]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
asix-sigma: Remove NUM_CHANNELS macro
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define TRIGGER_TYPE "rf10"
40
41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
42static struct sr_dev_driver *di = &asix_sigma_driver_info;
43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
44
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
51static const uint64_t samplerates[] = {
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
62};
63
64/*
65 * Channel numbers seem to go from 1-16, according to this image:
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
69static const char *channel_names[] = {
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
72};
73
74static const int32_t hwcaps[] = {
75 SR_CONF_LOGIC_ANALYZER,
76 SR_CONF_SAMPLERATE,
77 SR_CONF_TRIGGER_TYPE,
78 SR_CONF_CAPTURE_RATIO,
79 SR_CONF_LIMIT_MSEC,
80 SR_CONF_LIMIT_SAMPLES,
81};
82
83/* Force the FPGA to reboot. */
84static uint8_t suicide[] = {
85 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
86};
87
88/* Prepare to upload firmware (FPGA specific). */
89static uint8_t init_array[] = {
90 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
91};
92
93/* Initialize the logic analyzer mode. */
94static uint8_t logic_mode_start[] = {
95 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
96 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
97};
98
99static const char *firmware_files[] = {
100 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
101 "asix-sigma-100.fw", /* 100 MHz */
102 "asix-sigma-200.fw", /* 200 MHz */
103 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
104 "asix-sigma-phasor.fw", /* Frequency counter */
105};
106
107static int sigma_read(void *buf, size_t size, struct dev_context *devc)
108{
109 int ret;
110
111 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
112 if (ret < 0) {
113 sr_err("ftdi_read_data failed: %s",
114 ftdi_get_error_string(&devc->ftdic));
115 }
116
117 return ret;
118}
119
120static int sigma_write(void *buf, size_t size, struct dev_context *devc)
121{
122 int ret;
123
124 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
125 if (ret < 0) {
126 sr_err("ftdi_write_data failed: %s",
127 ftdi_get_error_string(&devc->ftdic));
128 } else if ((size_t) ret != size) {
129 sr_err("ftdi_write_data did not complete write.");
130 }
131
132 return ret;
133}
134
135static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
136 struct dev_context *devc)
137{
138 size_t i;
139 uint8_t buf[len + 2];
140 int idx = 0;
141
142 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
143 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
144
145 for (i = 0; i < len; ++i) {
146 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
147 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
148 }
149
150 return sigma_write(buf, idx, devc);
151}
152
153static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
154{
155 return sigma_write_register(reg, &value, 1, devc);
156}
157
158static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
159 struct dev_context *devc)
160{
161 uint8_t buf[3];
162
163 buf[0] = REG_ADDR_LOW | (reg & 0xf);
164 buf[1] = REG_ADDR_HIGH | (reg >> 4);
165 buf[2] = REG_READ_ADDR;
166
167 sigma_write(buf, sizeof(buf), devc);
168
169 return sigma_read(data, len, devc);
170}
171
172static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
173{
174 uint8_t value;
175
176 if (1 != sigma_read_register(reg, &value, 1, devc)) {
177 sr_err("sigma_get_register: 1 byte expected");
178 return 0;
179 }
180
181 return value;
182}
183
184static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
185 struct dev_context *devc)
186{
187 uint8_t buf[] = {
188 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
189
190 REG_READ_ADDR | NEXT_REG,
191 REG_READ_ADDR | NEXT_REG,
192 REG_READ_ADDR | NEXT_REG,
193 REG_READ_ADDR | NEXT_REG,
194 REG_READ_ADDR | NEXT_REG,
195 REG_READ_ADDR | NEXT_REG,
196 };
197 uint8_t result[6];
198
199 sigma_write(buf, sizeof(buf), devc);
200
201 sigma_read(result, sizeof(result), devc);
202
203 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
204 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
205
206 /* Not really sure why this must be done, but according to spec. */
207 if ((--*stoppos & 0x1ff) == 0x1ff)
208 stoppos -= 64;
209
210 if ((*--triggerpos & 0x1ff) == 0x1ff)
211 triggerpos -= 64;
212
213 return 1;
214}
215
216static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
217 uint8_t *data, struct dev_context *devc)
218{
219 size_t i;
220 uint8_t buf[4096];
221 int idx = 0;
222
223 /* Send the startchunk. Index start with 1. */
224 buf[0] = startchunk >> 8;
225 buf[1] = startchunk & 0xff;
226 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
227
228 /* Read the DRAM. */
229 buf[idx++] = REG_DRAM_BLOCK;
230 buf[idx++] = REG_DRAM_WAIT_ACK;
231
232 for (i = 0; i < numchunks; ++i) {
233 /* Alternate bit to copy from DRAM to cache. */
234 if (i != (numchunks - 1))
235 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
236
