
129 } else if ((size_t) ret != size) {
130 g_warning("ftdi_write_data did not complete write\n");
131 }
132
133 return ret;
134}
135
136static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len)
137{
138 size_t i;
139 uint8_t buf[len + 2];
140 int idx = 0;
141
142 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
143 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
144
145 for (i = 0; i < len; ++i) {
146 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
147 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
148 }
149
150 return sigma_write(buf, idx);
151}
152
153static int sigma_set_register(uint8_t reg, uint8_t value)
154{
155 return sigma_write_register(reg, &value, 1);
156}
157
158static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
159{
160 uint8_t buf[3];
161
162 buf[0] = REG_ADDR_LOW | (reg & 0xf);
163 buf[1] = REG_ADDR_HIGH | (reg >> 4);
164 buf[2] = REG_READ_ADDR;
165
166 sigma_write(buf, sizeof(buf));
167
168 return sigma_read(data, len);
169}
170
171static uint8_t sigma_get_register(uint8_t reg)
172{
173 uint8_t value;
174
175 if (1 != sigma_read_register(reg, &value, 1)) {
176 g_warning("Sigma_get_register: 1 byte expected");
177 return 0;
178 }
179
180 return value;
181}
182
183static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos)
184{
185 uint8_t buf[] = {
186 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
187
188 REG_READ_ADDR | NEXT_REG,
189 REG_READ_ADDR | NEXT_REG,
190 REG_READ_ADDR | NEXT_REG,
191 REG_READ_ADDR | NEXT_REG,
192 REG_READ_ADDR | NEXT_REG,
193 REG_READ_ADDR | NEXT_REG,
194 };
195 uint8_t result[6];
196
197 sigma_write(buf, sizeof(buf));
198
199 sigma_read(result, sizeof(result));
200
201 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
202 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
203
204 /* Not really sure why this must be done, but according to spec. */
205 if ((--*stoppos & 0x1ff) == 0x1ff)
206 stoppos -= 64;
207
208 if ((*--triggerpos & 0x1ff) == 0x1ff)
209 triggerpos -= 64;
210
211 return 1;
212}
213
214static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
215{
216 size_t i;
217 uint8_t buf[4096];
218 int idx = 0;
219
220 /* Send the startchunk. Index start with 1. */
221 buf[0] = startchunk >> 8;
222 buf[1] = startchunk & 0xff;
223 sigma_write_register(WRITE_MEMROW, buf, 2);
224
225 /* Read the DRAM. */
226 buf[idx++] = REG_DRAM_BLOCK;
227 buf[idx++] = REG_DRAM_WAIT_ACK;
228
229 for (i = 0; i < numchunks; ++i) {
230 /* Alternate bit to copy from DRAM to cache. */
231 if (i != (numchunks - 1))
232 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
233
234 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
235
236 if (i != (numchunks - 1))
237 buf[idx++] = REG_DRAM_WAIT_ACK;
238 }
239
240 sigma_write(buf, idx);
241
242 return sigma_read(data, numchunks * CHUNK_SIZE);
243}
244
245/* Upload trigger look-up tables to Sigma. */
246static int sigma_write_trigger_lut(struct triggerlut *lut)
247{
248 int i;
249 uint8_t tmp[2];
250 uint16_t bit;
251
252 /* Transpose the table and send to Sigma. */
253 for (i = 0; i < 16; ++i) {
254 bit = 1 << i;
255
256 tmp[0] = tmp[1] = 0;
257
258 if (lut->m2d[0] & bit)
259 tmp[0] |= 0x01;
260 if (lut->m2d[1] & bit)
261 tmp[0] |= 0x02;
262 if (lut->m2d[2] & bit)
263 tmp[0] |= 0x04;
264 if (lut->m2d[3] & bit)
265 tmp[0] |= 0x08;
266
267 if (lut->m3 & bit)
268 tmp[0] |= 0x10;
269 if (lut->m3s & bit)
270 tmp[0] |= 0x20;
271 if (lut->m4 & bit)
272 tmp[0] |= 0x40;
273
274 if (lut->m0d[0] & bit)
275 tmp[1] |= 0x01;
276 if (lut->m0d[1] & bit)
277 tmp[1] |= 0x02;
