]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: more checks on configured rate/depth/channels
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14
GS
37/*
38 * Default device configuration. Must be applicable to any of the
39 * supported devices (no model specific default values yet). Specific
40 * firmware implementation details unfortunately won't let us detect
41 * and keep using previously configured values.
42 */
43#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
44#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
45#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
46
96dc954e 47/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 48#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
49#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
50#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
51#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
52#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
53#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
54#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 55
42f6dd55 56/*
96dc954e
GS
57 * FPGA register addresses (base addresses when registers span multiple
58 * bytes, in that case data is kept in little endian format). Passed to
59 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
60 * of SPI transfers encoding the read (1) or write (0) direction in the
61 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
62 *
63 * Unfortunately the FPGA registers change their meaning between the
64 * read and write directions of access, or exclusively provide one of
65 * these directions and not the other. This is an arbitrary vendor's
66 * choice, there is nothing which the sigrok driver could do about it.
67 * Values written to registers typically cannot get read back, neither
68 * verified after writing a configuration, nor queried upon startup for
69 * automatic detection of the current configuration. Neither appear to
70 * be there echo registers for presence and communication checks, nor
71 * version identifying registers, as far as we know.
42f6dd55 72 */
96dc954e
GS
73#define REG_RUN 0x00 /* Read capture status, write start capture. */
74#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
75#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
76#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
77#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
78#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
79#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
80#define REG_PWM1 0x70 /* Write config for user PWM1. */
81#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 82
852c7d14
GS
83/* Bit patterns to write to REG_RUN, setup run mode. */
84#define RUNMODE_HALT 0x00
85#define RUNMODE_RUN 0x03
86
b711fd8e
GS
87/* Bit patterns when reading from REG_RUN, get run state. */
88#define RUNSTATE_IDLE_BIT (1UL << 0)
89#define RUNSTATE_DRAM_BIT (1UL << 1)
90#define RUNSTATE_TRGD_BIT (1UL << 2)
91#define RUNSTATE_POST_BIT (1UL << 3)
92
f2cd2deb 93static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
94 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
95 void *data, uint16_t wLength)
f2cd2deb
FS
96{
97 struct sr_usb_dev_inst *usb;
98 int ret;
99
100 usb = sdi->conn;
101
411ad77c
GS
102 ret = libusb_control_transfer(usb->devhdl,
103 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
104 bRequest, wValue, wIndex, data, wLength,
105 DEFAULT_TIMEOUT_MS);
106 if (ret != wLength) {
91f73872
GS
107 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
108 wLength, bRequest, wValue, wIndex,
109 libusb_error_name(ret));
110 sr_err("Cannot read %d bytes from USB: %s.",
111 wLength, libusb_error_name(ret));
f2cd2deb
FS
112 return SR_ERR;
113 }
114
115 return SR_OK;
116}
117
118static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
119 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
120 void *data, uint16_t wLength)
f2cd2deb
FS
121{
122 struct sr_usb_dev_inst *usb;
123 int ret;
124
125 usb = sdi->conn;
126
411ad77c
GS
127 ret = libusb_control_transfer(usb->devhdl,
128 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
129 bRequest, wValue, wIndex, data, wLength,
130 DEFAULT_TIMEOUT_MS);
131 if (ret != wLength) {
91f73872
GS
132 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
133 wLength, bRequest, wValue, wIndex,
134 libusb_error_name(ret));
135 sr_err("Cannot write %d bytes to USB: %s.",
136 wLength, libusb_error_name(ret));
f2cd2deb
FS
137 return SR_ERR;
138 }
139
140 return SR_OK;
141}
142
d6f89d4b
GS
143/*
144 * Check the necessity for FPGA bitstream upload, because another upload
145 * would take some 600ms which is undesirable after program startup. Try
146 * to access some FPGA registers and check the values' plausibility. The
147 * check should fail on the safe side, request another upload when in
148 * doubt. A positive response (the request to continue operation with the
149 * currently active bitstream) should be conservative. Accessing multiple
150 * registers is considered cheap compared to the cost of bitstream upload.
151 *
152 * It helps though that both the vendor software and the sigrok driver
153 * use the same bundle of MCU firmware and FPGA bitstream for any of the
154 * supported models. We don't expect to successfully communicate to the
155 * device yet disagree on its protocol. Ideally we would access version
156 * identifying registers for improved robustness, but are not aware of
157 * any. A bitstream reload can always be forced by a power cycle.