237 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
238
239 if (i != (numchunks - 1))
240 buf[idx++] = REG_DRAM_WAIT_ACK;
241 }
242
243 sigma_write(buf, idx, devc);
244
245 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
246}
247
248/* Upload trigger look-up tables to Sigma. */
249static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
250{
251 int i;
252 uint8_t tmp[2];
253 uint16_t bit;
254
255 /* Transpose the table and send to Sigma. */
256 for (i = 0; i < 16; ++i) {
257 bit = 1 << i;
258
259 tmp[0] = tmp[1] = 0;
260
261 if (lut->m2d[0] & bit)
262 tmp[0] |= 0x01;
263 if (lut->m2d[1] & bit)
264 tmp[0] |= 0x02;
265 if (lut->m2d[2] & bit)
266 tmp[0] |= 0x04;
267 if (lut->m2d[3] & bit)
268 tmp[0] |= 0x08;
269
270 if (lut->m3 & bit)
271 tmp[0] |= 0x10;
272 if (lut->m3s & bit)
273 tmp[0] |= 0x20;
274 if (lut->m4 & bit)
275 tmp[0] |= 0x40;
276
277 if (lut->m0d[0] & bit)
278 tmp[1] |= 0x01;
279 if (lut->m0d[1] & bit)
280 tmp[1] |= 0x02;
281 if (lut->m0d[2] & bit)
282 tmp[1] |= 0x04;
283 if (lut->m0d[3] & bit)
284 tmp[1] |= 0x08;
285
286 if (lut->m1d[0] & bit)
287 tmp[1] |= 0x10;
288 if (lut->m1d[1] & bit)
289 tmp[1] |= 0x20;
290 if (lut->m1d[2] & bit)
291 tmp[1] |= 0x40;
292 if (lut->m1d[3] & bit)
293 tmp[1] |= 0x80;
294
295 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
296 devc);
297 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
298 }
299
300 /* Send the parameters */
301 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
302 sizeof(lut->params), devc);
303
304 return SR_OK;
305}
306
307/* Generate the bitbang stream for programming the FPGA. */
308static int bin2bitbang(const char *filename,
309 unsigned char **buf, size_t *buf_size)
310{
311 FILE *f;
312 unsigned long file_size;
313 unsigned long offset = 0;
314 unsigned char *p;
315 uint8_t *firmware;
316 unsigned long fwsize = 0;
317 const int buffer_size = 65536;
318 size_t i;
319 int c, bit, v;
320 uint32_t imm = 0x3f6df2ab;
321
322 f = g_fopen(filename, "rb");
323 if (!f) {
324 sr_err("g_fopen(\"%s\", \"rb\")", filename);
325 return SR_ERR;
326 }
327
328 if (-1 == fseek(f, 0, SEEK_END)) {
329 sr_err("fseek on %s failed", filename);
330 fclose(f);
331 return SR_ERR;
332 }
333
334 file_size = ftell(f);
335
336 fseek(f, 0, SEEK_SET);
337
338 if (!(firmware = g_try_malloc(buffer_size))) {
339 sr_err("%s: firmware malloc failed", __func__);
340 fclose(f);
341 return SR_ERR_MALLOC;
342 }
343
344 while ((c = getc(f)) != EOF) {
345 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
346 firmware[fwsize++] = c ^ imm;
347 }
348 fclose(f);
349
350 if(fwsize != file_size) {
351 sr_err("%s: Error reading firmware", filename);
352 fclose(f);
353 g_free(firmware);
354 return SR_ERR;
355 }
356
357 *buf_size = fwsize * 2 * 8;
358
359 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
360 if (!p) {
361 sr_err("%s: buf/p malloc failed", __func__);
362 g_free(firmware);
363 return SR_ERR_MALLOC;
364 }
365
366 for (i = 0; i < fwsize; ++i) {
367 for (bit = 7; bit >= 0; --bit) {
368 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
369 p[offset++] = v | 0x01;
370 p[offset++] = v;
371 }
372 }
373
374 g_free(firmware);
375
376 if (offset != *buf_size) {
377 g_free(*buf);
378 sr_err("Error reading firmware %s "
379 "offset=%ld, file_size=%ld, buf_size=%zd.",
380 filename, offset, file_size, *buf_size);
381
382 return SR_ERR;
383 }
384
385 return SR_OK;
386}
387
388static void clear_helper(void *priv)
389{
390 struct dev_context *devc;
391
392 devc = priv;
393
394 ftdi_deinit(&devc->ftdic);
395}
396
397static int dev_clear(void)
398{
399 return std_dev_clear(di, clear_helper);
400}
401
402static int init(struct sr_context *sr_ctx)
403{
404 return std_init(sr_ctx, di, LOG_PREFIX);
405}
406
407static GSList *scan(GSList *options)
408{
409 struct sr_dev_inst *sdi;
410 struct sr_channel *ch;
411 struct drv_context *drvc;
412 struct dev_context *devc;
413 GSList *devices;
414 struct ftdi_device_list *devlist;
415 char serial_txt[10];
416 uint32_t serial;
417 int ret;
418 unsigned int i;
419
420 (void)options;
421
422 drvc = di->priv;
423
424 devices = NULL;
425
426 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
427 sr_err("%s: devc malloc failed", __func__);
428 return NULL;
429 }
430
431 ftdi_init(&devc->ftdic);
432
433 /* Look for SIGMAs. */
434
435 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
436 USB_VENDOR, USB_PRODUCT)) <= 0) {
437 if (ret < 0)
438 sr_err("ftdi_usb_find_all(): %d", ret);
439 goto free;
440 }
441
442 /* Make sure it's a version 1 or 2 SIGMA. */
443 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
444 serial_txt, sizeof(serial_txt));
445 sscanf(serial_txt, "%x", &serial);
446
447 if (serial < 0xa6010000 || serial > 0xa602ffff) {
448 sr_err("Only SIGMA and SIGMA2 are supported "
449 "in this version of libsigrok.");
450 goto free;
451 }
452
453 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
454
455 devc->cur_samplerate = 0;
456 devc->period_ps = 0;
457 devc->limit_msec = 0;
458 devc->cur_firmware = -1;
459 devc->num_channels = 0;
460 devc->samples_per_event = 0;
461 devc->capture_ratio = 50;
462 devc->use_triggers = 0;
