]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
zeroplus: Properly set inst_type to SR_INST_USB.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPE "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *di = &asix_sigma_driver_info;
45static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47static const uint64_t samplerates[] = {
48 SR_KHZ(200),
49 SR_KHZ(250),
50 SR_KHZ(500),
51 SR_MHZ(1),
52 SR_MHZ(5),
53 SR_MHZ(10),
54 SR_MHZ(25),
55 SR_MHZ(50),
56 SR_MHZ(100),
57 SR_MHZ(200),
58};
59
60/*
61 * Probe numbers seem to go from 1-16, according to this image:
62 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63 * (the cable has two additional GND pins, and a TI and TO pin)
64 */
65static const char *probe_names[NUM_PROBES + 1] = {
66 "1", "2", "3", "4", "5", "6", "7", "8",
67 "9", "10", "11", "12", "13", "14", "15", "16",
68 NULL,
69};
70
71static const int32_t hwcaps[] = {
72 SR_CONF_LOGIC_ANALYZER,
73 SR_CONF_SAMPLERATE,
74 SR_CONF_CAPTURE_RATIO,
75 SR_CONF_LIMIT_MSEC,
76};
77
78/* Force the FPGA to reboot. */
79static uint8_t suicide[] = {
80 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
81};
82
83/* Prepare to upload firmware (FPGA specific). */
84static uint8_t init[] = {
85 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
86};
87
88/* Initialize the logic analyzer mode. */
89static uint8_t logic_mode_start[] = {
90 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
91 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
92};
93
94static const char *firmware_files[] = {
95 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
96 "asix-sigma-100.fw", /* 100 MHz */
97 "asix-sigma-200.fw", /* 200 MHz */
98 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
99 "asix-sigma-phasor.fw", /* Frequency counter */
100};
101
102static int sigma_read(void *buf, size_t size, struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
107 if (ret < 0) {
108 sr_err("ftdi_read_data failed: %s",
109 ftdi_get_error_string(&devc->ftdic));
110 }
111
112 return ret;
113}
114
115static int sigma_write(void *buf, size_t size, struct dev_context *devc)
116{
117 int ret;
118
119 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
120 if (ret < 0) {
121 sr_err("ftdi_write_data failed: %s",
122 ftdi_get_error_string(&devc->ftdic));
123 } else if ((size_t) ret != size) {
124 sr_err("ftdi_write_data did not complete write.");
125 }
126
127 return ret;
128}
129
130static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
131 struct dev_context *devc)
132{
133 size_t i;
134 uint8_t buf[len + 2];
135 int idx = 0;
136
137 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
138 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
139
140 for (i = 0; i < len; ++i) {
141 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
142 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
143 }
144
145 return sigma_write(buf, idx, devc);
146}
147
148static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
149{
150 return sigma_write_register(reg, &value, 1, devc);
151}
152
153static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
154 struct dev_context *devc)
155{
156 uint8_t buf[3];
157
158 buf[0] = REG_ADDR_LOW | (reg & 0xf);
159 buf[1] = REG_ADDR_HIGH | (reg >> 4);
160 buf[2] = REG_READ_ADDR;
161
162 sigma_write(buf, sizeof(buf), devc);
163
164 return sigma_read(data, len, devc);
165}
166
167static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
168{
169 uint8_t value;
170
171 if (1 != sigma_read_register(reg, &value, 1, devc)) {
172 sr_err("sigma_get_register: 1 byte expected");
173 return 0;
174 }
175
176 return value;
177}
178
179static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
180 struct dev_context *devc)
181{
182 uint8_t buf[] = {
183 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
184
185 REG_READ_ADDR | NEXT_REG,
186 REG_READ_ADDR | NEXT_REG,
187 REG_READ_ADDR | NEXT_REG,
188 REG_READ_ADDR | NEXT_REG,
189 REG_READ_ADDR | NEXT_REG,
190 REG_READ_ADDR | NEXT_REG,
191 };
192 uint8_t result[6];
193
194 sigma_write(buf, sizeof(buf), devc);
195
196 sigma_read(result, sizeof(result), devc);
197
198 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
199 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
200
201 /* Not really sure why this must be done, but according to spec. */
202 if ((--*stoppos & 0x1ff) == 0x1ff)
203 stoppos -= 64;