158 */
159static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
160{
161 uint8_t init_rsp;
162 int ret;
163 uint16_t run_state;
164 uint8_t pwm_en;
165 size_t read_len;
166 uint8_t buff[sizeof(run_state)];
167 const uint8_t *rdptr;
168
169 sr_dbg("Checking operation of the FPGA bitstream.");
170
852c7d14 171 init_rsp = ~0;
d6f89d4b
GS
172 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
173 if (ret != SR_OK || init_rsp != 0) {
174 sr_dbg("FPGA init query failed, or unexpected response.");
175 return SR_ERR_IO;
176 }
177
178 read_len = sizeof(run_state);
179 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
180 if (ret != SR_OK) {
181 sr_dbg("FPGA register access failed (run state).");
182 return SR_ERR_IO;
183 }
184 rdptr = buff;
185 run_state = read_u16le_inc(&rdptr);
186 sr_spew("FPGA register: run state 0x%04x.", run_state);
187 if (run_state && (run_state & 0x3) != 0x1) {
188 sr_dbg("Unexpected FPGA register content (run state).");
189 return SR_ERR_DATA;
190 }
191 if (run_state && (run_state & ~0xf) != 0x85e0) {
192 sr_dbg("Unexpected FPGA register content (run state).");
193 return SR_ERR_DATA;
194 }
195
196 read_len = sizeof(pwm_en);
197 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
198 if (ret != SR_OK) {
199 sr_dbg("FPGA register access failed (PWM enable).");
200 return SR_ERR_IO;
201 }
202 rdptr = buff;
203 pwm_en = read_u8_inc(&rdptr);
204 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
205 if ((pwm_en & 0x3) != 0x0) {
206 sr_dbg("Unexpected FPGA register content (PWM enable).");
207 return SR_ERR_DATA;
208 }
209
210 sr_info("Could re-use current FPGA bitstream. No upload required.");
211 return SR_OK;
212}
213
1ed93110
GS
214static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
215 const char *bitstream_fname)
f2cd2deb
FS
216{
217 struct drv_context *drvc;
218 struct sr_usb_dev_inst *usb;
219 struct sr_resource bitstream;
b0d0131e 220 uint32_t bitstream_size;
c3d40037
HK
221 uint8_t buffer[sizeof(uint32_t)];
222 uint8_t *wrptr;
f2cd2deb 223 uint8_t block[4096];
3f48ab02
FS
224 int len, act_len;
225 unsigned int pos;
f2cd2deb 226 int ret;
b0d0131e 227 unsigned int zero_pad_to;
f2cd2deb
FS
228
229 drvc = sdi->driver->context;
230 usb = sdi->conn;
231
9de389b1 232 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 233
411ad77c
GS
234 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
235 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 236 if (ret != SR_OK) {
91f73872 237 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
238 return ret;
239 }
240
b0d0131e 241 bitstream_size = (uint32_t)bitstream.size;
c3d40037 242 wrptr = buffer;
b0d0131e 243 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
244 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
245 if (ret != SR_OK) {
91f73872 246 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
247 sr_resource_close(drvc->sr_ctx, &bitstream);
248 return ret;
249 }
b0d0131e
GS
250 zero_pad_to = bitstream_size;
251 zero_pad_to += LA2016_EP2_PADDING - 1;
252 zero_pad_to /= LA2016_EP2_PADDING;
253 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
254
255 pos = 0;
256 while (1) {
3f48ab02 257 if (pos < bitstream.size) {
411ad77c
GS
258 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
259 block, sizeof(block));
3f48ab02 260 if (len < 0) {
91f73872 261 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
262 sr_resource_close(drvc->sr_ctx, &bitstream);
263 return SR_ERR;
264 }
265 } else {
96dc954e 266 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
267 len = zero_pad_to - pos;
268 if ((unsigned)len > sizeof(block))
269 len = sizeof(block);
270 memset(&block, 0, len);
f2cd2deb
FS
271 }
272 if (len == 0)
273 break;
274
852c7d14 275 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 276 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 277 if (ret != 0) {
91f73872
GS
278 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