463
464 /* Register SIGMA device. */
465 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
466 USB_MODEL_NAME, NULL))) {
467 sr_err("%s: sdi was NULL", __func__);
468 goto free;
469 }
470 sdi->driver = di;
471
472 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
473 ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
474 channel_names[i]);
475 if (!ch)
476 return NULL;
477 sdi->channels = g_slist_append(sdi->channels, ch);
478 }
479
480 devices = g_slist_append(devices, sdi);
481 drvc->instances = g_slist_append(drvc->instances, sdi);
482 sdi->priv = devc;
483
484 /* We will open the device again when we need it. */
485 ftdi_list_free(&devlist);
486
487 return devices;
488
489free:
490 ftdi_deinit(&devc->ftdic);
491 g_free(devc);
492 return NULL;
493}
494
495static GSList *dev_list(void)
496{
497 return ((struct drv_context *)(di->priv))->instances;
498}
499
500static int upload_firmware(int firmware_idx, struct dev_context *devc)
501{
502 int ret;
503 unsigned char *buf;
504 unsigned char pins;
505 size_t buf_size;
506 unsigned char result[32];
507 char firmware_path[128];
508
509 /* Make sure it's an ASIX SIGMA. */
510 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
511 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
512 sr_err("ftdi_usb_open failed: %s",
513 ftdi_get_error_string(&devc->ftdic));
514 return 0;
515 }
516
517 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
518 sr_err("ftdi_set_bitmode failed: %s",
519 ftdi_get_error_string(&devc->ftdic));
520 return 0;
521 }
522
523 /* Four times the speed of sigmalogan - Works well. */
524 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
525 sr_err("ftdi_set_baudrate failed: %s",
526 ftdi_get_error_string(&devc->ftdic));
527 return 0;
528 }
529
530 /* Force the FPGA to reboot. */
531 sigma_write(suicide, sizeof(suicide), devc);
532 sigma_write(suicide, sizeof(suicide), devc);
533 sigma_write(suicide, sizeof(suicide), devc);
534 sigma_write(suicide, sizeof(suicide), devc);
535
536 /* Prepare to upload firmware (FPGA specific). */
537 sigma_write(init_array, sizeof(init_array), devc);
538
539 ftdi_usb_purge_buffers(&devc->ftdic);
540
541 /* Wait until the FPGA asserts INIT_B. */
542 while (1) {
543 ret = sigma_read(result, 1, devc);
544 if (result[0] & 0x20)
545 break;
546 }
547
548 /* Prepare firmware. */
549 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
550 firmware_files[firmware_idx]);
551
552 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
553 sr_err("An error occured while reading the firmware: %s",
554 firmware_path);
555 return ret;
556 }
557
558 /* Upload firmare. */
559 sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
560 sigma_write(buf, buf_size, devc);
561
562 g_free(buf);
563
564 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
565 sr_err("ftdi_set_bitmode failed: %s",
566 ftdi_get_error_string(&devc->ftdic));
567 return SR_ERR;
568 }
569
570 ftdi_usb_purge_buffers(&devc->ftdic);
571
572 /* Discard garbage. */
573 while (1 == sigma_read(&pins, 1, devc))
574 ;
575
576 /* Initialize the logic analyzer mode. */
577 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
578
579 /* Expect a 3 byte reply. */
580 ret = sigma_read(result, 3, devc);
581 if (ret != 3 ||
582 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
583 sr_err("Configuration failed. Invalid reply received.");
584 return SR_ERR;
585 }
586
587 devc->cur_firmware = firmware_idx;
588
589 sr_info("Firmware uploaded.");
590
591 return SR_OK;
592}
593
594static int dev_open(struct sr_dev_inst *sdi)
595{
596 struct dev_context *devc;
597 int ret;
598
599 devc = sdi->priv;
600
601 /* Make sure it's an ASIX SIGMA. */
602 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
603 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
604
605 sr_err("ftdi_usb_open failed: %s",
606 ftdi_get_error_string(&devc->ftdic));
607
608 return 0;
609 }
610
611 sdi->status = SR_ST_ACTIVE;
612
613 return SR_OK;
614}
615
616static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
617{
618 struct dev_context *devc;
619 unsigned int i;
620 int ret;
621
622 devc = sdi->priv;
623 ret = SR_OK;
624
625 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
626 if (samplerates[i] == samplerate)
627 break;
628 }
629 if (samplerates[i] == 0)
630 return SR_ERR_SAMPLERATE;
631
632 if (samplerate <= SR_MHZ(50)) {
633 ret = upload_firmware(0, devc);
634 devc->num_channels = 16;
635 }
636 if (samplerate == SR_MHZ(100)) {
637 ret = upload_firmware(1, devc);
638 devc->num_channels = 8;
639 }
640 else if (samplerate == SR_MHZ(200)) {
641 ret = upload_firmware(2, devc);
642 devc->num_channels = 4;
643 }
644
645 devc->cur_samplerate = samplerate;
646 devc->period_ps = 1000000000000ULL / samplerate;
647 devc->samples_per_event = 16 / devc->num_channels;
648 devc->state.state = SIGMA_IDLE;
649
650 return ret;
651}
652
653/*
654 * In 100 and 200 MHz mode, only a single pin rising/falling can be
655 * set as trigger. In other modes, two rising/falling triggers can be set,
656 * in addition to value/mask trigger for any number of channels.
