]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
alsa: Find supported samplerates during device scan
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPES "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *di = &asix_sigma_driver_info;
45static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47static const uint64_t supported_samplerates[] = {
48 SR_KHZ(200),
49 SR_KHZ(250),
50 SR_KHZ(500),
51 SR_MHZ(1),
52 SR_MHZ(5),
53 SR_MHZ(10),
54 SR_MHZ(25),
55 SR_MHZ(50),
56 SR_MHZ(100),
57 SR_MHZ(200),
58 0,
59};
60
61/*
62 * Probe numbers seem to go from 1-16, according to this image:
63 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64 * (the cable has two additional GND pins, and a TI and TO pin)
65 */
66static const char *probe_names[NUM_PROBES + 1] = {
67 "1", "2", "3", "4", "5", "6", "7", "8",
68 "9", "10", "11", "12", "13", "14", "15", "16",
69 NULL,
70};
71
72static const struct sr_samplerates samplerates = {
73 0,
74 0,
75 0,
76 supported_samplerates,
77};
78
79static const int hwcaps[] = {
80 SR_HWCAP_LOGIC_ANALYZER,
81 SR_HWCAP_SAMPLERATE,
82 SR_HWCAP_CAPTURE_RATIO,
83
84 SR_HWCAP_LIMIT_MSEC,
85 0,
86};
87
88/* Force the FPGA to reboot. */
89static uint8_t suicide[] = {
90 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91};
92
93/* Prepare to upload firmware (FPGA specific). */
94static uint8_t init[] = {
95 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96};
97
98/* Initialize the logic analyzer mode. */
99static uint8_t logic_mode_start[] = {
100 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102};
103
104static const char *firmware_files[] = {
105 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
106 "asix-sigma-100.fw", /* 100 MHz */
107 "asix-sigma-200.fw", /* 200 MHz */
108 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109 "asix-sigma-phasor.fw", /* Frequency counter */
110};
111
112static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113{
114 int ret;
115
116 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117 if (ret < 0) {
118 sr_err("ftdi_read_data failed: %s",
119 ftdi_get_error_string(&devc->ftdic));
120 }
121
122 return ret;
123}
124
125static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126{
127 int ret;
128
129 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130 if (ret < 0) {
131 sr_err("ftdi_write_data failed: %s",
132 ftdi_get_error_string(&devc->ftdic));
133 } else if ((size_t) ret != size) {
134 sr_err("ftdi_write_data did not complete write.");
135 }
136
137 return ret;
138}
139
140static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141 struct dev_context *devc)
142{
143 size_t i;
144 uint8_t buf[len + 2];
145 int idx = 0;
146
147 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150 for (i = 0; i < len; ++i) {
151 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153 }
154
155 return sigma_write(buf, idx, devc);
156}
157
158static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159{
160 return sigma_write_register(reg, &value, 1, devc);
161}
162
163static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164 struct dev_context *devc)
165{
166 uint8_t buf[3];
167
168 buf[0] = REG_ADDR_LOW | (reg & 0xf);
169 buf[1] = REG_ADDR_HIGH | (reg >> 4);
170 buf[2] = REG_READ_ADDR;
171
172 sigma_write(buf, sizeof(buf), devc);
173
174 return sigma_read(data, len, devc);
175}
176
177static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178{
179 uint8_t value;
180
181 if (1 != sigma_read_register(reg, &value, 1, devc)) {
182 sr_err("sigma_get_register: 1 byte expected");
183 return 0;
184 }
185
186 return value;
187}
188
189static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190 struct dev_context *devc)
191{
192 uint8_t buf[] = {
193 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195 REG_READ_ADDR | NEXT_REG,
196 REG_READ_ADDR | NEXT_REG,
197 REG_READ_ADDR | NEXT_REG,
198 REG_READ_ADDR | NEXT_REG,
199 REG_READ_ADDR | NEXT_REG,
200 REG_READ_ADDR | NEXT_REG,
201 };
202 uint8_t result[6];
203
204 sigma_write(buf, sizeof(buf), devc);
205
206 sigma_read(result, sizeof(result), devc);
207
208 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211 /* Not really sure why this must be done, but according to spec. */
212 if ((--*stoppos & 0x1ff) == 0x1ff)
213 stoppos -= 64;
214
215 if ((*--triggerpos & 0x1ff) == 0x1ff)
216 triggerpos -= 64;
217
218 return 1;
219}
220
