]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
Add and use std_session_send_df_header().
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPE "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *di = &asix_sigma_driver_info;
45static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47static const uint64_t supported_samplerates[] = {
48 SR_KHZ(200),
49 SR_KHZ(250),
50 SR_KHZ(500),
51 SR_MHZ(1),
52 SR_MHZ(5),
53 SR_MHZ(10),
54 SR_MHZ(25),
55 SR_MHZ(50),
56 SR_MHZ(100),
57 SR_MHZ(200),
58 0,
59};
60
61/*
62 * Probe numbers seem to go from 1-16, according to this image:
63 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64 * (the cable has two additional GND pins, and a TI and TO pin)
65 */
66static const char *probe_names[NUM_PROBES + 1] = {
67 "1", "2", "3", "4", "5", "6", "7", "8",
68 "9", "10", "11", "12", "13", "14", "15", "16",
69 NULL,
70};
71
72static const struct sr_samplerates samplerates = {
73 .low = 0,
74 .high = 0,
75 .step = 0,
76 .list = supported_samplerates,
77};
78
79static const int hwcaps[] = {
80 SR_CONF_LOGIC_ANALYZER,
81 SR_CONF_SAMPLERATE,
82 SR_CONF_CAPTURE_RATIO,
83
84 SR_CONF_LIMIT_MSEC,
85 0,
86};
87
88/* Force the FPGA to reboot. */
89static uint8_t suicide[] = {
90 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91};
92
93/* Prepare to upload firmware (FPGA specific). */
94static uint8_t init[] = {
95 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96};
97
98/* Initialize the logic analyzer mode. */
99static uint8_t logic_mode_start[] = {
100 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102};
103
104static const char *firmware_files[] = {
105 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
106 "asix-sigma-100.fw", /* 100 MHz */
107 "asix-sigma-200.fw", /* 200 MHz */
108 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109 "asix-sigma-phasor.fw", /* Frequency counter */
110};
111
112static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113{
114 int ret;
115
116 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117 if (ret < 0) {
118 sr_err("ftdi_read_data failed: %s",
119 ftdi_get_error_string(&devc->ftdic));
120 }
121
122 return ret;
123}
124
125static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126{
127 int ret;
128
129 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130 if (ret < 0) {
131 sr_err("ftdi_write_data failed: %s",
132 ftdi_get_error_string(&devc->ftdic));
133 } else if ((size_t) ret != size) {
134 sr_err("ftdi_write_data did not complete write.");
135 }
136
137 return ret;
138}
139
140static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141 struct dev_context *devc)
142{
143 size_t i;
144 uint8_t buf[len + 2];
145 int idx = 0;
146
147 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150 for (i = 0; i < len; ++i) {
151 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153 }
154
155 return sigma_write(buf, idx, devc);
156}
157
158static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159{
160 return sigma_write_register(reg, &value, 1, devc);
161}
162
163static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164 struct dev_context *devc)
165{
166 uint8_t buf[3];
167
168 buf[0] = REG_ADDR_LOW | (reg & 0xf);
169 buf[1] = REG_ADDR_HIGH | (reg >> 4);
170 buf[2] = REG_READ_ADDR;
171
172 sigma_write(buf, sizeof(buf), devc);
173
174 return sigma_read(data, len, devc);
175}
176
177static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178{
179 uint8_t value;
180
181 if (1 != sigma_read_register(reg, &value, 1, devc)) {
182 sr_err("sigma_get_register: 1 byte expected");
183 return 0;
184 }
185
186 return value;
187}
188
189static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190 struct dev_context *devc)
191{
192 uint8_t buf[] = {
193 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195 REG_READ_ADDR | NEXT_REG,
196 REG_READ_ADDR | NEXT_REG,
197 REG_READ_ADDR | NEXT_REG,
198 REG_READ_ADDR | NEXT_REG,
199 REG_READ_ADDR | NEXT_REG,
200 REG_READ_ADDR | NEXT_REG,
201 };
202 uint8_t result[6];
203
204 sigma_write(buf, sizeof(buf), devc);
205
206 sigma_read(result, sizeof(result), devc);
207
208 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211 /* Not really sure why this must be done, but according to spec. */
212 if ((--*stoppos & 0x1ff) == 0x1ff)
213 stoppos -= 64;
214
215 if ((*--triggerpos & 0x1ff) == 0x1ff)