279 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
280 ret = SR_ERR;
281 break;
282 }
283 if (act_len != len) {
91f73872
GS
284 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
285 pos, (int)len, act_len);
f2cd2deb
FS
286 ret = SR_ERR;
287 break;
288 }
289 pos += len;
290 }
291 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 292 if (ret != SR_OK)
f2cd2deb 293 return ret;
91f73872
GS
294 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
295 bitstream.size);
f2cd2deb 296
d6f89d4b
GS
297 return SR_OK;
298}
299
300static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
301{
302 int ret;
411ad77c 303 uint8_t resp;
d6f89d4b 304
411ad77c
GS
305 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
306 if (ret != SR_OK) {
91f73872 307 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
308 return ret;
309 }
411ad77c 310 if (resp != 0) {
91f73872 311 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 312 resp);
3f48ab02
FS
313 return SR_ERR;
314 }
852c7d14 315 g_usleep(30 * 1000);
f2cd2deb 316
411ad77c
GS
317 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
318 if (ret != SR_OK) {
91f73872 319 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
320 return ret;
321 }
852c7d14 322 g_usleep(40 * 1000);
d6f89d4b 323
f2cd2deb
FS
324 return SR_OK;
325}
326
327static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
328{
329 struct dev_context *devc;
f2cd2deb 330 int ret;
1ed93110 331 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
332 uint8_t buf[2 * sizeof(uint16_t)];
333 uint8_t *wrptr;
334
084d6b92
GS
335 devc = sdi->priv;
336
96dc954e 337 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
338 if (voltage > 4.0) {
339 voltage = 4.0;
1ed93110 340 } else if (voltage < -4.0) {
f2ad79d1
KG
341 voltage = -4.0;
342 }
343
344 /*
96dc954e
GS
345 * Two PWM output channels feed one DAC which generates a bias
346 * voltage, which offsets the input probe's voltage level, and
347 * in combination with the FPGA pins' fixed threshold result in
348 * a programmable input threshold from the user's perspective.
349 * The PWM outputs can be seen on R79 and R56 respectively, the
350 * frequency is 100kHz and the duty cycle varies. The R79 PWM
351 * uses three discrete settings. The R56 PWM varies with desired
352 * thresholds and depends on the R79 PWM configuration. See the
353 * schematics comments which discuss the formulae.
f2ad79d1
KG
354 */
355 if (voltage >= 2.9) {
96dc954e 356 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 357 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 358 } else if (voltage > -0.4) {
96dc954e 359 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 360 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
361 } else {
362 duty_R79 = 0x02d7; /* 72% duty cycle. */
363 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
364 }
365
96dc954e 366 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
367 if (duty_R56 < 10) {
368 duty_R56 = 10;
1ed93110 369 } else if (duty_R56 > 1100) {
f2ad79d1
KG
370 duty_R56 = 1100;
371 }
372
91f73872
GS
373 sr_dbg("Set threshold voltage %.2fV.", voltage);
374 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
375
376 wrptr = buf;
377 write_u16le_inc(&wrptr, duty_R56);
378 write_u16le_inc(&wrptr, duty_R79);
379
380 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 381 if (ret != SR_OK) {
91f73872 382 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
383 return ret;
384 }
385 devc->threshold_voltage = voltage;
386
387 return SR_OK;
388}
389
86d77b75 390static int enable_pwm(const struct sr_dev_inst *sdi, gboolean p1, gboolean p2)
f2cd2deb
FS
391{
392 struct dev_context *devc;
393 uint8_t cfg;
394 int ret;
395
396 devc = sdi->priv;
f2cd2deb 397
86d77b75
GS
398 cfg = 0;
399 if (p1)
400 cfg |= 1U << 0;
401 if (p2)
402 cfg |= 1U << 1;
91f73872 403 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