204
205 if ((*--triggerpos & 0x1ff) == 0x1ff)
206 triggerpos -= 64;
207
208 return 1;
209}
210
211static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
212 uint8_t *data, struct dev_context *devc)
213{
214 size_t i;
215 uint8_t buf[4096];
216 int idx = 0;
217
218 /* Send the startchunk. Index start with 1. */
219 buf[0] = startchunk >> 8;
220 buf[1] = startchunk & 0xff;
221 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
222
223 /* Read the DRAM. */
224 buf[idx++] = REG_DRAM_BLOCK;
225 buf[idx++] = REG_DRAM_WAIT_ACK;
226
227 for (i = 0; i < numchunks; ++i) {
228 /* Alternate bit to copy from DRAM to cache. */
229 if (i != (numchunks - 1))
230 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
231
232 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
233
234 if (i != (numchunks - 1))
235 buf[idx++] = REG_DRAM_WAIT_ACK;
236 }
237
238 sigma_write(buf, idx, devc);
239
240 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
241}
242
243/* Upload trigger look-up tables to Sigma. */
244static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
245{
246 int i;
247 uint8_t tmp[2];
248 uint16_t bit;
249
250 /* Transpose the table and send to Sigma. */
251 for (i = 0; i < 16; ++i) {
252 bit = 1 << i;
253
254 tmp[0] = tmp[1] = 0;
255
256 if (lut->m2d[0] & bit)
257 tmp[0] |= 0x01;
258 if (lut->m2d[1] & bit)
259 tmp[0] |= 0x02;
260 if (lut->m2d[2] & bit)
261 tmp[0] |= 0x04;
262 if (lut->m2d[3] & bit)
263 tmp[0] |= 0x08;
264
265 if (lut->m3 & bit)
266 tmp[0] |= 0x10;
267 if (lut->m3s & bit)
268 tmp[0] |= 0x20;
269 if (lut->m4 & bit)
270 tmp[0] |= 0x40;
271
272 if (lut->m0d[0] & bit)
273 tmp[1] |= 0x01;
274 if (lut->m0d[1] & bit)
275 tmp[1] |= 0x02;
276 if (lut->m0d[2] & bit)
277 tmp[1] |= 0x04;
278 if (lut->m0d[3] & bit)
279 tmp[1] |= 0x08;
280
281 if (lut->m1d[0] & bit)
282 tmp[1] |= 0x10;
283 if (lut->m1d[1] & bit)
284 tmp[1] |= 0x20;
285 if (lut->m1d[2] & bit)
286 tmp[1] |= 0x40;
287 if (lut->m1d[3] & bit)
288 tmp[1] |= 0x80;
289
290 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
291 devc);
292 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
293 }
294
295 /* Send the parameters */
296 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
297 sizeof(lut->params), devc);
298
299 return SR_OK;
300}
301
302/* Generate the bitbang stream for programming the FPGA. */
303static int bin2bitbang(const char *filename,
304 unsigned char **buf, size_t *buf_size)
305{
306 FILE *f;
307 unsigned long file_size;
308 unsigned long offset = 0;
309 unsigned char *p;
310 uint8_t *firmware;
311 unsigned long fwsize = 0;
312 const int buffer_size = 65536;
313 size_t i;
314 int c, bit, v;
315 uint32_t imm = 0x3f6df2ab;
316
317 f = g_fopen(filename, "rb");
318 if (!f) {
319 sr_err("g_fopen(\"%s\", \"rb\")", filename);
320 return SR_ERR;
321 }
322
323 if (-1 == fseek(f, 0, SEEK_END)) {
324 sr_err("fseek on %s failed", filename);
325 fclose(f);
326 return SR_ERR;
327 }
328
329 file_size = ftell(f);
330
331 fseek(f, 0, SEEK_SET);
332
333 if (!(firmware = g_try_malloc(buffer_size))) {
334 sr_err("%s: firmware malloc failed", __func__);
335 fclose(f);
336 return SR_ERR_MALLOC;
337 }
338
339 while ((c = getc(f)) != EOF) {
340 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
341 firmware[fwsize++] = c ^ imm;
342 }
343 fclose(f);
344
345 if(fwsize != file_size) {
346 sr_err("%s: Error reading firmware", filename);
347 fclose(f);
348 g_free(firmware);
349 return SR_ERR;
350 }
351
352 *buf_size = fwsize * 2 * 8;
353
354 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
355 if (!p) {
356 sr_err("%s: buf/p malloc failed", __func__);
357 g_free(firmware);
358 return SR_ERR_MALLOC;
359 }
360
361 for (i = 0; i < fwsize; ++i) {
362 for (bit = 7; bit >= 0; --bit) {
363 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
364 p[offset++] = v | 0x01;
365 p[offset++] = v;
366 }
367 }
368
369 g_free(firmware);
370
371 if (offset != *buf_size) {
372 g_free(*buf);
373 sr_err("Error reading firmware %s "
374 "offset=%ld, file_size=%ld, buf_size=%zd.",
375 filename, offset, file_size, *buf_size);
376
377 return SR_ERR;
378 }
379
380 return SR_OK;
381}
382
383static int clear_instances(void)
384{
385 GSList *l;
386 struct sr_dev_inst *sdi;
387 struct drv_context *drvc;
388 struct dev_context *devc;
389
390 drvc = di->priv;
391
392 /* Properly close all devices. */
393 for (l = drvc->instances; l; l = l->next) {