216 triggerpos -= 64;
217
218 return 1;
219}
220
221static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222 uint8_t *data, struct dev_context *devc)
223{
224 size_t i;
225 uint8_t buf[4096];
226 int idx = 0;
227
228 /* Send the startchunk. Index start with 1. */
229 buf[0] = startchunk >> 8;
230 buf[1] = startchunk & 0xff;
231 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233 /* Read the DRAM. */
234 buf[idx++] = REG_DRAM_BLOCK;
235 buf[idx++] = REG_DRAM_WAIT_ACK;
236
237 for (i = 0; i < numchunks; ++i) {
238 /* Alternate bit to copy from DRAM to cache. */
239 if (i != (numchunks - 1))
240 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244 if (i != (numchunks - 1))
245 buf[idx++] = REG_DRAM_WAIT_ACK;
246 }
247
248 sigma_write(buf, idx, devc);
249
250 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251}
252
253/* Upload trigger look-up tables to Sigma. */
254static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255{
256 int i;
257 uint8_t tmp[2];
258 uint16_t bit;
259
260 /* Transpose the table and send to Sigma. */
261 for (i = 0; i < 16; ++i) {
262 bit = 1 << i;
263
264 tmp[0] = tmp[1] = 0;
265
266 if (lut->m2d[0] & bit)
267 tmp[0] |= 0x01;
268 if (lut->m2d[1] & bit)
269 tmp[0] |= 0x02;
270 if (lut->m2d[2] & bit)
271 tmp[0] |= 0x04;
272 if (lut->m2d[3] & bit)
273 tmp[0] |= 0x08;
274
275 if (lut->m3 & bit)
276 tmp[0] |= 0x10;
277 if (lut->m3s & bit)
278 tmp[0] |= 0x20;
279 if (lut->m4 & bit)
280 tmp[0] |= 0x40;
281
282 if (lut->m0d[0] & bit)
283 tmp[1] |= 0x01;
284 if (lut->m0d[1] & bit)
285 tmp[1] |= 0x02;
286 if (lut->m0d[2] & bit)
287 tmp[1] |= 0x04;
288 if (lut->m0d[3] & bit)
289 tmp[1] |= 0x08;
290
291 if (lut->m1d[0] & bit)
292 tmp[1] |= 0x10;
293 if (lut->m1d[1] & bit)
294 tmp[1] |= 0x20;
295 if (lut->m1d[2] & bit)
296 tmp[1] |= 0x40;
297 if (lut->m1d[3] & bit)
298 tmp[1] |= 0x80;
299
300 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301 devc);
302 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303 }
304
305 /* Send the parameters */
306 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307 sizeof(lut->params), devc);
308
309 return SR_OK;
310}
311
312/* Generate the bitbang stream for programming the FPGA. */
313static int bin2bitbang(const char *filename,
314 unsigned char **buf, size_t *buf_size)
315{
316 FILE *f;
317 unsigned long file_size;
318 unsigned long offset = 0;
319 unsigned char *p;
320 uint8_t *firmware;
321 unsigned long fwsize = 0;
322 const int buffer_size = 65536;
323 size_t i;
324 int c, bit, v;
325 uint32_t imm = 0x3f6df2ab;
326
327 f = g_fopen(filename, "rb");
328 if (!f) {
329 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330 return SR_ERR;
331 }
332
333 if (-1 == fseek(f, 0, SEEK_END)) {
334 sr_err("fseek on %s failed", filename);
335 fclose(f);
336 return SR_ERR;
337 }
338
339 file_size = ftell(f);
340
341 fseek(f, 0, SEEK_SET);
342
343 if (!(firmware = g_try_malloc(buffer_size))) {
344 sr_err("%s: firmware malloc failed", __func__);
345 fclose(f);
346 return SR_ERR_MALLOC;
347 }
348
349 while ((c = getc(f)) != EOF) {
350 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351 firmware[fwsize++] = c ^ imm;
352 }
353 fclose(f);
354
355 if(fwsize != file_size) {
356 sr_err("%s: Error reading firmware", filename);
357 fclose(f);
358 g_free(firmware);
359 return SR_ERR;
360 }
361
362 *buf_size = fwsize * 2 * 8;
363
364 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365 if (!p) {
366 sr_err("%s: buf/p malloc failed", __func__);
367 g_free(firmware);
368 return SR_ERR_MALLOC;
369 }
370
371 for (i = 0; i < fwsize; ++i) {
372 for (bit = 7; bit >= 0; --bit) {
373 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374 p[offset++] = v | 0x01;
375 p[offset++] = v;
376 }
377 }
378
379 g_free(firmware);
380
381 if (offset != *buf_size) {
382 g_free(*buf);
383 sr_err("Error reading firmware %s "
384 "offset=%ld, file_size=%ld, buf_size=%zd.",
385 filename, offset, file_size, *buf_size);
386
387 return SR_ERR;
388 }
389
390 return SR_OK;
391}
392
393static int clear_instances(void)
394{
395 GSList *l;
396 struct sr_dev_inst *sdi;
397 struct drv_context *drvc;
398 struct dev_context *devc;
399
400 drvc = di->priv;
401
402 /* Properly close all devices. */
403 for (l = drvc->instances; l; l = l->next) {
404 if (!(sdi = l->data)) {
405 /* Log error, but continue cleaning up the rest. */