657 *
658 * The Sigma supports complex triggers using boolean expressions, but this
659 * has not been implemented yet.
660 */
661static int configure_channels(const struct sr_dev_inst *sdi)
662{
663 struct dev_context *devc = sdi->priv;
664 const struct sr_channel *ch;
665 const GSList *l;
666 int trigger_set = 0;
667 int channelbit;
668
669 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
670
671 for (l = sdi->channels; l; l = l->next) {
672 ch = (struct sr_channel *)l->data;
673 channelbit = 1 << (ch->index);
674
675 if (!ch->enabled || !ch->trigger)
676 continue;
677
678 if (devc->cur_samplerate >= SR_MHZ(100)) {
679 /* Fast trigger support. */
680 if (trigger_set) {
681 sr_err("Only a single pin trigger in 100 and "
682 "200MHz mode is supported.");
683 return SR_ERR;
684 }
685 if (ch->trigger[0] == 'f')
686 devc->trigger.fallingmask |= channelbit;
687 else if (ch->trigger[0] == 'r')
688 devc->trigger.risingmask |= channelbit;
689 else {
690 sr_err("Only rising/falling trigger in 100 "
691 "and 200MHz mode is supported.");
692 return SR_ERR;
693 }
694
695 ++trigger_set;
696 } else {
697 /* Simple trigger support (event). */
698 if (ch->trigger[0] == '1') {
699 devc->trigger.simplevalue |= channelbit;
700 devc->trigger.simplemask |= channelbit;
701 }
702 else if (ch->trigger[0] == '0') {
703 devc->trigger.simplevalue &= ~channelbit;
704 devc->trigger.simplemask |= channelbit;
705 }
706 else if (ch->trigger[0] == 'f') {
707 devc->trigger.fallingmask |= channelbit;
708 ++trigger_set;
709 }
710 else if (ch->trigger[0] == 'r') {
711 devc->trigger.risingmask |= channelbit;
712 ++trigger_set;
713 }
714
715 /*
716 * Actually, Sigma supports 2 rising/falling triggers,
717 * but they are ORed and the current trigger syntax
718 * does not permit ORed triggers.