221static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222 uint8_t *data, struct dev_context *devc)
223{
224 size_t i;
225 uint8_t buf[4096];
226 int idx = 0;
227
228 /* Send the startchunk. Index start with 1. */
229 buf[0] = startchunk >> 8;
230 buf[1] = startchunk & 0xff;
231 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233 /* Read the DRAM. */
234 buf[idx++] = REG_DRAM_BLOCK;
235 buf[idx++] = REG_DRAM_WAIT_ACK;
236
237 for (i = 0; i < numchunks; ++i) {
238 /* Alternate bit to copy from DRAM to cache. */
239 if (i != (numchunks - 1))
240 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244 if (i != (numchunks - 1))
245 buf[idx++] = REG_DRAM_WAIT_ACK;
246 }
247
248 sigma_write(buf, idx, devc);
249
250 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251}
252
253/* Upload trigger look-up tables to Sigma. */
254static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255{
256 int i;
257 uint8_t tmp[2];
258 uint16_t bit;
259
260 /* Transpose the table and send to Sigma. */
261 for (i = 0; i < 16; ++i) {
262 bit = 1 << i;
263
264 tmp[0] = tmp[1] = 0;
265
266 if (lut->m2d[0] & bit)
267 tmp[0] |= 0x01;
268 if (lut->m2d[1] & bit)
269 tmp[0] |= 0x02;
270 if (lut->m2d[2] & bit)
271 tmp[0] |= 0x04;
272 if (lut->m2d[3] & bit)
273 tmp[0] |= 0x08;
274
275 if (lut->m3 & bit)
276 tmp[0] |= 0x10;
277 if (lut->m3s & bit)
278 tmp[0] |= 0x20;
279 if (lut->m4 & bit)
280 tmp[0] |= 0x40;
281
282 if (lut->m0d[0] & bit)
283 tmp[1] |= 0x01;
284 if (lut->m0d[1] & bit)
285 tmp[1] |= 0x02;
286 if (lut->m0d[2] & bit)
287 tmp[1] |= 0x04;
288 if (lut->m0d[3] & bit)
289 tmp[1] |= 0x08;
290
291 if (lut->m1d[0] & bit)
292 tmp[1] |= 0x10;
293 if (lut->m1d[1] & bit)
294 tmp[1] |= 0x20;
295 if (lut->m1d[2] & bit)
296 tmp[1] |= 0x40;
297 if (lut->m1d[3] & bit)
298 tmp[1] |= 0x80;
299
300 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301 devc);
302 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303 }
304
305 /* Send the parameters */
306 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307 sizeof(lut->params), devc);
308
309 return SR_OK;
310}
311
312/* Generate the bitbang stream for programming the FPGA. */
313static int bin2bitbang(const char *filename,
314 unsigned char **buf, size_t *buf_size)
315{
316 FILE *f;
317 unsigned long file_size;
318 unsigned long offset = 0;
319 unsigned char *p;
320 uint8_t *firmware;
321 unsigned long fwsize = 0;
322 const int buffer_size = 65536;
323 size_t i;
324 int c, bit, v;
325 uint32_t imm = 0x3f6df2ab;
326
327 f = g_fopen(filename, "rb");
328 if (!f) {
329 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330 return SR_ERR;
331 }
332
333 if (-1 == fseek(f, 0, SEEK_END)) {
334 sr_err("fseek on %s failed", filename);
335 fclose(f);
336 return SR_ERR;
337 }
338
339 file_size = ftell(f);
340
341 fseek(f, 0, SEEK_SET);
342
343 if (!(firmware = g_try_malloc(buffer_size))) {
344 sr_err("%s: firmware malloc failed", __func__);
345 fclose(f);
346 return SR_ERR_MALLOC;
347 }
348
349 while ((c = getc(f)) != EOF) {
350 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351 firmware[fwsize++] = c ^ imm;
352 }
353 fclose(f);
354
355 if(fwsize != file_size) {
356 sr_err("%s: Error reading firmware", filename);
357 fclose(f);
358 g_free(firmware);
359 return SR_ERR;
360 }
361
362 *buf_size = fwsize * 2 * 8;
363
364 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365 if (!p) {
366 sr_err("%s: buf/p malloc failed", __func__);
367 g_free(firmware);
368 return SR_ERR_MALLOC;
369 }
370
371 for (i = 0; i < fwsize; ++i) {
372 for (bit = 7; bit >= 0; --bit) {
373 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374 p[offset++] = v | 0x01;
375 p[offset++] = v;
376 }
377 }
378
379 g_free(firmware);
380
381 if (offset != *buf_size) {
382 g_free(*buf);
383 sr_err("Error reading firmware %s "
384 "offset=%ld, file_size=%ld, buf_size=%zd.",
385 filename, offset, file_size, *buf_size);
386
387 return SR_ERR;
388 }
389
390 return SR_OK;
391}
392
393static int clear_instances(void)
394{
395 GSList *l;
396 struct sr_dev_inst *sdi;
397 struct drv_context *drvc;
398 struct dev_context *devc;
399
400 drvc = di->priv;
401
402 /* Properly close all devices. */
403 for (l = drvc->instances; l; l = l->next) {
404 if (!(sdi = l->data)) {
405 /* Log error, but continue cleaning up the rest. */
406 sr_err("%s: sdi was NULL, continuing", __func__);
407 continue;
408 }
409 if (sdi->priv) {