406 sr_err("%s: sdi was NULL, continuing", __func__);
407 continue;
408 }
409 if (sdi->priv) {
410 devc = sdi->priv;
411 ftdi_free(&devc->ftdic);
412 }
413 sr_dev_inst_free(sdi);
414 }
415 g_slist_free(drvc->instances);
416 drvc->instances = NULL;
417
418 return SR_OK;
419}
420
421static int hw_init(struct sr_context *sr_ctx)
422{
423 return std_hw_init(sr_ctx, di, DRIVER_LOG_DOMAIN);
424}
425
426static GSList *hw_scan(GSList *options)
427{
428 struct sr_dev_inst *sdi;
429 struct sr_probe *probe;
430 struct drv_context *drvc;
431 struct dev_context *devc;
432 GSList *devices;
433 struct ftdi_device_list *devlist;
434 char serial_txt[10];
435 uint32_t serial;
436 int ret, i;
437
438 (void)options;
439
440 drvc = di->priv;
441
442 devices = NULL;
443
444 clear_instances();
445
446 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
447 sr_err("%s: devc malloc failed", __func__);
448 return NULL;
449 }
450
451 ftdi_init(&devc->ftdic);
452
453 /* Look for SIGMAs. */
454
455 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
456 USB_VENDOR, USB_PRODUCT)) <= 0) {
457 if (ret < 0)
458 sr_err("ftdi_usb_find_all(): %d", ret);
459 goto free;
460 }
461
462 /* Make sure it's a version 1 or 2 SIGMA. */
463 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
464 serial_txt, sizeof(serial_txt));
465 sscanf(serial_txt, "%x", &serial);
466
467 if (serial < 0xa6010000 || serial > 0xa602ffff) {
468 sr_err("Only SIGMA and SIGMA2 are supported "
469 "in this version of libsigrok.");
470 goto free;
471 }
472
473 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
474
475 devc->cur_samplerate = 0;
476 devc->period_ps = 0;
477 devc->limit_msec = 0;
478 devc->cur_firmware = -1;
479 devc->num_probes = 0;
480 devc->samples_per_event = 0;
481 devc->capture_ratio = 50;
482 devc->use_triggers = 0;
483
484 /* Register SIGMA device. */
485 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
486 USB_MODEL_NAME, USB_MODEL_VERSION))) {
487 sr_err("%s: sdi was NULL", __func__);
488 goto free;
489 }
490 sdi->driver = di;
491
492 for (i = 0; probe_names[i]; i++) {
493 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
494 probe_names[i])))
495 return NULL;
496 sdi->probes = g_slist_append(sdi->probes, probe);
497 }
498
499 devices = g_slist_append(devices, sdi);
500 drvc->instances = g_slist_append(drvc->instances, sdi);
501 sdi->priv = devc;
502
503 /* We will open the device again when we need it. */
504 ftdi_list_free(&devlist);
505
506 return devices;
507
508free:
509 ftdi_deinit(&devc->ftdic);
510 g_free(devc);
511 return NULL;
512}
513
514static GSList *hw_dev_list(void)
515{
516 return ((struct drv_context *)(di->priv))->instances;
517}
518
519static int upload_firmware(int firmware_idx, struct dev_context *devc)
520{
521 int ret;
522 unsigned char *buf;
523 unsigned char pins;
524 size_t buf_size;
525 unsigned char result[32];
526 char firmware_path[128];
527
528 /* Make sure it's an ASIX SIGMA. */
529 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
530 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
531 sr_err("ftdi_usb_open failed: %s",
532 ftdi_get_error_string(&devc->ftdic));
533 return 0;
534 }
535
536 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
537 sr_err("ftdi_set_bitmode failed: %s",
538 ftdi_get_error_string(&devc->ftdic));
539 return 0;
540 }
541
542 /* Four times the speed of sigmalogan - Works well. */
543 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
544 sr_err("ftdi_set_baudrate failed: %s",
545 ftdi_get_error_string(&devc->ftdic));
546 return 0;
547 }
548
549 /* Force the FPGA to reboot. */
550 sigma_write(suicide, sizeof(suicide), devc);
551 sigma_write(suicide, sizeof(suicide), devc);
552 sigma_write(suicide, sizeof(suicide), devc);
553 sigma_write(suicide, sizeof(suicide), devc);
554
555 /* Prepare to upload firmware (FPGA specific). */
556 sigma_write(init, sizeof(init), devc);
557
558 ftdi_usb_purge_buffers(&devc->ftdic);
559
560 /* Wait until the FPGA asserts INIT_B. */
561 while (1) {
562 ret = sigma_read(result, 1, devc);
563 if (result[0] & 0x20)
564 break;
565 }
566
567 /* Prepare firmware. */
568 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
569 firmware_files[firmware_idx]);
570
571 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
572 sr_err("An error occured while reading the firmware: %s",