719 */
720 if (trigger_set > 1) {
721 sr_err("Only 1 rising/falling trigger "
722 "is supported.");
723 return SR_ERR;
724 }
725 }
726
727 if (trigger_set)
728 devc->use_triggers = 1;
729 }
730
731 return SR_OK;
732}
733
734static int dev_close(struct sr_dev_inst *sdi)
735{
736 struct dev_context *devc;
737
738 devc = sdi->priv;
739
740 /* TODO */
741 if (sdi->status == SR_ST_ACTIVE)
742 ftdi_usb_close(&devc->ftdic);
743
744 sdi->status = SR_ST_INACTIVE;
745
746 return SR_OK;
747}
748
749static int cleanup(void)
750{
751 return dev_clear();
752}
753
754static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
755 const struct sr_channel_group *cg)
756{
757 struct dev_context *devc;
758
759 (void)cg;
760
761 switch (id) {
762 case SR_CONF_SAMPLERATE:
763 if (sdi) {
764 devc = sdi->priv;
765 *data = g_variant_new_uint64(devc->cur_samplerate);
766 } else
767 return SR_ERR;
768 break;
769 default:
770 return SR_ERR_NA;
771 }
772
773 return SR_OK;
774}
775
776static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
777 const struct sr_channel_group *cg)
778{
779 struct dev_context *devc;
780 uint64_t num_samples;
781 int ret;
782
783 (void)cg;
784
785 if (sdi->status != SR_ST_ACTIVE)
786 return SR_ERR_DEV_CLOSED;
787
788 devc = sdi->priv;
789
790 switch (id) {
791 case SR_CONF_SAMPLERATE:
792 ret = set_samplerate(sdi, g_variant_get_uint64(data));
793 break;
794 case SR_CONF_LIMIT_MSEC:
795 devc->limit_msec = g_variant_get_uint64(data);
796 if (devc->limit_msec > 0)
797 ret = SR_OK;
798 else
799 ret = SR_ERR;
800 break;
801 case SR_CONF_LIMIT_SAMPLES:
802 num_samples = g_variant_get_uint64(data);
803 devc->limit_msec = num_samples * 1000 / devc->cur_samplerate;
804 break;
805 case SR_CONF_CAPTURE_RATIO:
806 devc->capture_ratio = g_variant_get_uint64(data);
807 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
808 ret = SR_ERR;
809 else
810 ret = SR_OK;
811 break;
812 default:
813 ret = SR_ERR_NA;
814 }
815
816 return ret;
817}
818
819static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
820 const struct sr_channel_group *cg)
821{
822 GVariant *gvar;
823 GVariantBuilder gvb;
824
825 (void)sdi;
826 (void)cg;
827
828 switch (key) {
829 case SR_CONF_DEVICE_OPTIONS:
830 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
831 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
832 break;
833 case SR_CONF_SAMPLERATE:
834 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
835 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
836 ARRAY_SIZE(samplerates), sizeof(uint64_t));
837 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
838 *data = g_variant_builder_end(&gvb);
839 break;
840 case SR_CONF_TRIGGER_TYPE:
841 *data = g_variant_new_string(TRIGGER_TYPE);
842 break;
843 default:
844 return SR_ERR_NA;
845 }
846
847 return SR_OK;
848}
849
850/* Software trigger to determine exact trigger position. */
851static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
852 struct sigma_trigger *t)
853{
854 int i;
855
856 for (i = 0; i < 8; ++i) {
857 if (i > 0)
858 last_sample = samples[i-1];
859
860 /* Simple triggers. */
861 if ((samples[i] & t->simplemask) != t->simplevalue)
862 continue;
863
864 /* Rising edge. */
865 if ((last_sample & t->risingmask) != 0 || (samples[i] &
866 t->risingmask) != t->risingmask)
867 continue;
868
869 /* Falling edge. */
870 if ((last_sample & t->fallingmask) != t->fallingmask ||
871 (samples[i] & t->fallingmask) != 0)
872 continue;
873
874 break;
875 }
876
877 /* If we did not match, return original trigger pos. */
878 return i & 0x7;
879}
880
881/*
882 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
883 * Each event is 20ns apart, and can contain multiple samples.
884 *
885 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
886 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
887 * For 50 MHz and below, events contain one sample for each channel,
888 * spread 20 ns apart.
889 */
890static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
891 uint16_t *lastsample, int triggerpos,
892 uint16_t limit_chunk, void *cb_data)
893{
894 struct sr_dev_inst *sdi = cb_data;
895 struct dev_context *devc = sdi->priv;
896 uint16_t tsdiff, ts;
897 uint16_t samples[65536 * devc->samples_per_event];
898 struct sr_datafeed_packet packet;
899 struct sr_datafeed_logic logic;
900 int i, j, k, l, numpad, tosend;
901 size_t n = 0, sent = 0;
902 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
903 uint16_t *event;
904 uint16_t cur_sample;
905 int triggerts = -1;
906
907 /* Check if trigger is in this chunk. */
908 if (triggerpos != -1) {
909 if (devc->cur_samplerate <= SR_MHZ(50))
910 triggerpos -= EVENTS_PER_CLUSTER - 1;
911
912 if (triggerpos < 0)
913 triggerpos = 0;
914
915 /* Find in which cluster the trigger occured. */
916 triggerts = triggerpos / 7;
917 }
918
919 /* For each ts. */
920 for (i = 0; i < 64; ++i) {
921 ts = *(uint16_t *) &buf[i * 16];
922 tsdiff = ts - *lastts;
923 *lastts = ts;
924
925 /* Decode partial chunk. */
926 if (limit_chunk && ts > limit_chunk)
927 return SR_OK;
928
929 /* Pad last sample up to current point. */
930 numpad = tsdiff * devc->samples_per_event - clustersize;
931 if (numpad > 0) {
932 for (j = 0; j < numpad; ++j)
933 samples[j] = *lastsample;
934
935 n = numpad;
936 }
937
938 /* Send samples between previous and this timestamp to sigrok. */
939 sent = 0;
940 while (sent < n) {
941 tosend = MIN(2048, n - sent);
942
943 packet.type = SR_DF_LOGIC;
944 packet.payload = &logic;
945 logic.length = tosend * sizeof(uint16_t);
946 logic.unitsize = 2;
947 logic.data = samples + sent;
948 sr_session_send(devc->cb_data, &packet);
949
950 sent += tosend;
951 }
952 n = 0;
953
954 event = (uint16_t *) &buf[i * 16 + 2];
955 cur_sample = 0;
956
957 /* For each event in cluster. */
958 for (j = 0; j < 7; ++j) {
959
960 /* For each sample in event. */
961 for (k = 0; k < devc->samples_per_event; ++k) {
962 cur_sample = 0;
963
964 /* For each channel. */
965 for (l = 0; l < devc->num_channels; ++l)
966 cur_sample |= (!!(event[j] & (1 << (l *
967 devc->samples_per_event + k)))) << l;
968
969 samples[n++] = cur_sample;
970 }
971 }
972
973 /* Send data up to trigger point (if triggered). */
974 sent = 0;
975 if (i == triggerts) {
976 /*
977 * Trigger is not always accurate to sample because of
978 * pipeline delay. However, it always triggers before
979 * the actual event. We therefore look at the next
980 * samples to pinpoint the exact position of the trigger.