394 if (!(sdi = l->data)) {
395 /* Log error, but continue cleaning up the rest. */
396 sr_err("%s: sdi was NULL, continuing", __func__);
397 continue;
398 }
399 if (sdi->priv) {
400 devc = sdi->priv;
401 ftdi_deinit(&devc->ftdic);
402 }
403 sr_dev_inst_free(sdi);
404 }
405 g_slist_free(drvc->instances);
406 drvc->instances = NULL;
407
408 return SR_OK;
409}
410
411static int hw_init(struct sr_context *sr_ctx)
412{
413 return std_hw_init(sr_ctx, di, LOG_PREFIX);
414}
415
416static GSList *hw_scan(GSList *options)
417{
418 struct sr_dev_inst *sdi;
419 struct sr_probe *probe;
420 struct drv_context *drvc;
421 struct dev_context *devc;
422 GSList *devices;
423 struct ftdi_device_list *devlist;
424 char serial_txt[10];
425 uint32_t serial;
426 int ret, i;
427
428 (void)options;
429
430 drvc = di->priv;
431
432 devices = NULL;
433
434 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
435 sr_err("%s: devc malloc failed", __func__);
436 return NULL;
437 }
438
439 ftdi_init(&devc->ftdic);
440
441 /* Look for SIGMAs. */
442
443 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
444 USB_VENDOR, USB_PRODUCT)) <= 0) {
445 if (ret < 0)
446 sr_err("ftdi_usb_find_all(): %d", ret);
447 goto free;
448 }
449
450 /* Make sure it's a version 1 or 2 SIGMA. */
451 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
452 serial_txt, sizeof(serial_txt));
453 sscanf(serial_txt, "%x", &serial);
454
455 if (serial < 0xa6010000 || serial > 0xa602ffff) {
456 sr_err("Only SIGMA and SIGMA2 are supported "
457 "in this version of libsigrok.");
458 goto free;
459 }
460
461 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
462
463 devc->cur_samplerate = 0;
464 devc->period_ps = 0;
465 devc->limit_msec = 0;
466 devc->cur_firmware = -1;
467 devc->num_probes = 0;
468 devc->samples_per_event = 0;
469 devc->capture_ratio = 50;
470 devc->use_triggers = 0;
471
472 /* Register SIGMA device. */
473 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
474 USB_MODEL_NAME, USB_MODEL_VERSION))) {
475 sr_err("%s: sdi was NULL", __func__);
476 goto free;
477 }
478 sdi->driver = di;
479
480 for (i = 0; probe_names[i]; i++) {
481 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
482 probe_names[i])))
483 return NULL;
484 sdi->probes = g_slist_append(sdi->probes, probe);
485 }
486
487 devices = g_slist_append(devices, sdi);
488 drvc->instances = g_slist_append(drvc->instances, sdi);
489 sdi->priv = devc;
490
491 /* We will open the device again when we need it. */
492 ftdi_list_free(&devlist);
493
494 return devices;
495
496free:
497 ftdi_deinit(&devc->ftdic);
498 g_free(devc);
499 return NULL;
500}
501
502static GSList *hw_dev_list(void)
503{
504 return ((struct drv_context *)(di->priv))->instances;
505}
506
507static int upload_firmware(int firmware_idx, struct dev_context *devc)
508{
509 int ret;
510 unsigned char *buf;
511 unsigned char pins;
512 size_t buf_size;
513 unsigned char result[32];
514 char firmware_path[128];
515
516 /* Make sure it's an ASIX SIGMA. */
517 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
518 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
519 sr_err("ftdi_usb_open failed: %s",
520 ftdi_get_error_string(&devc->ftdic));
521 return 0;
522 }
523
524 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
525 sr_err("ftdi_set_bitmode failed: %s",
526 ftdi_get_error_string(&devc->ftdic));
527 return 0;
528 }
529
530 /* Four times the speed of sigmalogan - Works well. */
531 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
532 sr_err("ftdi_set_baudrate failed: %s",
533 ftdi_get_error_string(&devc->ftdic));
534 return 0;
535 }
536
537 /* Force the FPGA to reboot. */
538 sigma_write(suicide, sizeof(suicide), devc);
539 sigma_write(suicide, sizeof(suicide), devc);
540 sigma_write(suicide, sizeof(suicide), devc);
541 sigma_write(suicide, sizeof(suicide), devc);
542
543 /* Prepare to upload firmware (FPGA specific). */
544 sigma_write(init, sizeof(init), devc);
545
546 ftdi_usb_purge_buffers(&devc->ftdic);
547
548 /* Wait until the FPGA asserts INIT_B. */
549 while (1) {
550 ret = sigma_read(result, 1, devc);
551 if (result[0] & 0x20)
552 break;
553 }
554
555 /* Prepare firmware. */
556 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
557 firmware_files[firmware_idx]);
558
559 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