573 firmware_path);
574 return ret;
575 }
576
577 /* Upload firmare. */
578 sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
579 sigma_write(buf, buf_size, devc);
580
581 g_free(buf);
582
583 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
584 sr_err("ftdi_set_bitmode failed: %s",
585 ftdi_get_error_string(&devc->ftdic));
586 return SR_ERR;
587 }
588
589 ftdi_usb_purge_buffers(&devc->ftdic);
590
591 /* Discard garbage. */
592 while (1 == sigma_read(&pins, 1, devc))
593 ;
594
595 /* Initialize the logic analyzer mode. */
596 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
597
598 /* Expect a 3 byte reply. */
599 ret = sigma_read(result, 3, devc);
600 if (ret != 3 ||
601 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
602 sr_err("Configuration failed. Invalid reply received.");
603 return SR_ERR;
604 }
605
606 devc->cur_firmware = firmware_idx;
607
608 sr_info("Firmware uploaded.");
609
610 return SR_OK;
611}
612
613static int hw_dev_open(struct sr_dev_inst *sdi)
614{
615 struct dev_context *devc;
616 int ret;
617
618 devc = sdi->priv;
619
620 /* Make sure it's an ASIX SIGMA. */
621 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
622 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
623
624 sr_err("ftdi_usb_open failed: %s",
625 ftdi_get_error_string(&devc->ftdic));
626
627 return 0;
628 }
629
630 sdi->status = SR_ST_ACTIVE;
631
632 return SR_OK;
633}
634
635static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
636{
637 int i, ret;
638 struct dev_context *devc = sdi->priv;
639
640 ret = SR_OK;
641
642 for (i = 0; supported_samplerates[i]; i++) {
643 if (supported_samplerates[i] == samplerate)
644 break;
645 }
646 if (supported_samplerates[i] == 0)
647 return SR_ERR_SAMPLERATE;
648
649 if (samplerate <= SR_MHZ(50)) {
650 ret = upload_firmware(0, devc);
651 devc->num_probes = 16;
652 }
653 if (samplerate == SR_MHZ(100)) {
654 ret = upload_firmware(1, devc);
655 devc->num_probes = 8;
656 }
657 else if (samplerate == SR_MHZ(200)) {
658 ret = upload_firmware(2, devc);
659 devc->num_probes = 4;
660 }
661
662 devc->cur_samplerate = samplerate;
663 devc->period_ps = 1000000000000ULL / samplerate;
664 devc->samples_per_event = 16 / devc->num_probes;
665 devc->state.state = SIGMA_IDLE;
666
667 return ret;
668}
669
670/*
671 * In 100 and 200 MHz mode, only a single pin rising/falling can be
672 * set as trigger. In other modes, two rising/falling triggers can be set,
673 * in addition to value/mask trigger for any number of probes.
674 *
675 * The Sigma supports complex triggers using boolean expressions, but this
676 * has not been implemented yet.
677 */
678static int configure_probes(const struct sr_dev_inst *sdi)
679{
680 struct dev_context *devc = sdi->priv;
681 const struct sr_probe *probe;
682 const GSList *l;
683 int trigger_set = 0;
684 int probebit;
685
686 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
687
688 for (l = sdi->probes; l; l = l->next) {
689 probe = (struct sr_probe *)l->data;
690 probebit = 1 << (probe->index);
691
692 if (!probe->enabled || !probe->trigger)
693 continue;
694
695 if (devc->cur_samplerate >= SR_MHZ(100)) {
696 /* Fast trigger support. */
697 if (trigger_set) {
698 sr_err("Only a single pin trigger in 100 and "
699 "200MHz mode is supported.");
700 return SR_ERR;
701 }
702 if (probe->trigger[0] == 'f')
703 devc->trigger.fallingmask |= probebit;
704 else if (probe->trigger[0] == 'r')
705 devc->trigger.risingmask |= probebit;
706 else {
707 sr_err("Only rising/falling trigger in 100 "
708 "and 200MHz mode is supported.");
709 return SR_ERR;
710 }
711
712 ++trigger_set;
713 } else {
714 /* Simple trigger support (event). */
715 if (probe->trigger[0] == '1') {
716 devc->trigger.simplevalue |= probebit;
717 devc->trigger.simplemask |= probebit;
718 }
719 else if (probe->trigger[0] == '0') {
720 devc->trigger.simplevalue &= ~probebit;
721 devc->trigger.simplemask |= probebit;
722 }
723 else if (probe->trigger[0] == 'f') {
724 devc->trigger.fallingmask |= probebit;
725 ++trigger_set;
726 }
727 else if (probe->trigger[0] == 'r') {
728 devc->trigger.risingmask |= probebit;
729 ++trigger_set;
730 }
731
732 /*
733 * Actually, Sigma supports 2 rising/falling triggers,
734 * but they are ORed and the current trigger syntax
735 * does not permit ORed triggers.