278 if (lut->m0d[2] & bit)
279 tmp[1] |= 0x04;
280 if (lut->m0d[3] & bit)
281 tmp[1] |= 0x08;
282
283 if (lut->m1d[0] & bit)
284 tmp[1] |= 0x10;
285 if (lut->m1d[1] & bit)
286 tmp[1] |= 0x20;
287 if (lut->m1d[2] & bit)
288 tmp[1] |= 0x40;
289 if (lut->m1d[3] & bit)
290 tmp[1] |= 0x80;
291
292 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp));
293 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i);
294 }
295
296 /* Send the parameters */
297 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
298 sizeof(lut->params));
299
300 return SIGROK_OK;
301}
302
303/* Generate the bitbang stream for programming the FPGA. */
304static int bin2bitbang(const char *filename,
305 unsigned char **buf, size_t *buf_size)
306{
307 FILE *f;
308 long file_size;
309 unsigned long offset = 0;
310 unsigned char *p;
311 uint8_t *compressed_buf, *firmware;
312 uLongf csize, fwsize;
313 const int buffer_size = 65536;
314 size_t i;
315 int c, ret, bit, v;
316 uint32_t imm = 0x3f6df2ab;
317
318 f = fopen(filename, "r");
319 if (!f) {
320 g_warning("fopen(\"%s\", \"r\")", filename);
321 return -1;
322 }
323
324 if (-1 == fseek(f, 0, SEEK_END)) {
325 g_warning("fseek on %s failed", filename);
326 fclose(f);
327 return -1;
328 }
329
330 file_size = ftell(f);
331
332 fseek(f, 0, SEEK_SET);
333
334 compressed_buf = g_malloc(file_size);
335 firmware = g_malloc(buffer_size);
336
337 if (!compressed_buf || !firmware) {
338 g_warning("Error allocating buffers");
339 return -1;
340 }
341
342 csize = 0;
343 while ((c = getc(f)) != EOF) {
344 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
345 compressed_buf[csize++] = c ^ imm;
346 }
347 fclose(f);
348
349 fwsize = buffer_size;
350 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
351 if (ret < 0) {
352 g_free(compressed_buf);
353 g_free(firmware);
354 g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret);
355 return -1;
356 }
357
358 g_free(compressed_buf);
359
360 *buf_size = fwsize * 2 * 8;
361
362 *buf = p = (unsigned char *)g_malloc(*buf_size);
363
364 if (!p) {
365 g_warning("Error allocating buffers");
366 return -1;
367 }
368
369 for (i = 0; i < fwsize; ++i) {
370 for (bit = 7; bit >= 0; --bit) {
371 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
372 p[offset++] = v | 0x01;
373 p[offset++] = v;
374 }
375 }
376
377 g_free(firmware);
378
379 if (offset != *buf_size) {
380 g_free(*buf);
381 g_warning("Error reading firmware %s "
382 "offset=%ld, file_size=%ld, buf_size=%zd\n",
383 filename, offset, file_size, *buf_size);
384
385 return -1;
386 }
387
388 return 0;
389}
390
391static int hw_init(char *deviceinfo)
392{
393 struct sigrok_device_instance *sdi;
394
395 deviceinfo = deviceinfo;
396
397 ftdi_init(&ftdic);
398
399 /* Look for SIGMAs. */
400 if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT,
401 USB_DESCRIPTION, NULL) < 0)
402 return 0;
403
404 /* Register SIGMA device. */
405 sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
406 USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
407 if (!sdi)
408 return 0;
409
410 device_instances = g_slist_append(device_instances, sdi);
411
412 /* We will open the device again when we need it. */
413 ftdi_usb_close(&ftdic);
414
415 return 1;
416}
417
418static int upload_firmware(int firmware_idx)
419{
420 int ret;
421 unsigned char *buf;
422 unsigned char pins;
423 size_t buf_size;
424 unsigned char result[32];
425 char firmware_path[128];
426
427 /* Make sure it's an ASIX SIGMA. */
428 if ((ret = ftdi_usb_open_desc(&ftdic,
429 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