981 */
982 tosend = get_trigger_offset(samples, *lastsample,
983 &devc->trigger);
984
985 if (tosend > 0) {
986 packet.type = SR_DF_LOGIC;
987 packet.payload = &logic;
988 logic.length = tosend * sizeof(uint16_t);
989 logic.unitsize = 2;
990 logic.data = samples;
991 sr_session_send(devc->cb_data, &packet);
992
993 sent += tosend;
994 }
995
996 /* Only send trigger if explicitly enabled. */
997 if (devc->use_triggers) {
998 packet.type = SR_DF_TRIGGER;
999 sr_session_send(devc->cb_data, &packet);
1000 }
1001 }
1002
1003 /* Send rest of the chunk to sigrok. */
1004 tosend = n - sent;
1005
1006 if (tosend > 0) {
1007 packet.type = SR_DF_LOGIC;
1008 packet.payload = &logic;
1009 logic.length = tosend * sizeof(uint16_t);
1010 logic.unitsize = 2;
1011 logic.data = samples + sent;
1012 sr_session_send(devc->cb_data, &packet);
1013 }
1014
1015 *lastsample = samples[n - 1];
1016 }
1017
1018 return SR_OK;
1019}
1020
1021static void download_capture(struct sr_dev_inst *sdi)
1022{
1023 struct dev_context *devc;
1024 const int chunks_per_read = 32;
1025 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1026 int bufsz, i, numchunks, newchunks;
1027
1028 sr_info("Downloading sample data.");
1029
1030 devc = sdi->priv;
1031 devc->state.chunks_downloaded = 0;
1032 numchunks = (devc->state.stoppos + 511) / 512;
1033 newchunks = MIN(chunks_per_read, numchunks - devc->state.chunks_downloaded);
1034
1035 bufsz = sigma_read_dram(devc->state.chunks_downloaded, newchunks, buf, devc);
1036 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1037 (void)bufsz;
1038
1039 /* Find first ts. */
1040 if (devc->state.chunks_downloaded == 0) {
1041 devc->state.lastts = RL16(buf) - 1;
1042 devc->state.lastsample = 0;
1043 }
1044
1045 /* Decode chunks and send them to sigrok. */
1046 for (i = 0; i < newchunks; ++i) {
1047 int limit_chunk = 0;
1048
1049 /* The last chunk may potentially be only in part. */
1050 if (devc->state.chunks_downloaded == numchunks - 1) {
1051 /* Find the last valid timestamp */
1052 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1053 }
1054
1055 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1056 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1057 &devc->state.lastts,
1058 &devc->state.lastsample,
1059 devc->state.triggerpos & 0x1ff,
1060 limit_chunk, sdi);
1061 else
1062 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1063 &devc->state.lastts,
1064 &devc->state.lastsample,
1065 -1, limit_chunk, sdi);
1066
1067 ++devc->state.chunks_downloaded;
1068 }
1069
1070}
1071
1072static int receive_data(int fd, int revents, void *cb_data)
1073{
1074 struct sr_dev_inst *sdi;
1075 struct dev_context *devc;
1076 struct sr_datafeed_packet packet;
1077 uint64_t running_msec;
1078 struct timeval tv;
1079 int numchunks;
1080 uint8_t modestatus;
1081
1082 (void)fd;
1083 (void)revents;
1084
1085 sdi = cb_data;
1086 devc = sdi->priv;
1087
1088 /* Get the current position. */
1089 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1090
1091 if (devc->state.state == SIGMA_IDLE)
1092 return TRUE;
1093
1094 if (devc->state.state == SIGMA_CAPTURE) {
1095 numchunks = (devc->state.stoppos + 511) / 512;
1096
1097 /* Check if the timer has expired, or memory is full. */
1098 gettimeofday(&tv, 0);
1099 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1100 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1101