86d77b75 404
42f6dd55 405 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 406 if (ret != SR_OK) {
91f73872 407 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
408 return ret;
409 }
86d77b75 410
f2cd2deb
FS
411 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
412 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
413
414 return SR_OK;
415}
416
86d77b75 417static int configure_pwm(const struct sr_dev_inst *sdi, uint8_t which,
1ed93110 418 float freq, float duty)
f2cd2deb 419{
86d77b75
GS
420 static uint8_t ctrl_reg_tab[] = { REG_PWM1, REG_PWM2, };
421
f2cd2deb 422 struct dev_context *devc;
86d77b75
GS
423 uint8_t ctrl_reg;
424 struct pwm_setting_dev cfg;
425 struct pwm_setting *setting;
f2cd2deb 426 int ret;
c3d40037
HK
427 uint8_t buf[2 * sizeof(uint32_t)];
428 uint8_t *wrptr;
f2cd2deb
FS
429
430 devc = sdi->priv;
431
86d77b75 432 if (which < 1 || which > ARRAY_SIZE(ctrl_reg_tab)) {
91f73872 433 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
434 return SR_ERR;
435 }
86d77b75 436 if (freq < 0 || freq > MAX_PWM_FREQ) {
91f73872 437 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
438 return SR_ERR;
439 }
86d77b75 440 if (duty < 0 || duty > 100) {
91f73872 441 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
442 return SR_ERR;
443 }
444
86d77b75 445 memset(&cfg, 0, sizeof(cfg));
f2cd2deb
FS
446 cfg.period = (uint32_t)(PWM_CLOCK / freq);
447 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 448 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 449
86d77b75 450 ctrl_reg = ctrl_reg_tab[which - 1];
c3d40037
HK
451 wrptr = buf;
452 write_u32le_inc(&wrptr, cfg.period);
453 write_u32le_inc(&wrptr, cfg.duty);
86d77b75 454 ret = ctrl_out(sdi, CMD_FPGA_SPI, ctrl_reg, 0, buf, wrptr - buf);
f2cd2deb 455 if (ret != SR_OK) {
91f73872
GS
456 sr_err("Cannot setup PWM%d configuration %d %d.",
457 which, cfg.period, cfg.duty);
f2cd2deb
FS
458 return ret;
459 }
86d77b75 460
f2cd2deb
FS
461 setting = &devc->pwm_setting[which - 1];
462 setting->freq = freq;
463 setting->duty = duty;
f2cd2deb
FS
464
465 return SR_OK;
466}
467
468static int set_defaults(const struct sr_dev_inst *sdi)
469{
470 struct dev_context *devc;
471 int ret;
472
473 devc = sdi->priv;
474
852c7d14 475 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
852c7d14
GS
476 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
477 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
478
479 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
480 if (ret)
481 return ret;
482
86d77b75 483 ret = enable_pwm(sdi, FALSE, FALSE);
f2cd2deb
FS
484 if (ret)
485 return ret;
486
86d77b75 487 ret = configure_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
488 if (ret)
489 return ret;
490
86d77b75 491 ret = configure_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
492 if (ret)
493 return ret;
494
86d77b75 495 ret = enable_pwm(sdi, TRUE, TRUE);
f2cd2deb
FS
496 if (ret)
497 return ret;
498
499 return SR_OK;
500}
501
ea436ba7
GS
502static uint16_t get_channels_mask(const struct sr_dev_inst *sdi)
503{
504 uint16_t channels;
505 GSList *l;
506 struct sr_channel *ch;
507
508 channels = 0;
509 for (l = sdi->channels; l; l = l->next) {
510 ch = l->data;
511 if (ch->type != SR_CHANNEL_LOGIC)
512 continue;
513 if (!ch->enabled)
514 continue;
515 channels |= 1UL << ch->index;
516 }
517
518 return channels;
519}
520
f2cd2deb
FS
521static int set_trigger_config(const struct sr_dev_inst *sdi)
522{
523 struct dev_context *devc;
524 struct sr_trigger *trigger;
66f5f697 525 struct trigger_cfg cfg;
f2cd2deb
FS
526 GSList *stages;
527 GSList *channel;
528 struct sr_trigger_stage *stage1;
529 struct sr_trigger_match *match;
530 uint16_t ch_mask;
531 int ret;
c3d40037
HK
532 uint8_t buf[4 * sizeof(uint32_t)];
533 uint8_t *wrptr;
f2cd2deb
FS
534
535 devc = sdi->priv;
536 trigger = sr_session_trigger_get(sdi->session);
537
538 memset(&cfg, 0, sizeof(cfg));