560 sr_err("An error occured while reading the firmware: %s",
561 firmware_path);
562 return ret;
563 }
564
565 /* Upload firmare. */
566 sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
567 sigma_write(buf, buf_size, devc);
568
569 g_free(buf);
570
571 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
572 sr_err("ftdi_set_bitmode failed: %s",
573 ftdi_get_error_string(&devc->ftdic));
574 return SR_ERR;
575 }
576
577 ftdi_usb_purge_buffers(&devc->ftdic);
578
579 /* Discard garbage. */
580 while (1 == sigma_read(&pins, 1, devc))
581 ;
582
583 /* Initialize the logic analyzer mode. */
584 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
585
586 /* Expect a 3 byte reply. */
587 ret = sigma_read(result, 3, devc);
588 if (ret != 3 ||
589 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
590 sr_err("Configuration failed. Invalid reply received.");
591 return SR_ERR;
592 }
593
594 devc->cur_firmware = firmware_idx;
595
596 sr_info("Firmware uploaded.");
597
598 return SR_OK;
599}
600
601static int hw_dev_open(struct sr_dev_inst *sdi)
602{
603 struct dev_context *devc;
604 int ret;
605
606 devc = sdi->priv;
607
608 /* Make sure it's an ASIX SIGMA. */
609 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
610 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
611
612 sr_err("ftdi_usb_open failed: %s",
613 ftdi_get_error_string(&devc->ftdic));
614
615 return 0;
616 }
617
618 sdi->status = SR_ST_ACTIVE;
619
620 return SR_OK;
621}
622
623static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
624{
625 struct dev_context *devc;
626 unsigned int i;
627 int ret;
628
629 devc = sdi->priv;
630 ret = SR_OK;
631
632 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
633 if (samplerates[i] == samplerate)
634 break;
635 }
636 if (samplerates[i] == 0)
637 return SR_ERR_SAMPLERATE;
638
639 if (samplerate <= SR_MHZ(50)) {
640 ret = upload_firmware(0, devc);
641 devc->num_probes = 16;
642 }
643 if (samplerate == SR_MHZ(100)) {
644 ret = upload_firmware(1, devc);
645 devc->num_probes = 8;
646 }
647 else if (samplerate == SR_MHZ(200)) {
648 ret = upload_firmware(2, devc);
649 devc->num_probes = 4;
650 }
651
652 devc->cur_samplerate = samplerate;
653 devc->period_ps = 1000000000000ULL / samplerate;
654 devc->samples_per_event = 16 / devc->num_probes;
655 devc->state.state = SIGMA_IDLE;
656
657 return ret;
658}
659
660/*
661 * In 100 and 200 MHz mode, only a single pin rising/falling can be
662 * set as trigger. In other modes, two rising/falling triggers can be set,
663 * in addition to value/mask trigger for any number of probes.
664 *
665 * The Sigma supports complex triggers using boolean expressions, but this
666 * has not been implemented yet.
667 */
668static int configure_probes(const struct sr_dev_inst *sdi)
669{
670 struct dev_context *devc = sdi->priv;
671 const struct sr_probe *probe;
672 const GSList *l;
673 int trigger_set = 0;
674 int probebit;
675
676 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
677
678 for (l = sdi->probes; l; l = l->next) {
679 probe = (struct sr_probe *)l->data;
680 probebit = 1 << (probe->index);
681
682 if (!probe->enabled || !probe->trigger)
683 continue;
684
685 if (devc->cur_samplerate >= SR_MHZ(100)) {
686 /* Fast trigger support. */
687 if (trigger_set) {
688 sr_err("Only a single pin trigger in 100 and "
689 "200MHz mode is supported.");
690 return SR_ERR;
691 }
692 if (probe->trigger[0] == 'f')
693 devc->trigger.fallingmask |= probebit;
694 else if (probe->trigger[0] == 'r')
695 devc->trigger.risingmask |= probebit;
696 else {
697 sr_err("Only rising/falling trigger in 100 "
698 "and 200MHz mode is supported.");
699 return SR_ERR;
700 }
701
702 ++trigger_set;
703 } else {
704 /* Simple trigger support (event). */
705 if (probe->trigger[0] == '1') {
706 devc->trigger.simplevalue |= probebit;
707 devc->trigger.simplemask |= probebit;
708 }
709 else if (probe->trigger[0] == '0') {
710 devc->trigger.simplevalue &= ~probebit;
711 devc->trigger.simplemask |= probebit;
712 }
713 else if (probe->trigger[0] == 'f') {
714 devc->trigger.fallingmask |= probebit;
715 ++trigger_set;
716 }
717 else if (probe->trigger[0] == 'r') {
718 devc->trigger.risingmask |= probebit;
719 ++trigger_set;
720 }
721
722 /*
723 * Actually, Sigma supports 2 rising/falling triggers,
724 * but they are ORed and the current trigger syntax
725 * does not permit ORed triggers.