1102 if (running_msec < devc->limit_msec && numchunks < 32767)
1103 /* Still capturing. */
1104 return TRUE;
1105
1106 /* Stop acquisition. */
1107 sigma_set_register(WRITE_MODE, 0x11, devc);
1108
1109 /* Set SDRAM Read Enable. */
1110 sigma_set_register(WRITE_MODE, 0x02, devc);
1111
1112 /* Get the current position. */
1113 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1114
1115 /* Check if trigger has fired. */
1116 modestatus = sigma_get_register(READ_MODE, devc);
1117 if (modestatus & 0x20)
1118 devc->state.triggerchunk = devc->state.triggerpos / 512;
1119 else
1120 devc->state.triggerchunk = -1;
1121
1122 /* Transfer captured data from device. */
1123 download_capture(sdi);
1124
1125 /* All done. */
1126 packet.type = SR_DF_END;
1127 sr_session_send(sdi, &packet);
1128
1129 dev_acquisition_stop(sdi, sdi);
1130 }
1131
1132 return TRUE;
1133}
1134
1135/* Build a LUT entry used by the trigger functions. */
1136static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1137{
1138 int i, j, k, bit;
1139
1140 /* For each quad channel. */
1141 for (i = 0; i < 4; ++i) {
1142 entry[i] = 0xffff;
1143
1144 /* For each bit in LUT. */
1145 for (j = 0; j < 16; ++j)
1146
1147 /* For each channel in quad. */
1148 for (k = 0; k < 4; ++k) {
1149 bit = 1 << (i * 4 + k);
1150
1151 /* Set bit in entry */
1152 if ((mask & bit) &&
1153 ((!(value & bit)) !=
1154 (!(j & (1 << k)))))
1155 entry[i] &= ~(1 << j);
1156 }
1157 }
1158}
1159
1160/* Add a logical function to LUT mask. */
1161static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1162 int index, int neg, uint16_t *mask)
1163{
1164 int i, j;
1165 int x[2][2], tmp, a, b, aset, bset, rset;
1166
1167 memset(x, 0, 4 * sizeof(int));
1168
1169 /* Trigger detect condition. */
1170 switch (oper) {
1171 case OP_LEVEL:
1172 x[0][1] = 1;
1173 x[1][1] = 1;
1174 break;
1175 case OP_NOT:
1176 x[0][0] = 1;
1177 x[1][0] = 1;
1178 break;
1179 case OP_RISE:
1180 x[0][1] = 1;
1181 break;
1182 case OP_FALL:
1183 x[1][0] = 1;
1184 break;
1185 case OP_RISEFALL:
1186 x[0][1] = 1;
1187 x[1][0] = 1;
1188 break;
1189 case OP_NOTRISE:
1190 x[1][1] = 1;
1191 x[0][0] = 1;
1192 x[1][0] = 1;
1193 break;
1194 case OP_NOTFALL:
1195 x[1][1] = 1;
1196 x[0][0] = 1;
1197 x[0][1] = 1;
1198 break;
1199 case OP_NOTRISEFALL:
1200 x[1][1] = 1;
1201 x[0][0] = 1;
1202 break;
1203 }
1204
1205 /* Transpose if neg is set. */
1206 if (neg) {
1207 for (i = 0; i < 2; ++i) {
1208 for (j = 0; j < 2; ++j) {
1209 tmp = x[i][j];
1210 x[i][j] = x[1-i][1-j];
1211 x[1-i][1-j] = tmp;
1212 }
1213 }
1214 }
1215
1216 /* Update mask with function. */
1217 for (i = 0; i < 16; ++i) {
1218 a = (i >> (2 * index + 0)) & 1;
1219 b = (i >> (2 * index + 1)) & 1;
1220
1221 aset = (*mask >> i) & 1;
1222 bset = x[b][a];
1223
1224 if (func == FUNC_AND || func == FUNC_NAND)
1225 rset = aset & bset;
1226 else if (func == FUNC_OR || func == FUNC_NOR)
1227 rset = aset | bset;
1228 else if (func == FUNC_XOR || func == FUNC_NXOR)
1229 rset = aset ^ bset;
1230
1231 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1232 rset = !rset;
1233
1234 *mask &= ~(1 << i);
1235
1236 if (rset)
1237 *mask |= 1 << i;
1238 }
1239}
1240
1241/*
1242 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1243 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1244 * set at any time, but a full mask and value can be set (0/1).