410 devc = sdi->priv;
411 ftdi_free(&devc->ftdic);
412 }
413 sr_dev_inst_free(sdi);
414 }
415 g_slist_free(drvc->instances);
416 drvc->instances = NULL;
417
418 return SR_OK;
419}
420
421static int hw_init(struct sr_context *sr_ctx)
422{
423 struct drv_context *drvc;
424
425 if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
426 sr_err("Driver context malloc failed.");
427 return SR_ERR_MALLOC;
428 }
429 drvc->sr_ctx = sr_ctx;
430 di->priv = drvc;
431
432 return SR_OK;
433}
434
435static GSList *hw_scan(GSList *options)
436{
437 struct sr_dev_inst *sdi;
438 struct sr_probe *probe;
439 struct drv_context *drvc;
440 struct dev_context *devc;
441 GSList *devices;
442 struct ftdi_device_list *devlist;
443 char serial_txt[10];
444 uint32_t serial;
445 int ret, i;
446
447 (void)options;
448
449 drvc = di->priv;
450 devices = NULL;
451 clear_instances();
452
453 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
454 sr_err("%s: devc malloc failed", __func__);
455 return NULL;
456 }
457
458 ftdi_init(&devc->ftdic);
459
460 /* Look for SIGMAs. */
461
462 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
463 USB_VENDOR, USB_PRODUCT)) <= 0) {
464 if (ret < 0)
465 sr_err("ftdi_usb_find_all(): %d", ret);
466 goto free;
467 }
468
469 /* Make sure it's a version 1 or 2 SIGMA. */
470 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
471 serial_txt, sizeof(serial_txt));
472 sscanf(serial_txt, "%x", &serial);
473
474 if (serial < 0xa6010000 || serial > 0xa602ffff) {
475 sr_err("Only SIGMA and SIGMA2 are supported "
476 "in this version of libsigrok.");
477 goto free;
478 }
479
480 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
481
482 devc->cur_samplerate = 0;
483 devc->period_ps = 0;
484 devc->limit_msec = 0;
485 devc->cur_firmware = -1;
486 devc->num_probes = 0;
487 devc->samples_per_event = 0;
488 devc->capture_ratio = 50;
489 devc->use_triggers = 0;
490
491 /* Register SIGMA device. */
492 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
493 USB_MODEL_NAME, USB_MODEL_VERSION))) {
494 sr_err("%s: sdi was NULL", __func__);
495 goto free;
496 }
497 sdi->driver = di;
498
499 for (i = 0; probe_names[i]; i++) {
500 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
501 probe_names[i])))
502 return NULL;
503 sdi->probes = g_slist_append(sdi->probes, probe);
504 }
505
506 devices = g_slist_append(devices, sdi);
507 drvc->instances = g_slist_append(drvc->instances, sdi);
508 sdi->priv = devc;
509
510 /* We will open the device again when we need it. */
511 ftdi_list_free(&devlist);
512
513 return devices;
514
515free:
516 ftdi_deinit(&devc->ftdic);
517 g_free(devc);
518 return NULL;
519}
520
521static GSList *hw_dev_list(void)
522{
523 struct drv_context *drvc;
524
525 drvc = di->priv;
526
527 return drvc->instances;
528}
529
530static int upload_firmware(int firmware_idx, struct dev_context *devc)
531{
532 int ret;
533 unsigned char *buf;
534 unsigned char pins;
535 size_t buf_size;
536 unsigned char result[32];
537 char firmware_path[128];
538
539 /* Make sure it's an ASIX SIGMA. */
540 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
541 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
542 sr_err("ftdi_usb_open failed: %s",
543 ftdi_get_error_string(&devc->ftdic));
544 return 0;
545 }
546
547 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
548 sr_err("ftdi_set_bitmode failed: %s",
549 ftdi_get_error_string(&devc->ftdic));
550 return 0;
551 }
552
553 /* Four times the speed of sigmalogan - Works well. */
554 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
555 sr_err("ftdi_set_baudrate failed: %s",
556 ftdi_get_error_string(&devc->ftdic));
557 return 0;
558 }
559
560 /* Force the FPGA to reboot. */
561 sigma_write(suicide, sizeof(suicide), devc);
562 sigma_write(suicide, sizeof(suicide), devc);
563 sigma_write(suicide, sizeof(suicide), devc);
564 sigma_write(suicide, sizeof(suicide), devc);
565
566 /* Prepare to upload firmware (FPGA specific). */
567 sigma_write(init, sizeof(init), devc);
568
569 ftdi_usb_purge_buffers(&devc->ftdic);
570
571 /* Wait until the FPGA asserts INIT_B. */
572 while (1) {
573 ret = sigma_read(result, 1, devc);
574 if (result[0] & 0x20)
575 break;
576 }
577
578 /* Prepare firmware. */
579 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
580 firmware_files[firmware_idx]);
581
582 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