539
ea436ba7 540 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
541
542 if (trigger && trigger->stages) {
543 stages = trigger->stages;
544 stage1 = stages->data;
545 if (stages->next) {
546 sr_err("Only one trigger stage supported for now.");
547 return SR_ERR;
548 }
549 channel = stage1->matches;
550 while (channel) {
551 match = channel->data;
cf057ac4 552 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
553
554 switch (match->match) {
555 case SR_TRIGGER_ZERO:
556 cfg.level |= ch_mask;
557 cfg.high_or_falling &= ~ch_mask;
558 break;
559 case SR_TRIGGER_ONE:
560 cfg.level |= ch_mask;
561 cfg.high_or_falling |= ch_mask;
562 break;
563 case SR_TRIGGER_RISING:
564 if ((cfg.enabled & ~cfg.level)) {
91f73872 565 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
566 return SR_ERR;
567 }
568 cfg.level &= ~ch_mask;
569 cfg.high_or_falling &= ~ch_mask;
570 break;
571 case SR_TRIGGER_FALLING:
572 if ((cfg.enabled & ~cfg.level)) {
91f73872 573 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
574 return SR_ERR;
575 }
576 cfg.level &= ~ch_mask;
577 cfg.high_or_falling |= ch_mask;
578 break;
579 default:
91f73872 580 sr_err("Unknown trigger condition.");
f2cd2deb
FS
581 return SR_ERR;
582 }
583 cfg.enabled |= ch_mask;
584 channel = channel->next;
585 }
586 }
91f73872
GS
587 sr_dbg("Set trigger config: "
588 "channels 0x%04x, trigger-enabled 0x%04x, "
589 "level-triggered 0x%04x, high/falling 0x%04x.",
590 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 591
cf057ac4 592 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 593
c3d40037
HK
594 wrptr = buf;
595 write_u32le_inc(&wrptr, cfg.channels);
596 write_u32le_inc(&wrptr, cfg.enabled);
597 write_u32le_inc(&wrptr, cfg.level);
598 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
599 /* TODO
600 * Comment on this literal 16. Origin, meaning? Cannot be the
601 * register offset, nor the transfer length. Is it a channels
602 * count that is relevant for 16 and 32 channel models? Is it
603 * an obsolete experiment?
604 */
42f6dd55 605 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 606 if (ret != SR_OK) {
91f73872 607 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
608 return ret;
609 }
610
611 return SR_OK;
612}
613
614static int set_sample_config(const struct sr_dev_inst *sdi)
615{
616 struct dev_context *devc;
f2cd2deb 617 double clock_divisor;
adab4d91
GS
618 uint16_t divider_u16;
619 uint64_t pre_trigger_samples;
620 uint64_t pre_trigger_memory;
621 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 622 uint8_t *wrptr;
adab4d91 623 int ret;
f2cd2deb
FS
624
625 devc = sdi->priv;
f2cd2deb 626
8b172e78 627 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
628 sr_err("Too high a sample rate: %" PRIu64 ".",
629 devc->cur_samplerate);
ea436ba7
GS
630 return SR_ERR_ARG;
631 }
632 if (devc->cur_samplerate < MIN_SAMPLE_RATE_LA2016) {
633 sr_err("Too low a sample rate: %" PRIu64 ".",
634 devc->cur_samplerate);
635 return SR_ERR_ARG;
f2cd2deb
FS
636 }
637
8b172e78 638 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
639 if (clock_divisor > 65535)
640 return SR_ERR_ARG;
641 divider_u16 = (uint16_t)(clock_divisor + 0.5);
642 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb 643
ea436ba7 644 if (devc->limit_samples > LA2016_NUM_SAMPLES_MAX) {
91f73872
GS
645 sr_err("Too high a sample depth: %" PRIu64 ".",
646 devc->limit_samples);
f2cd2deb
FS
647 return SR_ERR;
648 }
ea436ba7
GS
649 if (devc->limit_samples < LA2016_NUM_SAMPLES_MIN) {
650 sr_err("Too low a sample depth: %" PRIu64 ".",
651 devc->limit_samples);
652 return SR_ERR;
653 }
f2cd2deb 654
adab4d91
GS
655 /*
656 * The acquisition configuration communicates "pre-trigger"
657 * specs in several formats. sigrok users provide a percentage
658 * (0-100%), which translates to a pre-trigger samples count
659 * (assuming that a total samples count limit was specified).