430 g_warning("ftdi_usb_open failed: %s",
431 ftdi_get_error_string(&ftdic));
432 return 0;
433 }
434
435 if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
436 g_warning("ftdi_set_bitmode failed: %s",
437 ftdi_get_error_string(&ftdic));
438 return 0;
439 }
440
441 /* Four times the speed of sigmalogan - Works well. */
442 if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) {
443 g_warning("ftdi_set_baudrate failed: %s",
444 ftdi_get_error_string(&ftdic));
445 return 0;
446 }
447
448 /* Force the FPGA to reboot. */
449 sigma_write(suicide, sizeof(suicide));
450 sigma_write(suicide, sizeof(suicide));
451 sigma_write(suicide, sizeof(suicide));
452 sigma_write(suicide, sizeof(suicide));
453
454 /* Prepare to upload firmware (FPGA specific). */
455 sigma_write(init, sizeof(init));
456
457 ftdi_usb_purge_buffers(&ftdic);
458
459 /* Wait until the FPGA asserts INIT_B. */
460 while (1) {
461 ret = sigma_read(result, 1);
462 if (result[0] & 0x20)
463 break;
464 }
465
466 /* Prepare firmware. */
467 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
468 firmware_files[firmware_idx]);
469
470 if (-1 == bin2bitbang(firmware_path, &buf, &buf_size)) {
471 g_warning("An error occured while reading the firmware: %s",
472 firmware_path);
473 return SIGROK_ERR;
474 }
475
476 /* Upload firmare. */
477 sigma_write(buf, buf_size);
478
479 g_free(buf);
480
481 if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) {
482 g_warning("ftdi_set_bitmode failed: %s",
483 ftdi_get_error_string(&ftdic));
484 return SIGROK_ERR;
485 }
486
487 ftdi_usb_purge_buffers(&ftdic);
488
489 /* Discard garbage. */
490 while (1 == sigma_read(&pins, 1))
491 ;
492
493 /* Initialize the logic analyzer mode. */
494 sigma_write(logic_mode_start, sizeof(logic_mode_start));
495
496 /* Expect a 3 byte reply. */
497 ret = sigma_read(result, 3);
498 if (ret != 3 ||
499 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
500 g_warning("Configuration failed. Invalid reply received.");
501 return SIGROK_ERR;
502 }
503
504 cur_firmware = firmware_idx;
505
506 return SIGROK_OK;
507}
508
509static int hw_opendev(int device_index)
510{
511 struct sigrok_device_instance *sdi;
512 int ret;
513
514 /* Make sure it's an ASIX SIGMA. */
515 if ((ret = ftdi_usb_open_desc(&ftdic,
516 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
517
518 g_warning("ftdi_usb_open failed: %s",
519 ftdi_get_error_string(&ftdic));
520
521 return 0;
522 }
523
524 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
525 return SIGROK_ERR;
526
527 sdi->status = ST_ACTIVE;
528
529 return SIGROK_OK;
530}
531
532static int set_samplerate(struct sigrok_device_instance *sdi, uint64_t samplerate)
533{
534 int i, ret;
535
536 sdi = sdi;
537
538 for (i = 0; supported_samplerates[i]; i++) {
539 if (supported_samplerates[i] == samplerate)
540 break;
541 }
542 if (supported_samplerates[i] == 0)
543 return SIGROK_ERR_SAMPLERATE;
544
545 if (samplerate <= MHZ(50)) {
546 ret = upload_firmware(0);
547 num_probes = 16;
548 }
549 if (samplerate == MHZ(100)) {
550 ret = upload_firmware(1);
551 num_probes = 8;
552 }
553 else if (samplerate == MHZ(200)) {
554 ret = upload_firmware(2);
555 num_probes = 4;
556 }
557
558 cur_samplerate = samplerate;
559 samples_per_event = 16 / num_probes;
560
561 g_message("Firmware uploaded");
562
563 return ret;
564}
565
566/*
567 * In 100 and 200 MHz mode, only a single pin rising/falling can be
568 * set as trigger. In other modes, two rising/falling triggers can be set,
569 * in addition to value/mask trigger for any number of probes.