583 sr_err("An error occured while reading the firmware: %s",
584 firmware_path);
585 return ret;
586 }
587
588 /* Upload firmare. */
589 sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
590 sigma_write(buf, buf_size, devc);
591
592 g_free(buf);
593
594 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
595 sr_err("ftdi_set_bitmode failed: %s",
596 ftdi_get_error_string(&devc->ftdic));
597 return SR_ERR;
598 }
599
600 ftdi_usb_purge_buffers(&devc->ftdic);
601
602 /* Discard garbage. */
603 while (1 == sigma_read(&pins, 1, devc))
604 ;
605
606 /* Initialize the logic analyzer mode. */
607 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
608
609 /* Expect a 3 byte reply. */
610 ret = sigma_read(result, 3, devc);
611 if (ret != 3 ||
612 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
613 sr_err("Configuration failed. Invalid reply received.");
614 return SR_ERR;
615 }
616
617 devc->cur_firmware = firmware_idx;
618
619 sr_info("Firmware uploaded.");
620
621 return SR_OK;
622}
623
624static int hw_dev_open(struct sr_dev_inst *sdi)
625{
626 struct dev_context *devc;
627 int ret;
628
629 devc = sdi->priv;
630
631 /* Make sure it's an ASIX SIGMA. */
632 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
633 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
634
635 sr_err("ftdi_usb_open failed: %s",
636 ftdi_get_error_string(&devc->ftdic));
637
638 return 0;
639 }
640
641 sdi->status = SR_ST_ACTIVE;
642
643 return SR_OK;
644}
645
646static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
647{
648 int i, ret;
649 struct dev_context *devc = sdi->priv;
650
651 ret = SR_OK;
652
653 for (i = 0; supported_samplerates[i]; i++) {
654 if (supported_samplerates[i] == samplerate)
655 break;
656 }
657 if (supported_samplerates[i] == 0)
658 return SR_ERR_SAMPLERATE;
659
660 if (samplerate <= SR_MHZ(50)) {
661 ret = upload_firmware(0, devc);
662 devc->num_probes = 16;
663 }
664 if (samplerate == SR_MHZ(100)) {
665 ret = upload_firmware(1, devc);
666 devc->num_probes = 8;
667 }
668 else if (samplerate == SR_MHZ(200)) {
669 ret = upload_firmware(2, devc);
670 devc->num_probes = 4;
671 }
672
673 devc->cur_samplerate = samplerate;
674 devc->period_ps = 1000000000000 / samplerate;
675 devc->samples_per_event = 16 / devc->num_probes;
676 devc->state.state = SIGMA_IDLE;
677
678 return ret;
679}
680
681/*
682 * In 100 and 200 MHz mode, only a single pin rising/falling can be
683 * set as trigger. In other modes, two rising/falling triggers can be set,
684 * in addition to value/mask trigger for any number of probes.
685 *
686 * The Sigma supports complex triggers using boolean expressions, but this
687 * has not been implemented yet.
688 */
689static int configure_probes(const struct sr_dev_inst *sdi)
690{
691 struct dev_context *devc = sdi->priv;
692 const struct sr_probe *probe;
693 const GSList *l;
694 int trigger_set = 0;
695 int probebit;
696
697 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
698
699 for (l = sdi->probes; l; l = l->next) {
700 probe = (struct sr_probe *)l->data;
701 probebit = 1 << (probe->index);
702
703 if (!probe->enabled || !probe->trigger)
704 continue;
705
706 if (devc->cur_samplerate >= SR_MHZ(100)) {
707 /* Fast trigger support. */
708 if (trigger_set) {
709 sr_err("Only a single pin trigger in 100 and "
710 "200MHz mode is supported.");
711 return SR_ERR;
712 }
713 if (probe->trigger[0] == 'f')
714 devc->trigger.fallingmask |= probebit;
715 else if (probe->trigger[0] == 'r')
716 devc->trigger.risingmask |= probebit;
717 else {
718 sr_err("Only rising/falling trigger in 100 "
719 "and 200MHz mode is supported.");
720 return SR_ERR;
721 }
722
723 ++trigger_set;
724 } else {
725 /* Simple trigger support (event). */
726 if (probe->trigger[0] == '1') {
727 devc->trigger.simplevalue |= probebit;
728 devc->trigger.simplemask |= probebit;
729 }
730 else if (probe->trigger[0] == '0') {
731 devc->trigger.simplevalue &= ~probebit;
732 devc->trigger.simplemask |= probebit;
733 }
734 else if (probe->trigger[0] == 'f') {
735 devc->trigger.fallingmask |= probebit;
736 ++trigger_set;
737 }
738 else if (probe->trigger[0] == 'r') {
739 devc->trigger.risingmask |= probebit;
740 ++trigger_set;
741 }
742
743 /*
744 * Actually, Sigma supports 2 rising/falling triggers,
745 * but they are ORed and the current trigger syntax
746 * does not permit ORed triggers.