660 * The device supports hardware compression, which depends on
661 * slowly changing input data to be effective. Fast changing
662 * input data may occupy more space in sample memory than its
663 * uncompressed form would. This is why a third parameter can
664 * limit the amount of sample memory to use for pre-trigger
665 * data. Only the upper 24 bits of that memory size spec get
666 * communicated to the device (written to its FPGA register).
667 */
668 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
669 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
670 pre_trigger_memory *= devc->capture_ratio;
671 pre_trigger_memory /= 100;
f2cd2deb 672
adab4d91
GS
673 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
674 devc->cur_samplerate / 1000, devc->limit_samples);
675 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
676 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 677
b1a17c1a
GS
678 /*
679 * The acquisition configuration occupies a total of 16 bytes:
680 * - A 34bit total samples count limit (up to 10 billions) that
681 * is kept in a 40bit register.
682 * - A 34bit pre-trigger samples count limit (up to 10 billions)
683 * in another 40bit register.
684 * - A 32bit pre-trigger memory space limit (in bytes) of which
685 * the upper 24bits are kept in an FPGA register.
686 * - A 16bit clock divider which gets applied to the maximum
687 * samplerate of the device.
688 * - An 8bit register of unknown meaning. Currently always 0.
689 */
c3d40037 690 wrptr = buf;
b1a17c1a
GS
691 write_u40le_inc(&wrptr, devc->limit_samples);
692 write_u40le_inc(&wrptr, pre_trigger_samples);
693 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 694 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 695 write_u8_inc(&wrptr, 0);
42f6dd55 696 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 697 if (ret != SR_OK) {
91f73872 698 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
699 return ret;
700 }
701
702 return SR_OK;
703}
704
96dc954e
GS
705/*
706 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
707 * of interest:
708 * bit 0: value 1 = idle
709 * bit 1: value 1 = writing to SDRAM
710 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
711 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
712 * The meaning of other bit fields is unknown.
7601dca7 713 *
96dc954e 714 * Typical values in order of appearance during execution:
b711fd8e
GS
715 * 0x85e1: idle, no acquisition pending
716 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
717 * "In idle state." Takes precedence over all others.
96dc954e
GS
718 * 0x85e2: pre-sampling, samples before the trigger position,
719 * when capture ratio > 0%
b711fd8e
GS
720 * IDLE clear, TRGD clear, POST clear; DRAM don't care
721 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
722 * 0x85ea: pre-sampling complete, now waiting for the trigger
723 * (whilst sampling continuously)
b711fd8e
GS
724 * IDLE clear, TRGD clear, POST set; DRAM don't care
725 * "Post set thus after pre, not triggered yet"
96dc954e 726 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
727 * IDLE clear, TRGD set, POST set; DRAM don't care
728 * "Triggered and in post, not idle yet."
96dc954e 729 * 0x85ed: idle
b711fd8e
GS
730 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
731 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 732 */
b711fd8e
GS
733static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
734static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
735static const uint16_t runstate_mask_step =
736 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
737static const uint16_t runstate_patt_pre_trig = 0;
738static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
739static const uint16_t runstate_patt_post_trig =
740 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
741
f2cd2deb
FS
742static uint16_t run_state(const struct sr_dev_inst *sdi)
743{
21d68fd9
GS
744 static uint16_t previous_state;
745
f2cd2deb 746 int ret;
21d68fd9
GS
747 uint16_t state;
748 uint8_t buff[sizeof(state)];
749 const uint8_t *rdptr;
750 const char *label;
f2cd2deb 751
411ad77c
GS
752 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
753 if (ret != SR_OK) {
91f73872 754 sr_err("Cannot read run state.");
f2cd2deb
FS
755 return ret;
756 }
21d68fd9
GS
757 rdptr = buff;
758 state = read_u16le_inc(&rdptr);
7601dca7 759
96dc954e
GS
760 /*
761 * Avoid flooding the log, only dump values as they change.
762 * The routine is called about every 50ms.