726 */
727 if (trigger_set > 1) {
728 sr_err("Only 1 rising/falling trigger "
729 "is supported.");
730 return SR_ERR;
731 }
732 }
733
734 if (trigger_set)
735 devc->use_triggers = 1;
736 }
737
738 return SR_OK;
739}
740
741static int hw_dev_close(struct sr_dev_inst *sdi)
742{
743 struct dev_context *devc;
744
745 devc = sdi->priv;
746
747 /* TODO */
748 if (sdi->status == SR_ST_ACTIVE)
749 ftdi_usb_close(&devc->ftdic);
750
751 sdi->status = SR_ST_INACTIVE;
752
753 return SR_OK;
754}
755
756static int hw_cleanup(void)
757{
758 if (!di->priv)
759 return SR_OK;
760
761 clear_instances();
762
763 return SR_OK;
764}
765
766static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi)
767{
768 struct dev_context *devc;
769
770 switch (id) {
771 case SR_CONF_SAMPLERATE:
772 if (sdi) {
773 devc = sdi->priv;
774 *data = g_variant_new_uint64(devc->cur_samplerate);
775 } else
776 return SR_ERR;
777 break;
778 default:
779 return SR_ERR_NA;
780 }
781
782 return SR_OK;
783}
784
785static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi)
786{
787 struct dev_context *devc;
788 int ret;
789
790 if (sdi->status != SR_ST_ACTIVE)
791 return SR_ERR_DEV_CLOSED;
792
793 devc = sdi->priv;
794
795 if (id == SR_CONF_SAMPLERATE) {
796 ret = set_samplerate(sdi, g_variant_get_uint64(data));
797 } else if (id == SR_CONF_LIMIT_MSEC) {
798 devc->limit_msec = g_variant_get_uint64(data);
799 if (devc->limit_msec > 0)
800 ret = SR_OK;
801 else
802 ret = SR_ERR;
803 } else if (id == SR_CONF_CAPTURE_RATIO) {
804 devc->capture_ratio = g_variant_get_uint64(data);
805 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
806 ret = SR_ERR;
807 else
808 ret = SR_OK;
809 } else {
810 ret = SR_ERR_NA;
811 }
812
813 return ret;
814}
815
816static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi)
817{
818 GVariant *gvar;
819 GVariantBuilder gvb;
820
821 (void)sdi;
822
823 switch (key) {
824 case SR_CONF_DEVICE_OPTIONS:
825 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
826 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
827 break;
828 case SR_CONF_SAMPLERATE:
829 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
830 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
831 ARRAY_SIZE(samplerates), sizeof(uint64_t));
832 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
833 *data = g_variant_builder_end(&gvb);
834 break;
835 case SR_CONF_TRIGGER_TYPE:
836 *data = g_variant_new_string(TRIGGER_TYPE);
837 break;
838 default:
839 return SR_ERR_NA;
840 }
841
842 return SR_OK;
843}
844
845/* Software trigger to determine exact trigger position. */
846static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
847 struct sigma_trigger *t)
848{
849 int i;
850
851 for (i = 0; i < 8; ++i) {
852 if (i > 0)
853 last_sample = samples[i-1];
854
855 /* Simple triggers. */
856 if ((samples[i] & t->simplemask) != t->simplevalue)
857 continue;
858
859 /* Rising edge. */
860 if ((last_sample & t->risingmask) != 0 || (samples[i] &
861 t->risingmask) != t->risingmask)
862 continue;
863
864 /* Falling edge. */
865 if ((last_sample & t->fallingmask) != t->fallingmask ||
866 (samples[i] & t->fallingmask) != 0)
867 continue;
868
869 break;
870 }
871
872 /* If we did not match, return original trigger pos. */
873 return i & 0x7;
874}
875
876/*
877 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
878 * Each event is 20ns apart, and can contain multiple samples.
879 *
880 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
881 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
882 * For 50 MHz and below, events contain one sample for each channel,
883 * spread 20 ns apart.
884 */
885static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
886 uint16_t *lastsample, int triggerpos,
887 uint16_t limit_chunk, void *cb_data)
888{
889 struct sr_dev_inst *sdi = cb_data;
890 struct dev_context *devc = sdi->priv;
891 uint16_t tsdiff, ts;
892 uint16_t samples[65536 * devc->samples_per_event];
893 struct sr_datafeed_packet packet;
894 struct sr_datafeed_logic logic;
895 int i, j, k, l, numpad, tosend;
896 size_t n = 0, sent = 0;
897 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
898 uint16_t *event;
899 uint16_t cur_sample;
900 int triggerts = -1;
901
902 /* Check if trigger is in this chunk. */
903 if (triggerpos != -1) {
904 if (devc->cur_samplerate <= SR_MHZ(50))
905 triggerpos -= EVENTS_PER_CLUSTER - 1;
906
907 if (triggerpos < 0)
908 triggerpos = 0;
909
910 /* Find in which cluster the trigger occured. */
911 triggerts = triggerpos / 7;
912 }
913
914 /* For each ts. */
915 for (i = 0; i < 64; ++i) {
916 ts = *(uint16_t *) &buf[i * 16];
917 tsdiff = ts - *lastts;
918 *lastts = ts;
919
920 /* Decode partial chunk. */
921 if (limit_chunk && ts > limit_chunk)
922 return SR_OK;
923
924 /* Pad last sample up to current point. */
925 numpad = tsdiff * devc->samples_per_event - clustersize;
926 if (numpad > 0) {
927 for (j = 0; j < numpad; ++j)
928 samples[j] = *lastsample;
929
930 n = numpad;
931 }
932
933 /* Send samples between previous and this timestamp to sigrok. */
934 sent = 0;
935 while (sent < n) {
936 tosend = MIN(2048, n - sent);
937
938 packet.type = SR_DF_LOGIC;
939 packet.payload = &logic;
940 logic.length = tosend * sizeof(uint16_t);
941 logic.unitsize = 2;
942 logic.data = samples + sent;
943 sr_session_send(devc->cb_data, &packet);
944
945 sent += tosend;
946 }
947 n = 0;
948
949 event = (uint16_t *) &buf[i * 16 + 2];
950 cur_sample = 0;
951
952 /* For each event in cluster. */
953 for (j = 0; j < 7; ++j) {
954
955 /* For each sample in event. */
956 for (k = 0; k < devc->samples_per_event; ++k) {
957 cur_sample = 0;
958
959 /* For each probe. */
960 for (l = 0; l < devc->num_probes; ++l)
961 cur_sample |= (!!(event[j] & (1 << (l *
962 devc->samples_per_event + k)))) << l;
963
964 samples[n++] = cur_sample;
965 }
966 }
967
968 /* Send data up to trigger point (if triggered). */
969 sent = 0;
970 if (i == triggerts) {
971 /*
972 * Trigger is not always accurate to sample because of
973 * pipeline delay. However, it always triggers before
974 * the actual event. We therefore look at the next
975 * samples to pinpoint the exact position of the trigger.