747 */
748 if (trigger_set > 1) {
749 sr_err("Only 1 rising/falling trigger "
750 "is supported.");
751 return SR_ERR;
752 }
753 }
754
755 if (trigger_set)
756 devc->use_triggers = 1;
757 }
758
759 return SR_OK;
760}
761
762static int hw_dev_close(struct sr_dev_inst *sdi)
763{
764 struct dev_context *devc;
765
766 if (!(devc = sdi->priv)) {
767 sr_err("%s: sdi->priv was NULL", __func__);
768 return SR_ERR_BUG;
769 }
770
771 /* TODO */
772 if (sdi->status == SR_ST_ACTIVE)
773 ftdi_usb_close(&devc->ftdic);
774
775 sdi->status = SR_ST_INACTIVE;
776
777 return SR_OK;
778}
779
780static int hw_cleanup(void)
781{
782 if (!di->priv)
783 return SR_OK;
784
785 clear_instances();
786
787 return SR_OK;
788}
789
790static int hw_info_get(int info_id, const void **data,
791 const struct sr_dev_inst *sdi)
792{
793 struct dev_context *devc;
794
795 switch (info_id) {
796 case SR_DI_HWCAPS:
797 *data = hwcaps;
798 break;
799 case SR_DI_NUM_PROBES:
800 *data = GINT_TO_POINTER(NUM_PROBES);
801 break;
802 case SR_DI_PROBE_NAMES:
803 *data = probe_names;
804 break;
805 case SR_DI_SAMPLERATES:
806 *data = &samplerates;
807 break;
808 case SR_DI_TRIGGER_TYPES:
809 *data = (char *)TRIGGER_TYPES;
810 break;
811 case SR_DI_CUR_SAMPLERATE:
812 if (sdi) {
813 devc = sdi->priv;
814 *data = &devc->cur_samplerate;
815 } else
816 return SR_ERR;
817 break;
818 default:
819 return SR_ERR_ARG;
820 }
821
822 return SR_OK;
823}
824
825static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
826 const void *value)
827{
828 struct dev_context *devc;
829 int ret;
830
831 devc = sdi->priv;
832
833 if (hwcap == SR_HWCAP_SAMPLERATE) {
834 ret = set_samplerate(sdi, *(const uint64_t *)value);
835 } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
836 devc->limit_msec = *(const uint64_t *)value;
837 if (devc->limit_msec > 0)
838 ret = SR_OK;
839 else
840 ret = SR_ERR;
841 } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
842 devc->capture_ratio = *(const uint64_t *)value;
843 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
844 ret = SR_ERR;
845 else
846 ret = SR_OK;
847 } else {
848 ret = SR_ERR;
849 }
850
851 return ret;
852}
853
854/* Software trigger to determine exact trigger position. */
855static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
856 struct sigma_trigger *t)
857{
858 int i;
859
860 for (i = 0; i < 8; ++i) {
861 if (i > 0)
862 last_sample = samples[i-1];
863
864 /* Simple triggers. */
865 if ((samples[i] & t->simplemask) != t->simplevalue)
866 continue;
867
868 /* Rising edge. */
869 if ((last_sample & t->risingmask) != 0 || (samples[i] &
870 t->risingmask) != t->risingmask)
871 continue;
872
873 /* Falling edge. */
874 if ((last_sample & t->fallingmask) != t->fallingmask ||
875 (samples[i] & t->fallingmask) != 0)
876 continue;
877
878 break;
879 }
880
881 /* If we did not match, return original trigger pos. */
882 return i & 0x7;
883}
884
885/*
886 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
887 * Each event is 20ns apart, and can contain multiple samples.
888 *
889 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
890 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
891 * For 50 MHz and below, events contain one sample for each channel,
892 * spread 20 ns apart.
893 */
894static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
895 uint16_t *lastsample, int triggerpos,
896 uint16_t limit_chunk, void *cb_data)
897{
898 struct sr_dev_inst *sdi = cb_data;
899 struct dev_context *devc = sdi->priv;
900 uint16_t tsdiff, ts;
901 uint16_t samples[65536 * devc->samples_per_event];
902 struct sr_datafeed_packet packet;
903 struct sr_datafeed_logic logic;
904 int i, j, k, l, numpad, tosend;
905 size_t n = 0, sent = 0;
906 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
907 uint16_t *event;
908 uint16_t cur_sample;
909 int triggerts = -1;
910
911 /* Check if trigger is in this chunk. */
912 if (triggerpos != -1) {
913 if (devc->cur_samplerate <= SR_MHZ(50))
914 triggerpos -= EVENTS_PER_CLUSTER - 1;
915
916 if (triggerpos < 0)
917 triggerpos = 0;
918
919 /* Find in which cluster the trigger occured. */
920 triggerts = triggerpos / 7;
921 }
922
923 /* For each ts. */
924 for (i = 0; i < 64; ++i) {
925 ts = *(uint16_t *) &buf[i * 16];
926 tsdiff = ts - *lastts;
927 *lastts = ts;
928
929 /* Decode partial chunk. */
930 if (limit_chunk && ts > limit_chunk)
931 return SR_OK;
932
933 /* Pad last sample up to current point. */
934 numpad = tsdiff * devc->samples_per_event - clustersize;
935 if (numpad > 0) {
936 for (j = 0; j < numpad; ++j)
937 samples[j] = *lastsample;
938
939 n = numpad;
940 }
941
942 /* Send samples between previous and this timestamp to sigrok. */
943 sent = 0;
944 while (sent < n) {
945 tosend = MIN(2048, n - sent);
946
947 packet.type = SR_DF_LOGIC;
948 packet.payload = &logic;
949 logic.length = tosend * sizeof(uint16_t);
950 logic.unitsize = 2;
951 logic.data = samples + sent;
952 sr_session_send(devc->session_dev_id, &packet);
953
954 sent += tosend;
955 }
956 n = 0;
957
958 event = (uint16_t *) &buf[i * 16 + 2];
959 cur_sample = 0;
960
961 /* For each event in cluster. */
962 for (j = 0; j < 7; ++j) {
963
964 /* For each sample in event. */
965 for (k = 0; k < devc->samples_per_event; ++k) {
966 cur_sample = 0;
967
968 /* For each probe. */
969 for (l = 0; l < devc->num_probes; ++l)
970 cur_sample |= (!!(event[j] & (1 << (l *
971 devc->samples_per_event + k)))) << l;
972
973 samples[n++] = cur_sample;
974 }
975 }
976
977 /* Send data up to trigger point (if triggered). */
978 sent = 0;
979 if (i == triggerts) {
980 /*
981 * Trigger is not always accurate to sample because of
982 * pipeline delay. However, it always triggers before
983 * the actual event. We therefore look at the next
984 * samples to pinpoint the exact position of the trigger.