570 *
571 * The Sigma supports complex triggers using boolean expressions, but this
572 * has not been implemented yet.
573 */
574static int configure_probes(GSList *probes)
575{
576 struct probe *probe;
577 GSList *l;
578 int trigger_set = 0;
579 int probebit;
580
581 memset(&trigger, 0, sizeof(struct sigma_trigger));
582
583 for (l = probes; l; l = l->next) {
584 probe = (struct probe *)l->data;
585 probebit = 1 << (probe->index - 1);
586
587 if (!probe->enabled || !probe->trigger)
588 continue;
589
590 if (cur_samplerate >= MHZ(100)) {
591 /* Fast trigger support. */
592 if (trigger_set) {
593 g_warning("Asix Sigma only supports a single pin trigger "
594 "in 100 and 200 MHz mode.");
595 return SIGROK_ERR;
596 }
597 if (probe->trigger[0] == 'f')
598 trigger.fallingmask |= probebit;
599 else if (probe->trigger[0] == 'r')
600 trigger.risingmask |= probebit;
601 else {
602 g_warning("Asix Sigma only supports "
603 "rising/falling trigger in 100 "
604 "and 200 MHz mode.");
605 return SIGROK_ERR;
606 }
607
608 ++trigger_set;
609 } else {
610 /* Simple trigger support (event). */
611 if (probe->trigger[0] == '1') {
612 trigger.simplevalue |= probebit;
613 trigger.simplemask |= probebit;
614 }
615 else if (probe->trigger[0] == '0') {
616 trigger.simplevalue &= ~probebit;
617 trigger.simplemask |= probebit;
618 }
619 else if (probe->trigger[0] == 'f') {
620 trigger.fallingmask |= probebit;
621 ++trigger_set;
622 }
623 else if (probe->trigger[0] == 'r') {
624 trigger.risingmask |= probebit;
625 ++trigger_set;
626 }
627
628 if (trigger_set > 2) {
629 g_warning("Asix Sigma only supports 2 rising/"
630 "falling triggers.");
631 return SIGROK_ERR;
632 }
633 }
634 }
635
636 return SIGROK_OK;
637}
638
639static void hw_closedev(int device_index)
640{
641 device_index = device_index;
642
643 ftdi_usb_close(&ftdic);
644}
645
646static void hw_cleanup(void)
647{
648}
649
650static void *hw_get_device_info(int device_index, int device_info_id)
651{
652 struct sigrok_device_instance *sdi;
653 void *info = NULL;
654
655 if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
656 fprintf(stderr, "It's NULL.\n");
657 return NULL;
658 }
659
660 switch (device_info_id) {
661 case DI_INSTANCE:
662 info = sdi;
663 break;
664 case DI_NUM_PROBES:
665 info = GINT_TO_POINTER(16);
666 break;
667 case DI_SAMPLERATES:
668 info = &samplerates;
669 break;
670 case DI_TRIGGER_TYPES:
671 info = (char *)TRIGGER_TYPES;
672 break;
673 case DI_CUR_SAMPLERATE:
674 info = &cur_samplerate;
675 break;
676 }
677
678 return info;
679}
680
681static int hw_get_status(int device_index)
682{
683 struct sigrok_device_instance *sdi;
684
685 sdi = get_sigrok_device_instance(device_instances, device_index);
686 if (sdi)
687 return sdi->status;
688 else
689 return ST_NOT_FOUND;
690}
691
692static int *hw_get_capabilities(void)
693{
694 return capabilities;
695}
696
697static int hw_set_configuration(int device_index, int capability, void *value)
698{
699 struct sigrok_device_instance *sdi;
700 int ret;
701
702 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
703 return SIGROK_ERR;
704
705 if (capability == HWCAP_SAMPLERATE) {
706 ret = set_samplerate(sdi, *(uint64_t*) value);
707 } else if (capability == HWCAP_PROBECONFIG) {
708 ret = configure_probes(value);
709 } else if (capability == HWCAP_LIMIT_MSEC) {
710 limit_msec = strtoull(value, NULL, 10);
711 ret = SIGROK_OK;
712 } else if (capability == HWCAP_CAPTURE_RATIO) {
713 capture_ratio = strtoull(value, NULL, 10);
714 ret = SIGROK_OK;
715 } else if (capability == HWCAP_PROBECONFIG) {
716 ret = configure_probes((GSList *) value);
717 } else {
718 ret = SIGROK_ERR;
719 }
720
721 return ret;
722}
723
724/*
725 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
726 * Each event is 20ns apart, and can contain multiple samples.