7601dca7 763 */
b711fd8e
GS
764 if (state == previous_state)
765 return state;
766
767 previous_state = state;
768 label = NULL;
769 if ((state & runstate_mask_idle) == runstate_patt_idle)
770 label = "idle";
771 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
772 label = "pre-trigger sampling";
773 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
774 label = "sampling, waiting for trigger";
775 if ((state & runstate_mask_step) == runstate_patt_post_trig)
776 label = "post-trigger sampling";
777 if (label && *label)
778 sr_dbg("Run state: 0x%04x (%s).", state, label);
779 else
780 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
781
782 return state;
783}
784
cf057ac4 785static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
786{
787 uint16_t state;
788
789 state = run_state(sdi);
b711fd8e 790 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
791 return 1;
792
793 return 0;
794}
795
796static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
797{
798 int ret;
799
411ad77c
GS
800 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
801 if (ret != SR_OK) {
c34f4a89 802 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
803 return ret;
804 }
805
806 return SR_OK;
807}
808
809static int get_capture_info(const struct sr_dev_inst *sdi)
810{
811 struct dev_context *devc;
812 int ret;
c3d40037
HK
813 uint8_t buf[3 * sizeof(uint32_t)];
814 const uint8_t *rdptr;
f2cd2deb
FS
815
816 devc = sdi->priv;
817
411ad77c
GS
818 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
819 if (ret != SR_OK) {
91f73872 820 sr_err("Cannot read capture info.");
f2cd2deb
FS
821 return ret;
822 }
c3d40037
HK
823
824 rdptr = buf;
825 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
826 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
827 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 828
cf057ac4 829 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
830 devc->info.n_rep_packets, devc->info.n_rep_packets,
831 devc->info.n_rep_packets_before_trigger,
832 devc->info.n_rep_packets_before_trigger,
833 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 834
852c7d14
GS
835 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
836 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
837 (unsigned long)devc->info.n_rep_packets,
838 NUM_PACKETS_IN_CHUNK);
91f73872 839 }
f2cd2deb
FS
840
841 return SR_OK;
842}
843
1ed93110
GS
844SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
845 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
846{
847 char fw_file[1024];
5eb1b63d 848 snprintf(fw_file, sizeof(fw_file), UC_FIRMWARE, product_id);
40a0b2f4 849 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
850}
851
852SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
853{
854 struct dev_context *devc;
855 int ret;
856 uint8_t cmd;
857
858 devc = sdi->priv;
859
860 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
861 if (ret != SR_OK)
862 return ret;
863
864 cmd = 0;
411ad77c
GS
865 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
866 if (ret != SR_OK) {
91f73872 867 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
868 return ret;
869 }
870
871 ret = set_trigger_config(sdi);
872 if (ret != SR_OK)
873 return ret;
874
875 ret = set_sample_config(sdi);
876 if (ret != SR_OK)
877 return ret;
878
879 return SR_OK;
880}
881
882SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
883{
3ebc1cb2
GS
884 int ret;
885
852c7d14 886 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
887 if (ret != SR_OK)
888 return ret;
889
890 return SR_OK;
f2cd2deb
FS
891}
892
3ebc1cb2 893static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 894{
3ebc1cb2
GS
895 int ret;
896
852c7d14 897 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
898 if (ret != SR_OK)
899 return ret;
900
901 return SR_OK;
f2cd2deb
FS
902}
903
904SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
905{
3ebc1cb2
GS
906 int ret;
907 struct dev_context *devc;
908
909 ret = la2016_stop_acquisition(sdi);
910 if (ret != SR_OK)
911 return ret;
912
913 devc = sdi ? sdi->priv : NULL;
914 if (devc && devc->transfer)
915 libusb_cancel_transfer(devc->transfer);
916
917 return SR_OK;
f2cd2deb
FS
918}
919
cf057ac4 920static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 921 libusb_transfer_cb_fn cb)
f2cd2deb
FS
922{
923 struct dev_context *devc;
924 struct sr_usb_dev_inst *usb;
925 int ret;
c3d40037
HK
926 uint8_t wrbuf[2 * sizeof(uint32_t)];
927 uint8_t *wrptr;
f2cd2deb
FS
928 uint32_t to_read;
929 uint8_t *buffer;
930
931 devc = sdi->priv;
932 usb = sdi->conn;
933
411ad77c
GS
934 ret = get_capture_info(sdi);
935 if (ret != SR_OK)
f2cd2deb
FS
936 return ret;
937
c3d40037
HK
938 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
939 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
940 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
941 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
942
91f73872 943 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 944 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 945
411ad77c
GS
946 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
947 if (ret != SR_OK) {
91f73872 948 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
949 return ret;
950 }
91f73872
GS
951 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
952 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
953 wrptr = wrbuf;
954 write_u32le_inc(&wrptr, devc->read_pos);
955 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
956 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
957 if (ret != SR_OK) {
91f73872 958 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
959 return ret;
960 }
411ad77c
GS
961 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
962 if (ret != SR_OK) {
91f73872 963 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
964 return ret;
965 }
966
96dc954e
GS
967 /*
968 * Pick a buffer size for all USB transfers. The buffer size
969 * must be a multiple of the endpoint packet size. And cannot
970 * exceed a maximum value.