985 */
986 tosend = get_trigger_offset(samples, *lastsample,
987 &devc->trigger);
988
989 if (tosend > 0) {
990 packet.type = SR_DF_LOGIC;
991 packet.payload = &logic;
992 logic.length = tosend * sizeof(uint16_t);
993 logic.unitsize = 2;
994 logic.data = samples;
995 sr_session_send(devc->session_dev_id, &packet);
996
997 sent += tosend;
998 }
999
1000 /* Only send trigger if explicitly enabled. */
1001 if (devc->use_triggers) {
1002 packet.type = SR_DF_TRIGGER;
1003 sr_session_send(devc->session_dev_id, &packet);
1004 }
1005 }
1006
1007 /* Send rest of the chunk to sigrok. */
1008 tosend = n - sent;
1009
1010 if (tosend > 0) {
1011 packet.type = SR_DF_LOGIC;
1012 packet.payload = &logic;
1013 logic.length = tosend * sizeof(uint16_t);
1014 logic.unitsize = 2;
1015 logic.data = samples + sent;
1016 sr_session_send(devc->session_dev_id, &packet);
1017 }
1018
1019 *lastsample = samples[n - 1];
1020 }
1021
1022 return SR_OK;
1023}
1024
1025static int receive_data(int fd, int revents, void *cb_data)
1026{
1027 struct sr_dev_inst *sdi = cb_data;
1028 struct dev_context *devc = sdi->priv;
1029 struct sr_datafeed_packet packet;
1030 const int chunks_per_read = 32;
1031 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1032 int bufsz, numchunks, i, newchunks;
1033 uint64_t running_msec;
1034 struct timeval tv;
1035
1036 (void)fd;
1037 (void)revents;
1038
1039 /* Get the current position. */
1040 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1041
1042 numchunks = (devc->state.stoppos + 511) / 512;
1043
1044 if (devc->state.state == SIGMA_IDLE)
1045 return TRUE;
1046
1047 if (devc->state.state == SIGMA_CAPTURE) {
1048 /* Check if the timer has expired, or memory is full. */
1049 gettimeofday(&tv, 0);
1050 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1051 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1052
1053 if (running_msec < devc->limit_msec && numchunks < 32767)
1054 return TRUE; /* While capturing... */
1055 else
1056 hw_dev_acquisition_stop(sdi, sdi);
1057
1058 }
1059
1060 if (devc->state.state == SIGMA_DOWNLOAD) {
1061 if (devc->state.chunks_downloaded >= numchunks) {
1062 /* End of samples. */
1063 packet.type = SR_DF_END;
1064 sr_session_send(devc->session_dev_id, &packet);
1065
1066 devc->state.state = SIGMA_IDLE;
1067
1068 return TRUE;
1069 }
1070
1071 newchunks = MIN(chunks_per_read,
1072 numchunks - devc->state.chunks_downloaded);
1073
1074 sr_info("Downloading sample data: %.0f %%.",
1075 100.0 * devc->state.chunks_downloaded / numchunks);
1076
1077 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1078 newchunks, buf, devc);
1079 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1080 (void)bufsz;
1081
1082 /* Find first ts. */
1083 if (devc->state.chunks_downloaded == 0) {
1084 devc->state.lastts = *(uint16_t *) buf - 1;
1085 devc->state.lastsample = 0;
1086 }
1087
1088 /* Decode chunks and send them to sigrok. */
1089 for (i = 0; i < newchunks; ++i) {
1090 int limit_chunk = 0;
1091
1092 /* The last chunk may potentially be only in part. */
1093 if (devc->state.chunks_downloaded == numchunks - 1) {
1094 /* Find the last valid timestamp */
1095 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1096 }
1097
1098 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1099 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1100 &devc->state.lastts,
1101 &devc->state.lastsample,
1102 devc->state.triggerpos & 0x1ff,
1103 limit_chunk, sdi);
1104 else
1105 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1106 &devc->state.lastts,
1107 &devc->state.lastsample,
1108 -1, limit_chunk, sdi);
1109
1110 ++devc->state.chunks_downloaded;
1111 }
1112 }
1113
1114 return TRUE;
1115}
1116
1117/* Build a LUT entry used by the trigger functions. */
1118static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1119{
1120 int i, j, k, bit;
1121
1122 /* For each quad probe. */
1123 for (i = 0; i < 4; ++i) {
1124 entry[i] = 0xffff;
1125
1126 /* For each bit in LUT. */
1127 for (j = 0; j < 16; ++j)
1128
1129 /* For each probe in quad. */
1130 for (k = 0; k < 4; ++k) {
1131 bit = 1 << (i * 4 + k);
1132
1133 /* Set bit in entry */
1134 if ((mask & bit) &&
1135 ((!(value & bit)) !=
1136 (!(j & (1 << k)))))
1137 entry[i] &= ~(1 << j);
1138 }
1139 }
1140}
1141
1142/* Add a logical function to LUT mask. */
1143static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1144 int index, int neg, uint16_t *mask)
1145{