727 *
728 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
729 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
730 * For 50 MHz and below, events contain one sample for each channel,
731 * spread 20 ns apart.
732 */
733static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
734 uint16_t *lastsample, int triggerpos, void *user_data)
735{
736 uint16_t tsdiff, ts;
737 uint16_t samples[65536 * samples_per_event];
738 struct datafeed_packet packet;
739 int i, j, k, l, numpad, tosend;
740 size_t n = 0, sent = 0;
741 int clustersize = EVENTS_PER_CLUSTER * samples_per_event;
742 uint16_t *event;
743 uint16_t cur_sample;
744 int triggerts = -1;
745 int triggeroff = 0;
746
747 /* Check if trigger is in this chunk. */
748 if (triggerpos != -1) {
749 if (cur_samplerate <= MHZ(50))
750 triggerpos -= EVENTS_PER_CLUSTER;
751 else
752 triggeroff = 3;
753
754 if (triggerpos < 0)
755 triggerpos = 0;
756
757 /* Find in which cluster the trigger occured. */
758 triggerts = triggerpos / 7;
759 }
760
761 /* For each ts. */
762 for (i = 0; i < 64; ++i) {
763 ts = *(uint16_t *) &buf[i * 16];
764 tsdiff = ts - *lastts;
765 *lastts = ts;
766
767 /* Pad last sample up to current point. */
768 numpad = tsdiff * samples_per_event - clustersize;
769 if (numpad > 0) {
770 for (j = 0; j < numpad; ++j)
771 samples[j] = *lastsample;
772
773 n = numpad;
774 }
775
776 /* Send samples between previous and this timestamp to sigrok. */
777 sent = 0;
778 while (sent < n) {
779 tosend = MIN(2048, n - sent);
780
781 packet.type = DF_LOGIC16;
782 packet.length = tosend * sizeof(uint16_t);
783 packet.payload = samples + sent;
784 session_bus(user_data, &packet);
785
786 sent += tosend;
787 }
788 n = 0;
789
790 event = (uint16_t *) &buf[i * 16 + 2];
791 cur_sample = 0;
792
793 /* For each event in cluster. */
794 for (j = 0; j < 7; ++j) {
795
796 /* For each sample in event. */
797 for (k = 0; k < samples_per_event; ++k) {
798 cur_sample = 0;
799
800 /* For each probe. */
801 for (l = 0; l < num_probes; ++l)
802 cur_sample |= (!!(event[j] & (1 << (l *
803 samples_per_event + k))))
804 << l;
805
806 samples[n++] = cur_sample;
807 }
808 }
809
810 /* Send data up to trigger point (if triggered). */
811 sent = 0;
812 if (i == triggerts) {
813 /*
814 * Trigger is presumptively not accurate to sample.
815 * However, it always trigger before the actual event,
816 * so it would be possible to forward to correct position
817 * here by manually checking for trigger condition.