736 */
737 if (trigger_set > 1) {
738 sr_err("Only 1 rising/falling trigger "
739 "is supported.");
740 return SR_ERR;
741 }
742 }
743
744 if (trigger_set)
745 devc->use_triggers = 1;
746 }
747
748 return SR_OK;
749}
750
751static int hw_dev_close(struct sr_dev_inst *sdi)
752{
753 struct dev_context *devc;
754
755 devc = sdi->priv;
756
757 /* TODO */
758 if (sdi->status == SR_ST_ACTIVE)
759 ftdi_usb_close(&devc->ftdic);
760
761 sdi->status = SR_ST_INACTIVE;
762
763 return SR_OK;
764}
765
766static int hw_cleanup(void)
767{
768 if (!di->priv)
769 return SR_OK;
770
771 clear_instances();
772
773 return SR_OK;
774}
775
776static int config_get(int id, const void **data, const struct sr_dev_inst *sdi)
777{
778 struct dev_context *devc;
779
780 switch (id) {
781 case SR_CONF_SAMPLERATE:
782 if (sdi) {
783 devc = sdi->priv;
784 *data = &devc->cur_samplerate;
785 } else
786 return SR_ERR;
787 break;
788 default:
789 return SR_ERR_ARG;
790 }
791
792 return SR_OK;
793}
794
795static int config_set(int id, const void *value, const struct sr_dev_inst *sdi)
796{
797 struct dev_context *devc;
798 int ret;
799
800 devc = sdi->priv;
801
802 if (id == SR_CONF_SAMPLERATE) {
803 ret = set_samplerate(sdi, *(const uint64_t *)value);
804 } else if (id == SR_CONF_LIMIT_MSEC) {
805 devc->limit_msec = *(const uint64_t *)value;
806 if (devc->limit_msec > 0)
807 ret = SR_OK;
808 else
809 ret = SR_ERR;
810 } else if (id == SR_CONF_CAPTURE_RATIO) {
811 devc->capture_ratio = *(const uint64_t *)value;
812 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
813 ret = SR_ERR;
814 else
815 ret = SR_OK;
816 } else {
817 ret = SR_ERR;
818 }
819
820 return ret;
821}
822
823static int config_list(int key, const void **data, const struct sr_dev_inst *sdi)
824{
825
826 (void)sdi;
827
828 switch (key) {
829 case SR_CONF_DEVICE_OPTIONS:
830 *data = hwcaps;
831 break;
832 case SR_CONF_SAMPLERATE:
833 *data = &samplerates;
834 break;
835 case SR_CONF_TRIGGER_TYPE:
836 *data = (char *)TRIGGER_TYPE;
837 break;
838 default:
839 return SR_ERR_ARG;
840 }
841
842 return SR_OK;
843}
844
845/* Software trigger to determine exact trigger position. */
846static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
847 struct sigma_trigger *t)
848{
849 int i;
850
851 for (i = 0; i < 8; ++i) {
852 if (i > 0)
853 last_sample = samples[i-1];
854
855 /* Simple triggers. */
856 if ((samples[i] & t->simplemask) != t->simplevalue)
857 continue;
858
859 /* Rising edge. */
860 if ((last_sample & t->risingmask) != 0 || (samples[i] &
861 t->risingmask) != t->risingmask)
862 continue;
863
864 /* Falling edge. */
865 if ((last_sample & t->fallingmask) != t->fallingmask ||
866 (samples[i] & t->fallingmask) != 0)
867 continue;
868
869 break;
870 }
871
872 /* If we did not match, return original trigger pos. */
873 return i & 0x7;
874}
875
876/*
877 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
878 * Each event is 20ns apart, and can contain multiple samples.
879 *
880 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
881 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
882 * For 50 MHz and below, events contain one sample for each channel,
883 * spread 20 ns apart.
884 */
885static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
886 uint16_t *lastsample, int triggerpos,
887 uint16_t limit_chunk, void *cb_data)
888{
889 struct sr_dev_inst *sdi = cb_data;
890 struct dev_context *devc = sdi->priv;
891 uint16_t tsdiff, ts;
892 uint16_t samples[65536 * devc->samples_per_event];
893 struct sr_datafeed_packet packet;
894 struct sr_datafeed_logic logic;
895 int i, j, k, l, numpad, tosend;
896 size_t n = 0, sent = 0;
897 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
898 uint16_t *event;
899 uint16_t cur_sample;
900 int triggerts = -1;
901
902 /* Check if trigger is in this chunk. */
903 if (triggerpos != -1) {
904 if (devc->cur_samplerate <= SR_MHZ(50))
905 triggerpos -= EVENTS_PER_CLUSTER - 1;
906
907 if (triggerpos < 0)
908 triggerpos = 0;
909
910 /* Find in which cluster the trigger occured. */
911 triggerts = triggerpos / 7;
912 }
913
914 /* For each ts. */
915 for (i = 0; i < 64; ++i) {
916 ts = *(uint16_t *) &buf[i * 16];
917 tsdiff = ts - *lastts;
918 *lastts = ts;
919
920 /* Decode partial chunk. */
921 if (limit_chunk && ts > limit_chunk)
922 return SR_OK;
923
924 /* Pad last sample up to current point. */
925 numpad = tsdiff * devc->samples_per_event - clustersize;
926 if (numpad > 0) {
927 for (j = 0; j < numpad; ++j)
928 samples[j] = *lastsample;
929
930 n = numpad;
931 }
932
933 /* Send samples between previous and this timestamp to sigrok. */
934 sent = 0;
935 while (sent < n) {
936 tosend = MIN(2048, n - sent);
937
938 packet.type = SR_DF_LOGIC;
939 packet.payload = &logic;
940 logic.length = tosend * sizeof(uint16_t);
941 logic.unitsize = 2;
942 logic.data = samples + sent;
943 sr_session_send(devc->session_dev_id, &packet);
944
945 sent += tosend;
946 }
947 n = 0;
948
949 event = (uint16_t *) &buf[i * 16 + 2];
950 cur_sample = 0;
951
952 /* For each event in cluster. */
953 for (j = 0; j < 7; ++j) {
954
955 /* For each sample in event. */
956 for (k = 0; k < devc->samples_per_event; ++k) {
957 cur_sample = 0;
958
959 /* For each probe. */
960 for (l = 0; l < devc->num_probes; ++l)
961 cur_sample |= (!!(event[j] & (1 << (l *
962 devc->samples_per_event + k)))) << l;
963
964 samples[n++] = cur_sample;
965 }
966 }
967
968 /* Send data up to trigger point (if triggered). */
969 sent = 0;
970 if (i == triggerts) {
971 /*
972 * Trigger is not always accurate to sample because of
973 * pipeline delay. However, it always triggers before
974 * the actual event. We therefore look at the next
975 * samples to pinpoint the exact position of the trigger.