976 */
977 tosend = get_trigger_offset(samples, *lastsample,
978 &devc->trigger);
979
980 if (tosend > 0) {
981 packet.type = SR_DF_LOGIC;
982 packet.payload = &logic;
983 logic.length = tosend * sizeof(uint16_t);
984 logic.unitsize = 2;
985 logic.data = samples;
986 sr_session_send(devc->cb_data, &packet);
987
988 sent += tosend;
989 }
990
991 /* Only send trigger if explicitly enabled. */
992 if (devc->use_triggers) {
993 packet.type = SR_DF_TRIGGER;
994 sr_session_send(devc->cb_data, &packet);
995 }
996 }
997
998 /* Send rest of the chunk to sigrok. */
999 tosend = n - sent;
1000
1001 if (tosend > 0) {
1002 packet.type = SR_DF_LOGIC;
1003 packet.payload = &logic;
1004 logic.length = tosend * sizeof(uint16_t);
1005 logic.unitsize = 2;
1006 logic.data = samples + sent;
1007 sr_session_send(devc->cb_data, &packet);
1008 }
1009
1010 *lastsample = samples[n - 1];
1011 }
1012
1013 return SR_OK;
1014}
1015
1016static int receive_data(int fd, int revents, void *cb_data)
1017{
1018 struct sr_dev_inst *sdi = cb_data;
1019 struct dev_context *devc = sdi->priv;
1020 struct sr_datafeed_packet packet;
1021 const int chunks_per_read = 32;
1022 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1023 int bufsz, numchunks, i, newchunks;
1024 uint64_t running_msec;
1025 struct timeval tv;
1026
1027 (void)fd;
1028 (void)revents;
1029
1030 /* Get the current position. */
1031 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1032
1033 numchunks = (devc->state.stoppos + 511) / 512;
1034
1035 if (devc->state.state == SIGMA_IDLE)
1036 return TRUE;
1037
1038 if (devc->state.state == SIGMA_CAPTURE) {
1039 /* Check if the timer has expired, or memory is full. */
1040 gettimeofday(&tv, 0);
1041 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1042 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1043
1044 if (running_msec < devc->limit_msec && numchunks < 32767)
1045 return TRUE; /* While capturing... */
1046 else
1047 hw_dev_acquisition_stop(sdi, sdi);
1048
1049 }
1050
1051 if (devc->state.state == SIGMA_DOWNLOAD) {
1052 if (devc->state.chunks_downloaded >= numchunks) {
1053 /* End of samples. */
1054 packet.type = SR_DF_END;
1055 sr_session_send(devc->cb_data, &packet);
1056
1057 devc->state.state = SIGMA_IDLE;
1058
1059 return TRUE;
1060 }
1061
1062 newchunks = MIN(chunks_per_read,
1063 numchunks - devc->state.chunks_downloaded);
1064
1065 sr_info("Downloading sample data: %.0f %%.",
1066 100.0 * devc->state.chunks_downloaded / numchunks);
1067
1068 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1069 newchunks, buf, devc);
1070 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1071 (void)bufsz;
1072
1073 /* Find first ts. */
1074 if (devc->state.chunks_downloaded == 0) {
1075 devc->state.lastts = *(uint16_t *) buf - 1;
1076 devc->state.lastsample = 0;
1077 }
1078
1079 /* Decode chunks and send them to sigrok. */
1080 for (i = 0; i < newchunks; ++i) {
1081 int limit_chunk = 0;
1082
1083 /* The last chunk may potentially be only in part. */
1084 if (devc->state.chunks_downloaded == numchunks - 1) {
1085 /* Find the last valid timestamp */
1086 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1087 }
1088
1089 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1090 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1091 &devc->state.lastts,
1092 &devc->state.lastsample,
1093 devc->state.triggerpos & 0x1ff,
1094 limit_chunk, sdi);
1095 else
1096 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1097 &devc->state.lastts,
1098 &devc->state.lastsample,
1099 -1, limit_chunk, sdi);
1100
1101 ++devc->state.chunks_downloaded;
1102 }
1103 }
1104
1105 return TRUE;
1106}
1107
1108/* Build a LUT entry used by the trigger functions. */
1109static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1110{
1111 int i, j, k, bit;
1112
1113 /* For each quad probe. */
1114 for (i = 0; i < 4; ++i) {
1115 entry[i] = 0xffff;
1116
1117 /* For each bit in LUT. */
1118 for (j = 0; j < 16; ++j)
1119
1120 /* For each probe in quad. */
1121 for (k = 0; k < 4; ++k) {
1122 bit = 1 << (i * 4 + k);
1123
1124 /* Set bit in entry */
1125 if ((mask & bit) &&
1126 ((!(value & bit)) !=