818 */
819
820 tosend = (triggerpos % 7) - triggeroff;
821
822 if (tosend > 0) {
823 packet.type = DF_LOGIC16;
824 packet.length = tosend * sizeof(uint16_t);
825 packet.payload = samples;
826 session_bus(user_data, &packet);
827
828 sent += tosend;
829 }
830
831 packet.type = DF_TRIGGER;
832 packet.length = 0;
833 packet.payload = 0;
834 session_bus(user_data, &packet);
835 }
836
837 /* Send rest of the chunk to sigrok. */
838 tosend = n - sent;
839
840 packet.type = DF_LOGIC16;
841 packet.length = tosend * sizeof(uint16_t);
842 packet.payload = samples + sent;
843 session_bus(user_data, &packet);
844
845 *lastsample = samples[n - 1];
846 }
847
848 return SIGROK_OK;
849}
850
851static int receive_data(int fd, int revents, void *user_data)
852{
853 struct datafeed_packet packet;
854 const int chunks_per_read = 32;
855 unsigned char buf[chunks_per_read * CHUNK_SIZE];
856 int bufsz, numchunks, curchunk, i, newchunks;
857 uint32_t triggerpos, stoppos, running_msec;
858 struct timeval tv;
859 uint16_t lastts = 0;
860 uint16_t lastsample = 0;
861 uint8_t modestatus;
862 int triggerchunk = -1;
863
864 fd = fd;
865 revents = revents;
866
867 /* Get the current position. */
868 sigma_read_pos(&stoppos, &triggerpos);
869 numchunks = stoppos / 512;
870
871 /* Check if the has expired, or memory is full. */
872 gettimeofday(&tv, 0);
873 running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 +
874 (tv.tv_usec - start_tv.tv_usec) / 1000;
875
876 if (running_msec < limit_msec && numchunks < 32767)
877 return FALSE;
878
879 /* Stop acqusition. */
880 sigma_set_register(WRITE_MODE, 0x11);
881
882 /* Set SDRAM Read Enable. */
883 sigma_set_register(WRITE_MODE, 0x02);
884
885 /* Get the current position. */
886 sigma_read_pos(&stoppos, &triggerpos);
887
888 /* Check if trigger has fired. */
889 modestatus = sigma_get_register(READ_MODE);
890 if (modestatus & 0x20) {
891 triggerchunk = triggerpos / 512;
892 }
893
894 /* Download sample data. */
895 for (curchunk = 0; curchunk < numchunks;) {
896 newchunks = MIN(chunks_per_read, numchunks - curchunk);
897
898 g_message("Downloading sample data: %.0f %%",
899 100.0 * curchunk / numchunks);
900
901 bufsz = sigma_read_dram(curchunk, newchunks, buf);
902
903 /* Find first ts. */
904 if (curchunk == 0)
905 lastts = *(uint16_t *) buf - 1;
906
907 /* Decode chunks and send them to sigrok. */
908 for (i = 0; i < newchunks; ++i) {
909 if (curchunk + i == triggerchunk)
910 decode_chunk_ts(buf + (i * CHUNK_SIZE),
911 &lastts, &lastsample,
912 triggerpos & 0x1ff, user_data);
913 else
914 decode_chunk_ts(buf + (i * CHUNK_SIZE),
915 &lastts, &lastsample,
916 -1, user_data);
917 }
918
919 curchunk += newchunks;
920 }
921
922 /* End of data. */
923 packet.type = DF_END;
924 packet.length = 0;
925 session_bus(user_data, &packet);
926
927 return TRUE;
928}
929
930/* Build a LUT entry used by the trigger functions. */
931static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
932{
933 int i, j, k, bit;
934
935 /* For each quad probe. */
936 for (i = 0; i < 4; ++i) {
937 entry[i] = 0xffff;
938
939 /* For each bit in LUT. */
940 for (j = 0; j < 16; ++j)
941
942 /* For each probe in quad. */
943 for (k = 0; k < 4; ++k) {
944 bit = 1 << (i * 4 + k);
945
946 /* Set bit in entry */
947 if ((mask & bit) &&
948 ((!(value & bit)) !=
949 (!(j & (1 << k)))))
950 entry[i] &= ~(1 << j);
951 }
952 }
953}
954
955/* Add a logical function to LUT mask. */
956static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
957 int index, int neg, uint16_t *mask)
958{
959 int i, j;
960 int x[2][2], tmp, a, b, aset, bset, rset;