976 */
977 tosend = get_trigger_offset(samples, *lastsample,
978 &devc->trigger);
979
980 if (tosend > 0) {
981 packet.type = SR_DF_LOGIC;
982 packet.payload = &logic;
983 logic.length = tosend * sizeof(uint16_t);
984 logic.unitsize = 2;
985 logic.data = samples;
986 sr_session_send(devc->session_dev_id, &packet);
987
988 sent += tosend;
989 }
990
991 /* Only send trigger if explicitly enabled. */
992 if (devc->use_triggers) {
993 packet.type = SR_DF_TRIGGER;
994 sr_session_send(devc->session_dev_id, &packet);
995 }
996 }
997
998 /* Send rest of the chunk to sigrok. */
999 tosend = n - sent;
1000
1001 if (tosend > 0) {
1002 packet.type = SR_DF_LOGIC;
1003 packet.payload = &logic;
1004 logic.length = tosend * sizeof(uint16_t);
1005 logic.unitsize = 2;
1006 logic.data = samples + sent;
1007 sr_session_send(devc->session_dev_id, &packet);
1008 }
1009
1010 *lastsample = samples[n - 1];
1011 }
1012
1013 return SR_OK;
1014}
1015
1016static int receive_data(int fd, int revents, void *cb_data)
1017{
1018 struct sr_dev_inst *sdi = cb_data;
1019 struct dev_context *devc = sdi->priv;
1020 struct sr_datafeed_packet packet;
1021 const int chunks_per_read = 32;
1022 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1023 int bufsz, numchunks, i, newchunks;
1024 uint64_t running_msec;
1025 struct timeval tv;
1026
1027 (void)fd;
1028 (void)revents;
1029
1030 /* Get the current position. */
1031 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1032
1033 numchunks = (devc->state.stoppos + 511) / 512;
1034
1035 if (devc->state.state == SIGMA_IDLE)
1036 return TRUE;
1037
1038 if (devc->state.state == SIGMA_CAPTURE) {
1039 /* Check if the timer has expired, or memory is full. */
1040 gettimeofday(&tv, 0);
1041 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1042 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1043
1044 if (running_msec < devc->limit_msec && numchunks < 32767)
1045 return TRUE; /* While capturing... */
1046 else
1047 hw_dev_acquisition_stop(sdi, sdi);
1048
1049 }
1050
1051 if (devc->state.state == SIGMA_DOWNLOAD) {
1052 if (devc->state.chunks_downloaded >= numchunks) {
1053 /* End of samples. */
1054 packet.type = SR_DF_END;
1055 sr_session_send(devc->session_dev_id, &packet);
1056
1057 devc->state.state = SIGMA_IDLE;
1058
1059 return TRUE;
1060 }
1061
1062 newchunks = MIN(chunks_per_read,
1063 numchunks - devc->state.chunks_downloaded);
1064
1065 sr_info("Downloading sample data: %.0f %%.",
1066 100.0 * devc->state.chunks_downloaded / numchunks);
1067
1068 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1069 newchunks, buf, devc);
1070 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1071 (void)bufsz;
1072
1073 /* Find first ts. */
1074 if (devc->state.chunks_downloaded == 0) {
1075 devc->state.lastts = *(uint16_t *) buf - 1;
1076 devc->state.lastsample = 0;
1077 }
1078
1079 /* Decode chunks and send them to sigrok. */
1080 for (i = 0; i < newchunks; ++i) {
1081 int limit_chunk = 0;
1082
1083 /* The last chunk may potentially be only in part. */
1084 if (devc->state.chunks_downloaded == numchunks - 1) {
1085 /* Find the last valid timestamp */
1086 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1087 }
1088
1089 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1090 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1091 &devc->state.lastts,
1092 &devc->state.lastsample,
1093 devc->state.triggerpos & 0x1ff,
1094 limit_chunk, sdi);
1095 else
1096 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1097 &devc->state.lastts,
1098 &devc->state.lastsample,
1099 -1, limit_chunk, sdi);
1100
1101 ++devc->state.chunks_downloaded;
1102 }
1103 }
1104
1105 return TRUE;
1106}
1107
1108/* Build a LUT entry used by the trigger functions. */
1109static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1110{
1111 int i, j, k, bit;
1112
1113 /* For each quad probe. */
1114 for (i = 0; i < 4; ++i) {
1115 entry[i] = 0xffff;
1116
1117 /* For each bit in LUT. */
1118 for (j = 0; j < 16; ++j)
1119
1120 /* For each probe in quad. */
1121 for (k = 0; k < 4; ++k) {
1122 bit = 1 << (i * 4 + k);
1123
1124 /* Set bit in entry */