1146 int i, j;
1147 int x[2][2], tmp, a, b, aset, bset, rset;
1148
1149 memset(x, 0, 4 * sizeof(int));
1150
1151 /* Trigger detect condition. */
1152 switch (oper) {
1153 case OP_LEVEL:
1154 x[0][1] = 1;
1155 x[1][1] = 1;
1156 break;
1157 case OP_NOT:
1158 x[0][0] = 1;
1159 x[1][0] = 1;
1160 break;
1161 case OP_RISE:
1162 x[0][1] = 1;
1163 break;
1164 case OP_FALL:
1165 x[1][0] = 1;
1166 break;
1167 case OP_RISEFALL:
1168 x[0][1] = 1;
1169 x[1][0] = 1;
1170 break;
1171 case OP_NOTRISE:
1172 x[1][1] = 1;
1173 x[0][0] = 1;
1174 x[1][0] = 1;
1175 break;
1176 case OP_NOTFALL:
1177 x[1][1] = 1;
1178 x[0][0] = 1;
1179 x[0][1] = 1;
1180 break;
1181 case OP_NOTRISEFALL:
1182 x[1][1] = 1;
1183 x[0][0] = 1;
1184 break;
1185 }
1186
1187 /* Transpose if neg is set. */
1188 if (neg) {
1189 for (i = 0; i < 2; ++i) {
1190 for (j = 0; j < 2; ++j) {
1191 tmp = x[i][j];
1192 x[i][j] = x[1-i][1-j];
1193 x[1-i][1-j] = tmp;
1194 }
1195 }
1196 }
1197
1198 /* Update mask with function. */
1199 for (i = 0; i < 16; ++i) {
1200 a = (i >> (2 * index + 0)) & 1;
1201 b = (i >> (2 * index + 1)) & 1;
1202
1203 aset = (*mask >> i) & 1;
1204 bset = x[b][a];
1205
1206 if (func == FUNC_AND || func == FUNC_NAND)
1207 rset = aset & bset;
1208 else if (func == FUNC_OR || func == FUNC_NOR)
1209 rset = aset | bset;
1210 else if (func == FUNC_XOR || func == FUNC_NXOR)
1211 rset = aset ^ bset;
1212
1213 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1214 rset = !rset;
1215
1216 *mask &= ~(1 << i);
1217
1218 if (rset)
1219 *mask |= 1 << i;
1220 }
1221}
1222
1223/*
1224 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1225 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1226 * set at any time, but a full mask and value can be set (0/1).
1227 */
1228static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1229{
1230 int i,j;
1231 uint16_t masks[2] = { 0, 0 };
1232
1233 memset(lut, 0, sizeof(struct triggerlut));
1234
1235 /* Contant for simple triggers. */
1236 lut->m4 = 0xa000;
1237
1238 /* Value/mask trigger support. */
1239 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1240 lut->m2d);
1241
1242 /* Rise/fall trigger support. */
1243 for (i = 0, j = 0; i < 16; ++i) {
1244 if (devc->trigger.risingmask & (1 << i) ||
1245 devc->trigger.fallingmask & (1 << i))
1246 masks[j++] = 1 << i;
1247 }
1248
1249 build_lut_entry(masks[0], masks[0], lut->m0d);
1250 build_lut_entry(masks[1], masks[1], lut->m1d);
1251
1252 /* Add glue logic */
1253 if (masks[0] || masks[1]) {
1254 /* Transition trigger. */
1255 if (masks[0] & devc->trigger.risingmask)
1256 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1257 if (masks[0] & devc->trigger.fallingmask)
1258 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1259 if (masks[1] & devc->trigger.risingmask)
1260 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1261 if (masks[1] & devc->trigger.fallingmask)
1262 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1263 } else {
1264 /* Only value/mask trigger. */
1265 lut->m3 = 0xffff;
1266 }
1267
1268 /* Triggertype: event. */
1269 lut->params.selres = 3;
1270
1271 return SR_OK;
1272}
1273
1274static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1275 void *cb_data)
1276{
1277 struct dev_context *devc;
1278 struct sr_datafeed_packet *packet;
1279 struct sr_datafeed_header *header;
1280 struct sr_datafeed_meta_logic meta;
1281 struct clockselect_50 clockselect;
1282 int frac, triggerpin, ret;
1283 uint8_t triggerselect = 0;
1284 struct triggerinout triggerinout_conf;
1285 struct triggerlut lut;
1286
1287 devc = sdi->priv;
1288
1289 if (configure_probes(sdi) != SR_OK) {
1290 sr_err("Failed to configure probes.");
1291 return SR_ERR;
1292 }
1293
1294 /* If the samplerate has not been set, default to 200 kHz. */
1295 if (devc->cur_firmware == -1) {
1296 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1297 return ret;
1298 }
1299
1300 /* Enter trigger programming mode. */
1301 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1302
1303 /* 100 and 200 MHz mode. */
1304 if (devc->cur_samplerate >= SR_MHZ(100)) {
1305 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1306
1307 /* Find which pin to trigger on from mask. */
1308 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1309 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1310 (1 << triggerpin))
1311 break;
1312
1313 /* Set trigger pin and light LED on trigger. */