961
962 memset(x, 0, 4 * sizeof(int));
963
964 /* Trigger detect condition. */
965 switch (oper) {
966 case OP_LEVEL:
967 x[0][1] = 1;
968 x[1][1] = 1;
969 break;
970 case OP_NOT:
971 x[0][0] = 1;
972 x[1][0] = 1;
973 break;
974 case OP_RISE:
975 x[0][1] = 1;
976 break;
977 case OP_FALL:
978 x[1][0] = 1;
979 break;
980 case OP_RISEFALL:
981 x[0][1] = 1;
982 x[1][0] = 1;
983 break;
984 case OP_NOTRISE:
985 x[1][1] = 1;
986 x[0][0] = 1;
987 x[1][0] = 1;
988 break;
989 case OP_NOTFALL:
990 x[1][1] = 1;
991 x[0][0] = 1;
992 x[0][1] = 1;
993 break;
994 case OP_NOTRISEFALL:
995 x[1][1] = 1;
996 x[0][0] = 1;
997 break;
998 }
999
1000 /* Transpose if neg is set. */
1001 if (neg) {
1002 for (i = 0; i < 2; ++i)
1003 for (j = 0; j < 2; ++j) {
1004 tmp = x[i][j];
1005 x[i][j] = x[1-i][1-j];
1006 x[1-i][1-j] = tmp;
1007 }
1008 }
1009
1010 /* Update mask with function. */
1011 for (i = 0; i < 16; ++i) {
1012 a = (i >> (2 * index + 0)) & 1;
1013 b = (i >> (2 * index + 1)) & 1;
1014
1015 aset = (*mask >> i) & 1;
1016 bset = x[b][a];
1017
1018 if (func == FUNC_AND || func == FUNC_NAND)
1019 rset = aset & bset;
1020 else if (func == FUNC_OR || func == FUNC_NOR)
1021 rset = aset | bset;
1022 else if (func == FUNC_XOR || func == FUNC_NXOR)
1023 rset = aset ^ bset;
1024
1025 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1026 rset = !rset;
1027
1028 *mask &= ~(1 << i);
1029
1030 if (rset)
1031 *mask |= 1 << i;
1032 }
1033}
1034
1035/*
1036 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1037 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1038 * set at any time, but a full mask and value can be set (0/1).
1039 */
1040static int build_basic_trigger(struct triggerlut *lut)
1041{
1042 int i,j;
1043 uint16_t masks[2] = { 0, 0 };
1044
1045 memset(lut, 0, sizeof(struct triggerlut));
1046
1047 /* Contant for simple triggers. */
1048 lut->m4 = 0xa000;
1049
1050 /* Value/mask trigger support. */
1051 build_lut_entry(trigger.simplevalue, trigger.simplemask, lut->m2d);
1052
1053 /* Rise/fall trigger support. */
1054 for (i = 0, j = 0; i < 16; ++i) {
1055 if (trigger.risingmask & (1 << i) ||
1056 trigger.fallingmask & (1 << i))
1057 masks[j++] = 1 << i;
1058 }
1059
1060 build_lut_entry(masks[0], masks[0], lut->m0d);
1061 build_lut_entry(masks[1], masks[1], lut->m1d);
1062
1063 /* Add glue logic */
1064 if (masks[0] || masks[1]) {
1065 /* Transition trigger. */
1066 if (masks[0] & trigger.risingmask)
1067 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1068 if (masks[0] & trigger.fallingmask)
1069 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1070 if (masks[1] & trigger.risingmask)
1071 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1072 if (masks[1] & trigger.fallingmask)
1073 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1074 } else {
1075 /* Only value/mask trigger. */
1076 lut->m3 = 0xffff;
1077 }
1078
1079 /* Triggertype: event. */
1080 lut->params.selres = 3;
1081
1082 return SIGROK_OK;
1083}
1084
1085static int hw_start_acquisition(int device_index, gpointer session_device_id)
1086{
1087 struct sigrok_device_instance *sdi;
1088 struct datafeed_packet packet;
1089 struct datafeed_header header;
1090 struct clockselect_50 clockselect;
1091 int frac;
1092 uint8_t triggerselect;
1093 struct triggerinout triggerinout_conf;
1094 struct triggerlut lut;
1095 int triggerpin;
1096
1097 session_device_id = session_device_id;
1098
1099 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
1100 return SIGROK_ERR;
1101
1102 device_index = device_index;
1103
1104 /* If the samplerate has not been set, default to 50 MHz. */