1125 if ((mask & bit) &&
1126 ((!(value & bit)) !=
1127 (!(j & (1 << k)))))
1128 entry[i] &= ~(1 << j);
1129 }
1130 }
1131}
1132
1133/* Add a logical function to LUT mask. */
1134static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1135 int index, int neg, uint16_t *mask)
1136{
1137 int i, j;
1138 int x[2][2], tmp, a, b, aset, bset, rset;
1139
1140 memset(x, 0, 4 * sizeof(int));
1141
1142 /* Trigger detect condition. */
1143 switch (oper) {
1144 case OP_LEVEL:
1145 x[0][1] = 1;
1146 x[1][1] = 1;
1147 break;
1148 case OP_NOT:
1149 x[0][0] = 1;
1150 x[1][0] = 1;
1151 break;
1152 case OP_RISE:
1153 x[0][1] = 1;
1154 break;
1155 case OP_FALL:
1156 x[1][0] = 1;
1157 break;
1158 case OP_RISEFALL:
1159 x[0][1] = 1;
1160 x[1][0] = 1;
1161 break;
1162 case OP_NOTRISE:
1163 x[1][1] = 1;
1164 x[0][0] = 1;
1165 x[1][0] = 1;
1166 break;
1167 case OP_NOTFALL:
1168 x[1][1] = 1;
1169 x[0][0] = 1;
1170 x[0][1] = 1;
1171 break;
1172 case OP_NOTRISEFALL:
1173 x[1][1] = 1;
1174 x[0][0] = 1;
1175 break;
1176 }
1177
1178 /* Transpose if neg is set. */
1179 if (neg) {
1180 for (i = 0; i < 2; ++i) {
1181 for (j = 0; j < 2; ++j) {
1182 tmp = x[i][j];
1183 x[i][j] = x[1-i][1-j];
1184 x[1-i][1-j] = tmp;
1185 }
1186 }
1187 }
1188
1189 /* Update mask with function. */
1190 for (i = 0; i < 16; ++i) {
1191 a = (i >> (2 * index + 0)) & 1;
1192 b = (i >> (2 * index + 1)) & 1;
1193
1194 aset = (*mask >> i) & 1;
1195 bset = x[b][a];
1196
1197 if (func == FUNC_AND || func == FUNC_NAND)
1198 rset = aset & bset;
1199 else if (func == FUNC_OR || func == FUNC_NOR)
1200 rset = aset | bset;
1201 else if (func == FUNC_XOR || func == FUNC_NXOR)
1202 rset = aset ^ bset;
1203
1204 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1205 rset = !rset;
1206
1207 *mask &= ~(1 << i);
1208
1209 if (rset)
1210 *mask |= 1 << i;
1211 }
1212}
1213
1214/*
1215 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1216 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1217 * set at any time, but a full mask and value can be set (0/1).
1218 */
1219static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1220{
1221 int i,j;
1222 uint16_t masks[2] = { 0, 0 };
1223
1224 memset(lut, 0, sizeof(struct triggerlut));
1225
1226 /* Contant for simple triggers. */
1227 lut->m4 = 0xa000;
1228
1229 /* Value/mask trigger support. */
1230 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1231 lut->m2d);
1232
1233 /* Rise/fall trigger support. */
1234 for (i = 0, j = 0; i < 16; ++i) {
1235 if (devc->trigger.risingmask & (1 << i) ||
1236 devc->trigger.fallingmask & (1 << i))
1237 masks[j++] = 1 << i;
1238 }
1239
1240 build_lut_entry(masks[0], masks[0], lut->m0d);
1241 build_lut_entry(masks[1], masks[1], lut->m1d);
1242
1243 /* Add glue logic */
1244 if (masks[0] || masks[1]) {
1245 /* Transition trigger. */
1246 if (masks[0] & devc->trigger.risingmask)
1247 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1248 if (masks[0] & devc->trigger.fallingmask)
1249 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1250 if (masks[1] & devc->trigger.risingmask)
1251 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1252 if (masks[1] & devc->trigger.fallingmask)
1253 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1254 } else {
1255 /* Only value/mask trigger. */
1256 lut->m3 = 0xffff;
1257 }
1258
1259 /* Triggertype: event. */
1260 lut->params.selres = 3;
1261
1262 return SR_OK;
1263}
1264
1265static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1266 void *cb_data)
1267{
1268 struct dev_context *devc;
1269 struct clockselect_50 clockselect;
1270 int frac, triggerpin, ret;
1271 uint8_t triggerselect = 0;
1272 struct triggerinout triggerinout_conf;
1273 struct triggerlut lut;
1274
1275 devc = sdi->priv;
1276
1277 if (configure_probes(sdi) != SR_OK) {
1278 sr_err("Failed to configure probes.");
1279 return SR_ERR;
1280 }
1281
1282 /* If the samplerate has not been set, default to 200 kHz. */
1283 if (devc->cur_firmware == -1) {
1284 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1285 return ret;
1286 }
1287
1288 /* Enter trigger programming mode. */
1289 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1290