1127 (!(j & (1 << k)))))
1128 entry[i] &= ~(1 << j);
1129 }
1130 }
1131}
1132
1133/* Add a logical function to LUT mask. */
1134static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1135 int index, int neg, uint16_t *mask)
1136{
1137 int i, j;
1138 int x[2][2], tmp, a, b, aset, bset, rset;
1139
1140 memset(x, 0, 4 * sizeof(int));
1141
1142 /* Trigger detect condition. */
1143 switch (oper) {
1144 case OP_LEVEL:
1145 x[0][1] = 1;
1146 x[1][1] = 1;
1147 break;
1148 case OP_NOT:
1149 x[0][0] = 1;
1150 x[1][0] = 1;
1151 break;
1152 case OP_RISE:
1153 x[0][1] = 1;
1154 break;
1155 case OP_FALL:
1156 x[1][0] = 1;
1157 break;
1158 case OP_RISEFALL:
1159 x[0][1] = 1;
1160 x[1][0] = 1;
1161 break;
1162 case OP_NOTRISE:
1163 x[1][1] = 1;
1164 x[0][0] = 1;
1165 x[1][0] = 1;
1166 break;
1167 case OP_NOTFALL:
1168 x[1][1] = 1;
1169 x[0][0] = 1;
1170 x[0][1] = 1;
1171 break;
1172 case OP_NOTRISEFALL:
1173 x[1][1] = 1;
1174 x[0][0] = 1;
1175 break;
1176 }
1177
1178 /* Transpose if neg is set. */
1179 if (neg) {
1180 for (i = 0; i < 2; ++i) {
1181 for (j = 0; j < 2; ++j) {
1182 tmp = x[i][j];
1183 x[i][j] = x[1-i][1-j];
1184 x[1-i][1-j] = tmp;
1185 }
1186 }
1187 }
1188
1189 /* Update mask with function. */
1190 for (i = 0; i < 16; ++i) {
1191 a = (i >> (2 * index + 0)) & 1;
1192 b = (i >> (2 * index + 1)) & 1;
1193
1194 aset = (*mask >> i) & 1;
1195 bset = x[b][a];
1196
1197 if (func == FUNC_AND || func == FUNC_NAND)
1198 rset = aset & bset;
1199 else if (func == FUNC_OR || func == FUNC_NOR)
1200 rset = aset | bset;
1201 else if (func == FUNC_XOR || func == FUNC_NXOR)
1202 rset = aset ^ bset;
1203
1204 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1205 rset = !rset;
1206
1207 *mask &= ~(1 << i);
1208
1209 if (rset)
1210 *mask |= 1 << i;
1211 }
1212}
1213
1214/*
1215 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1216 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1217 * set at any time, but a full mask and value can be set (0/1).
1218 */
1219static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1220{
1221 int i,j;
1222 uint16_t masks[2] = { 0, 0 };
1223
1224 memset(lut, 0, sizeof(struct triggerlut));
1225
1226 /* Contant for simple triggers. */
1227 lut->m4 = 0xa000;
1228
1229 /* Value/mask trigger support. */
1230 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1231 lut->m2d);
1232
1233 /* Rise/fall trigger support. */
1234 for (i = 0, j = 0; i < 16; ++i) {
1235 if (devc->trigger.risingmask & (1 << i) ||
1236 devc->trigger.fallingmask & (1 << i))
1237 masks[j++] = 1 << i;
1238 }
1239
1240 build_lut_entry(masks[0], masks[0], lut->m0d);
1241 build_lut_entry(masks[1], masks[1], lut->m1d);
1242
1243 /* Add glue logic */
1244 if (masks[0] || masks[1]) {
1245 /* Transition trigger. */
1246 if (masks[0] & devc->trigger.risingmask)
1247 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1248 if (masks[0] & devc->trigger.fallingmask)
1249 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1250 if (masks[1] & devc->trigger.risingmask)
1251 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1252 if (masks[1] & devc->trigger.fallingmask)
1253 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1254 } else {
1255 /* Only value/mask trigger. */
1256 lut->m3 = 0xffff;
1257 }
1258
1259 /* Triggertype: event. */
1260 lut->params.selres = 3;
1261
1262 return SR_OK;
1263}
1264
1265static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1266 void *cb_data)
1267{
1268 struct dev_context *devc;
1269 struct clockselect_50 clockselect;
1270 int frac, triggerpin, ret;
1271 uint8_t triggerselect = 0;
1272 struct triggerinout triggerinout_conf;
1273 struct triggerlut lut;
1274
1275 if (sdi->status != SR_ST_ACTIVE)
1276 return SR_ERR_DEV_CLOSED;
1277
1278 devc = sdi->priv;
1279
1280 if (configure_probes(sdi) != SR_OK) {
1281 sr_err("Failed to configure probes.");
1282 return SR_ERR;
1283 }
1284
1285 /* If the samplerate has not been set, default to 200 kHz. */
1286 if (devc->cur_firmware == -1) {
1287 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1288 return ret;
1289 }
1290
1291 /* Enter trigger programming mode. */