1245 */
1246static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1247{
1248 int i,j;
1249 uint16_t masks[2] = { 0, 0 };
1250
1251 memset(lut, 0, sizeof(struct triggerlut));
1252
1253 /* Contant for simple triggers. */
1254 lut->m4 = 0xa000;
1255
1256 /* Value/mask trigger support. */
1257 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1258 lut->m2d);
1259
1260 /* Rise/fall trigger support. */
1261 for (i = 0, j = 0; i < 16; ++i) {
1262 if (devc->trigger.risingmask & (1 << i) ||
1263 devc->trigger.fallingmask & (1 << i))
1264 masks[j++] = 1 << i;
1265 }
1266
1267 build_lut_entry(masks[0], masks[0], lut->m0d);
1268 build_lut_entry(masks[1], masks[1], lut->m1d);
1269
1270 /* Add glue logic */
1271 if (masks[0] || masks[1]) {
1272 /* Transition trigger. */
1273 if (masks[0] & devc->trigger.risingmask)
1274 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1275 if (masks[0] & devc->trigger.fallingmask)
1276 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1277 if (masks[1] & devc->trigger.risingmask)
1278 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1279 if (masks[1] & devc->trigger.fallingmask)
1280 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1281 } else {
1282 /* Only value/mask trigger. */
1283 lut->m3 = 0xffff;
1284 }
1285
1286 /* Triggertype: event. */
1287 lut->params.selres = 3;
1288
1289 return SR_OK;
1290}
1291
1292static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1293{
1294 struct dev_context *devc;
1295 struct clockselect_50 clockselect;
1296 int frac, triggerpin, ret;
1297 uint8_t triggerselect = 0;
1298 struct triggerinout triggerinout_conf;
1299 struct triggerlut lut;
1300
1301 if (sdi->status != SR_ST_ACTIVE)
1302 return SR_ERR_DEV_CLOSED;
1303
1304 devc = sdi->priv;
1305
1306 if (configure_channels(sdi) != SR_OK) {
1307 sr_err("Failed to configure channels.");
1308 return SR_ERR;
1309 }
1310
1311 /* If the samplerate has not been set, default to 200 kHz. */
1312 if (devc->cur_firmware == -1) {
1313 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1314 return ret;
1315 }
1316
1317 /* Enter trigger programming mode. */
1318 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1319
1320 /* 100 and 200 MHz mode. */
1321 if (devc->cur_samplerate >= SR_MHZ(100)) {
1322 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1323
1324 /* Find which pin to trigger on from mask. */
1325 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1326 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1327 (1 << triggerpin))
1328 break;
1329
1330 /* Set trigger pin and light LED on trigger. */
1331 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1332
1333 /* Default rising edge. */
1334 if (devc->trigger.fallingmask)
1335 triggerselect |= 1 << 3;
1336
1337 /* All other modes. */
1338 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1339 build_basic_trigger(&lut, devc);
1340
1341 sigma_write_trigger_lut(&lut, devc);
1342
1343 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1344 }
1345
1346 /* Setup trigger in and out pins to default values. */
1347 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1348 triggerinout_conf.trgout_bytrigger = 1;
1349 triggerinout_conf.trgout_enable = 1;
1350
1351 sigma_write_register(WRITE_TRIGGER_OPTION,
1352 (uint8_t *) &triggerinout_conf,
1353 sizeof(struct triggerinout), devc);
1354
1355 /* Go back to normal mode. */
1356 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1357
1358 /* Set clock select register. */
1359 if (devc->cur_samplerate == SR_MHZ(200))
1360 /* Enable 4 channels. */
1361 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1362 else if (devc->cur_samplerate == SR_MHZ(100))
1363 /* Enable 8 channels. */
1364 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1365 else {
1366 /*
1367 * 50 MHz mode (or fraction thereof). Any fraction down to
1368 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1369 */
1370 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1371
1372 clockselect.async = 0;
1373 clockselect.fraction = frac;
1374 clockselect.disabled_channels = 0;
1375
1376 sigma_write_register(WRITE_CLOCK_SELECT,
1377 (uint8_t *) &clockselect,
1378 sizeof(clockselect), devc);
1379 }
1380
1381 /* Setup maximum post trigger time. */
1382 sigma_set_register(WRITE_POST_TRIGGER,
1383 (devc->capture_ratio * 255) / 100, devc);
1384
1385 /* Start acqusition. */
1386 gettimeofday(&devc->start_tv, 0);
1387 sigma_set_register(WRITE_MODE, 0x0d, devc);
1388
1389 devc->cb_data = cb_data;
1390
1391 /* Send header packet to the session bus. */
1392 std_session_send_df_header(cb_data, LOG_PREFIX);
1393
1394 /* Add capture source. */
1395 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1396
1397 devc->state.state = SIGMA_CAPTURE;
1398
1399 return SR_OK;
1400}
1401
1402static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1403{
1404 struct dev_context *devc;
1405
1406 (void)cb_data;
1407
1408 devc = sdi->priv;
1409 devc->state.state = SIGMA_IDLE;
1410
1411 sr_source_remove(0);
1412
1413 return SR_OK;
1414}
1415
1416SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1417 .name = "asix-sigma",
1418 .longname = "ASIX SIGMA/SIGMA2",
1419 .api_version = 1,
1420 .init = init,
1421 .cleanup = cleanup,
1422 .scan = scan,
1423 .dev_list = dev_list,
1424 .dev_clear = dev_clear,
1425 .config_get = config_get,
1426 .config_set = config_set,
1427 .config_list = config_list,
1428 .dev_open = dev_open,
1429 .dev_close = dev_close,
1430 .dev_acquisition_start = dev_acquisition_start,
1431 .dev_acquisition_stop = dev_acquisition_stop,
1432 .priv = NULL,
1433};