1291 /* 100 and 200 MHz mode. */
1292 if (devc->cur_samplerate >= SR_MHZ(100)) {
1293 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1294
1295 /* Find which pin to trigger on from mask. */
1296 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1297 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1298 (1 << triggerpin))
1299 break;
1300
1301 /* Set trigger pin and light LED on trigger. */
1302 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1303
1304 /* Default rising edge. */
1305 if (devc->trigger.fallingmask)
1306 triggerselect |= 1 << 3;
1307
1308 /* All other modes. */
1309 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1310 build_basic_trigger(&lut, devc);
1311
1312 sigma_write_trigger_lut(&lut, devc);
1313
1314 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1315 }
1316
1317 /* Setup trigger in and out pins to default values. */
1318 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1319 triggerinout_conf.trgout_bytrigger = 1;
1320 triggerinout_conf.trgout_enable = 1;
1321
1322 sigma_write_register(WRITE_TRIGGER_OPTION,
1323 (uint8_t *) &triggerinout_conf,
1324 sizeof(struct triggerinout), devc);
1325
1326 /* Go back to normal mode. */
1327 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1328
1329 /* Set clock select register. */
1330 if (devc->cur_samplerate == SR_MHZ(200))
1331 /* Enable 4 probes. */
1332 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1333 else if (devc->cur_samplerate == SR_MHZ(100))
1334 /* Enable 8 probes. */
1335 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1336 else {
1337 /*
1338 * 50 MHz mode (or fraction thereof). Any fraction down to
1339 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1340 */
1341 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1342
1343 clockselect.async = 0;
1344 clockselect.fraction = frac;
1345 clockselect.disabled_probes = 0;
1346
1347 sigma_write_register(WRITE_CLOCK_SELECT,
1348 (uint8_t *) &clockselect,
1349 sizeof(clockselect), devc);
1350 }
1351
1352 /* Setup maximum post trigger time. */
1353 sigma_set_register(WRITE_POST_TRIGGER,
1354 (devc->capture_ratio * 255) / 100, devc);
1355
1356 /* Start acqusition. */
1357 gettimeofday(&devc->start_tv, 0);
1358 sigma_set_register(WRITE_MODE, 0x0d, devc);
1359
1360 devc->session_dev_id = cb_data;
1361
1362 /* Send header packet to the session bus. */
1363 std_session_send_df_header(cb_data, DRIVER_LOG_DOMAIN);
1364
1365 /* Add capture source. */
1366 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1367
1368 devc->state.state = SIGMA_CAPTURE;
1369
1370 return SR_OK;
1371}
1372
1373static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1374{
1375 struct dev_context *devc;
1376 uint8_t modestatus;
1377
1378 (void)cb_data;
1379
1380 sr_source_remove(0);
1381
1382 if (!(devc = sdi->priv)) {
1383 sr_err("%s: sdi->priv was NULL", __func__);
1384 return SR_ERR_BUG;
1385 }
1386
1387 /* Stop acquisition. */
1388 sigma_set_register(WRITE_MODE, 0x11, devc);
1389
1390 /* Set SDRAM Read Enable. */
1391 sigma_set_register(WRITE_MODE, 0x02, devc);
1392
1393 /* Get the current position. */
1394 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1395
1396 /* Check if trigger has fired. */
1397 modestatus = sigma_get_register(READ_MODE, devc);
1398 if (modestatus & 0x20)
1399 devc->state.triggerchunk = devc->state.triggerpos / 512;
1400 else
1401 devc->state.triggerchunk = -1;
1402
1403 devc->state.chunks_downloaded = 0;
1404
1405 devc->state.state = SIGMA_DOWNLOAD;
1406
1407 return SR_OK;
1408}
1409
1410SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1411 .name = "asix-sigma",
1412 .longname = "ASIX SIGMA/SIGMA2",
1413 .api_version = 1,
1414 .init = hw_init,
1415 .cleanup = hw_cleanup,
1416 .scan = hw_scan,
1417 .dev_list = hw_dev_list,
1418 .dev_clear = clear_instances,
1419 .config_get = config_get,
1420 .config_set = config_set,
1421 .config_list = config_list,
1422 .dev_open = hw_dev_open,
1423 .dev_close = hw_dev_close,
1424 .dev_acquisition_start = hw_dev_acquisition_start,
1425 .dev_acquisition_stop = hw_dev_acquisition_stop,
1426 .priv = NULL,
1427};