1105 if (cur_firmware == -1)
1106 set_samplerate(sdi, MHZ(50));
1107
1108 /* Enter trigger programming mode. */
1109 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
1110
1111 /* 100 and 200 MHz mode. */
1112 if (cur_samplerate >= MHZ(100)) {
1113 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81);
1114
1115 /* Find which pin to trigger on from mask. */
1116 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1117 if ((trigger.risingmask | trigger.fallingmask) &
1118 (1 << triggerpin))
1119 break;
1120
1121 /* Set trigger pin and light LED on trigger. */
1122 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1123
1124 /* Default rising edge. */
1125 if (trigger.fallingmask)
1126 triggerselect |= 1 << 3;
1127
1128 /* All other modes. */
1129 } else if (cur_samplerate <= MHZ(50)) {
1130 build_basic_trigger(&lut);
1131
1132 sigma_write_trigger_lut(&lut);
1133
1134 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1135 }
1136
1137 /* Setup trigger in and out pins to default values. */
1138 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1139 triggerinout_conf.trgout_bytrigger = 1;
1140 triggerinout_conf.trgout_enable = 1;
1141
1142 sigma_write_register(WRITE_TRIGGER_OPTION,
1143 (uint8_t *) &triggerinout_conf,
1144 sizeof(struct triggerinout));
1145
1146 /* Go back to normal mode. */
1147 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect);
1148
1149 /* Set clock select register. */
1150 if (cur_samplerate == MHZ(200))
1151 /* Enable 4 probes. */
1152 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0);
1153 else if (cur_samplerate == MHZ(100))
1154 /* Enable 8 probes. */
1155 sigma_set_register(WRITE_CLOCK_SELECT, 0x00);
1156 else {
1157 /*
1158 * 50 MHz mode (or fraction thereof). Any fraction down to
1159 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1160 */
1161 frac = MHZ(50) / cur_samplerate - 1;
1162
1163 clockselect.async = 0;
1164 clockselect.fraction = frac;
1165 clockselect.disabled_probes = 0;
1166
1167 sigma_write_register(WRITE_CLOCK_SELECT,
1168 (uint8_t *) &clockselect,
1169 sizeof(clockselect));
1170 }
1171
1172 /* Setup maximum post trigger time. */
1173 sigma_set_register(WRITE_POST_TRIGGER, (capture_ratio * 255) / 100);
1174
1175 /* Start acqusition. */
1176 gettimeofday(&start_tv, 0);
1177 sigma_set_register(WRITE_MODE, 0x0d);
1178
1179 /* Send header packet to the session bus. */
1180 packet.type = DF_HEADER;
1181 packet.length = sizeof(struct datafeed_header);
1182 packet.payload = &header;
1183 header.feed_version = 1;
1184 gettimeofday(&header.starttime, NULL);
1185 header.samplerate = cur_samplerate;
1186 header.protocol_id = PROTO_RAW;
1187 header.num_probes = num_probes;
1188 session_bus(session_device_id, &packet);
1189
1190 /* Add capture source. */
1191 source_add(0, G_IO_IN, 10, receive_data, session_device_id);
1192
1193 return SIGROK_OK;
1194}
1195
1196static void hw_stop_acquisition(int device_index, gpointer session_device_id)
1197{
1198 device_index = device_index;
1199 session_device_id = session_device_id;
1200
1201 /* Stop acquisition. */
1202 sigma_set_register(WRITE_MODE, 0x11);
1203
1204 // XXX Set some state to indicate that data should be sent to sigrok
1205 // Now, we just wait for timeout
1206}
1207
1208struct device_plugin asix_sigma_plugin_info = {
1209 "asix-sigma",
1210 1,
1211 hw_init,
1212 hw_cleanup,
1213 hw_opendev,
1214 hw_closedev,
1215 hw_get_device_info,
1216 hw_get_status,
1217 hw_get_capabilities,
1218 hw_set_configuration,
1219 hw_start_acquisition,
1220 hw_stop_acquisition,
1221};