1292 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1293
1294 /* 100 and 200 MHz mode. */
1295 if (devc->cur_samplerate >= SR_MHZ(100)) {
1296 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1297
1298 /* Find which pin to trigger on from mask. */
1299 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1300 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1301 (1 << triggerpin))
1302 break;
1303
1304 /* Set trigger pin and light LED on trigger. */
1305 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1306
1307 /* Default rising edge. */
1308 if (devc->trigger.fallingmask)
1309 triggerselect |= 1 << 3;
1310
1311 /* All other modes. */
1312 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1313 build_basic_trigger(&lut, devc);
1314
1315 sigma_write_trigger_lut(&lut, devc);
1316
1317 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1318 }
1319
1320 /* Setup trigger in and out pins to default values. */
1321 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1322 triggerinout_conf.trgout_bytrigger = 1;
1323 triggerinout_conf.trgout_enable = 1;
1324
1325 sigma_write_register(WRITE_TRIGGER_OPTION,
1326 (uint8_t *) &triggerinout_conf,
1327 sizeof(struct triggerinout), devc);
1328
1329 /* Go back to normal mode. */
1330 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1331
1332 /* Set clock select register. */
1333 if (devc->cur_samplerate == SR_MHZ(200))
1334 /* Enable 4 probes. */
1335 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1336 else if (devc->cur_samplerate == SR_MHZ(100))
1337 /* Enable 8 probes. */
1338 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1339 else {
1340 /*
1341 * 50 MHz mode (or fraction thereof). Any fraction down to
1342 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1343 */
1344 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1345
1346 clockselect.async = 0;
1347 clockselect.fraction = frac;
1348 clockselect.disabled_probes = 0;
1349
1350 sigma_write_register(WRITE_CLOCK_SELECT,
1351 (uint8_t *) &clockselect,
1352 sizeof(clockselect), devc);
1353 }
1354
1355 /* Setup maximum post trigger time. */
1356 sigma_set_register(WRITE_POST_TRIGGER,
1357 (devc->capture_ratio * 255) / 100, devc);
1358
1359 /* Start acqusition. */
1360 gettimeofday(&devc->start_tv, 0);
1361 sigma_set_register(WRITE_MODE, 0x0d, devc);
1362
1363 devc->cb_data = cb_data;
1364
1365 /* Send header packet to the session bus. */
1366 std_session_send_df_header(cb_data, LOG_PREFIX);
1367
1368 /* Add capture source. */
1369 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1370
1371 devc->state.state = SIGMA_CAPTURE;
1372
1373 return SR_OK;
1374}
1375
1376static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1377{
1378 struct dev_context *devc;
1379 uint8_t modestatus;
1380
1381 (void)cb_data;
1382
1383 sr_source_remove(0);
1384
1385 if (!(devc = sdi->priv)) {
1386 sr_err("%s: sdi->priv was NULL", __func__);
1387 return SR_ERR_BUG;
1388 }
1389
1390 /* Stop acquisition. */
1391 sigma_set_register(WRITE_MODE, 0x11, devc);
1392
1393 /* Set SDRAM Read Enable. */
1394 sigma_set_register(WRITE_MODE, 0x02, devc);
1395
1396 /* Get the current position. */
1397 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1398
1399 /* Check if trigger has fired. */
1400 modestatus = sigma_get_register(READ_MODE, devc);
1401 if (modestatus & 0x20)
1402 devc->state.triggerchunk = devc->state.triggerpos / 512;
1403 else
1404 devc->state.triggerchunk = -1;
1405
1406 devc->state.chunks_downloaded = 0;
1407
1408 devc->state.state = SIGMA_DOWNLOAD;
1409
1410 return SR_OK;
1411}
1412
1413SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1414 .name = "asix-sigma",
1415 .longname = "ASIX SIGMA/SIGMA2",
1416 .api_version = 1,
1417 .init = hw_init,
1418 .cleanup = hw_cleanup,
1419 .scan = hw_scan,
1420 .dev_list = hw_dev_list,
1421 .dev_clear = clear_instances,
1422 .config_get = config_get,
1423 .config_set = config_set,
1424 .config_list = config_list,
1425 .dev_open = hw_dev_open,
1426 .dev_close = hw_dev_close,
1427 .dev_acquisition_start = hw_dev_acquisition_start,
1428 .dev_acquisition_stop = hw_dev_acquisition_stop,
1429 .priv = NULL,
1430};