1314 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1315
1316 /* Default rising edge. */
1317 if (devc->trigger.fallingmask)
1318 triggerselect |= 1 << 3;
1319
1320 /* All other modes. */
1321 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1322 build_basic_trigger(&lut, devc);
1323
1324 sigma_write_trigger_lut(&lut, devc);
1325
1326 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1327 }
1328
1329 /* Setup trigger in and out pins to default values. */
1330 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1331 triggerinout_conf.trgout_bytrigger = 1;
1332 triggerinout_conf.trgout_enable = 1;
1333
1334 sigma_write_register(WRITE_TRIGGER_OPTION,
1335 (uint8_t *) &triggerinout_conf,
1336 sizeof(struct triggerinout), devc);
1337
1338 /* Go back to normal mode. */
1339 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1340
1341 /* Set clock select register. */
1342 if (devc->cur_samplerate == SR_MHZ(200))
1343 /* Enable 4 probes. */
1344 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1345 else if (devc->cur_samplerate == SR_MHZ(100))
1346 /* Enable 8 probes. */
1347 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1348 else {
1349 /*
1350 * 50 MHz mode (or fraction thereof). Any fraction down to
1351 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1352 */
1353 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1354
1355 clockselect.async = 0;
1356 clockselect.fraction = frac;
1357 clockselect.disabled_probes = 0;
1358
1359 sigma_write_register(WRITE_CLOCK_SELECT,
1360 (uint8_t *) &clockselect,
1361 sizeof(clockselect), devc);
1362 }
1363
1364 /* Setup maximum post trigger time. */
1365 sigma_set_register(WRITE_POST_TRIGGER,
1366 (devc->capture_ratio * 255) / 100, devc);
1367
1368 /* Start acqusition. */
1369 gettimeofday(&devc->start_tv, 0);
1370 sigma_set_register(WRITE_MODE, 0x0d, devc);
1371
1372 devc->session_dev_id = cb_data;
1373
1374 if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1375 sr_err("%s: packet malloc failed.", __func__);
1376 return SR_ERR_MALLOC;
1377 }
1378
1379 if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1380 sr_err("%s: header malloc failed.", __func__);
1381 return SR_ERR_MALLOC;
1382 }
1383
1384 /* Send header packet to the session bus. */
1385 packet->type = SR_DF_HEADER;
1386 packet->payload = header;
1387 header->feed_version = 1;
1388 gettimeofday(&header->starttime, NULL);
1389 sr_session_send(devc->session_dev_id, packet);
1390
1391 /* Send metadata about the SR_DF_LOGIC packets to come. */
1392 packet->type = SR_DF_META_LOGIC;
1393 packet->payload = &meta;
1394 meta.samplerate = devc->cur_samplerate;
1395 meta.num_probes = devc->num_probes;
1396 sr_session_send(devc->session_dev_id, packet);
1397
1398 /* Add capture source. */
1399 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1400
1401 g_free(header);
1402 g_free(packet);
1403
1404 devc->state.state = SIGMA_CAPTURE;
1405
1406 return SR_OK;
1407}
1408
1409static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1410{
1411 struct dev_context *devc;
1412 uint8_t modestatus;
1413
1414 (void)cb_data;
1415
1416 sr_source_remove(0);
1417
1418 if (!(devc = sdi->priv)) {
1419 sr_err("%s: sdi->priv was NULL", __func__);
1420 return SR_ERR_BUG;
1421 }
1422
1423 /* Stop acquisition. */
1424 sigma_set_register(WRITE_MODE, 0x11, devc);
1425
1426 /* Set SDRAM Read Enable. */
1427 sigma_set_register(WRITE_MODE, 0x02, devc);
1428
1429 /* Get the current position. */
1430 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1431
1432 /* Check if trigger has fired. */
1433 modestatus = sigma_get_register(READ_MODE, devc);
1434 if (modestatus & 0x20)
1435 devc->state.triggerchunk = devc->state.triggerpos / 512;
1436 else
1437 devc->state.triggerchunk = -1;
1438
1439 devc->state.chunks_downloaded = 0;
1440
1441 devc->state.state = SIGMA_DOWNLOAD;
1442
1443 return SR_OK;
1444}
1445
1446SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1447 .name = "asix-sigma",
1448 .longname = "ASIX SIGMA/SIGMA2",
1449 .api_version = 1,
1450 .init = hw_init,
1451 .cleanup = hw_cleanup,
1452 .scan = hw_scan,
1453 .dev_list = hw_dev_list,
1454 .dev_clear = clear_instances,
1455 .dev_open = hw_dev_open,
1456 .dev_close = hw_dev_close,
1457 .info_get = hw_info_get,
1458 .dev_config_set = hw_dev_config_set,
1459 .dev_acquisition_start = hw_dev_acquisition_start,
1460 .dev_acquisition_stop = hw_dev_acquisition_stop,
1461 .priv = NULL,
1462};