971 */
f2cd2deb 972 to_read = devc->n_bytes_to_read;
96dc954e
GS
973 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
974 to_read = LA2016_USB_BUFSZ;
975 else /* One transfer. */
e847645b 976 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
977 buffer = g_try_malloc(to_read);
978 if (!buffer) {
91f73872
GS
979 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
980 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
981 return SR_ERR_MALLOC;
982 }
983
984 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
985 libusb_fill_bulk_transfer(devc->transfer,
986 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 987 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 988
411ad77c
GS
989 ret = libusb_submit_transfer(devc->transfer);
990 if (ret != 0) {
91f73872 991 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
992 libusb_free_transfer(devc->transfer);
993 devc->transfer = NULL;
994 g_free(buffer);
995 return SR_ERR;
996 }
997
998 return SR_OK;
999}
1000
480efba2
GS
1001/*
1002 * A chunk (received via USB) contains a number of transfers (USB length
1003 * divided by 16) which contain a number of packets (5 per transfer) which
1004 * contain a number of samples (8bit repeat count per 16bit sample data).
1005 */
dfac9592 1006static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1007 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1008{
1009 struct dev_context *devc;
1010 struct sr_datafeed_logic logic;
1011 struct sr_datafeed_packet sr_packet;
1012 unsigned int max_samples, n_samples, total_samples, free_n_samples;
480efba2 1013 size_t num_pkts;
cf057ac4 1014 gboolean do_signal_trigger;
fe953391 1015 uint8_t *wp;
dfac9592 1016 const uint8_t *rp;
480efba2
GS
1017 uint16_t sample_value;
1018 size_t repetitions;
1019 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1020
1021 devc = sdi->priv;
1022
fe953391 1023 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
1024 logic.data = devc->convbuffer;
1025
1026 sr_packet.type = SR_DF_LOGIC;
1027 sr_packet.payload = &logic;
1028
fe953391 1029 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 1030 n_samples = 0;
fe953391 1031 wp = devc->convbuffer;
dfac9592 1032 total_samples = 0;
cf057ac4 1033 do_signal_trigger = FALSE;
dfac9592 1034
cf057ac4 1035 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
dfac9592 1036 std_session_send_df_trigger(sdi);
cf057ac4 1037 devc->trigger_marked = TRUE;
dfac9592
GS
1038 }
1039
1040 rp = packets;
480efba2
GS
1041 while (num_xfers--) {
1042 num_pkts = NUM_PACKETS_IN_CHUNK;
1043 while (num_pkts--) {
1044 /*
1045 * Flush the conversion buffer when a trigger
1046 * location needs to get communicated, or when
1047 * an to-get-expected sample repetition count
1048 * would no longer fit into the buffer.
1049 */
dfac9592
GS
1050 free_n_samples = max_samples - n_samples;
1051 if (free_n_samples < 256 || do_signal_trigger) {
480efba2 1052 logic.length = n_samples * sizeof(sample_buff);;
dfac9592
GS
1053 sr_session_send(sdi, &sr_packet);
1054 n_samples = 0;
fe953391 1055 wp = devc->convbuffer;
dfac9592
GS
1056 if (do_signal_trigger) {
1057 std_session_send_df_trigger(sdi);
cf057ac4 1058 do_signal_trigger = FALSE;
dfac9592
GS
1059 }
1060 }
1061
480efba2 1062 sample_value = read_u16le_inc(&rp);
dfac9592 1063 repetitions = read_u8_inc(&rp);
dfac9592
GS
1064
1065 n_samples += repetitions;
1066 total_samples += repetitions;
1067 devc->total_samples += repetitions;
480efba2
GS
1068
1069 write_u16le(sample_buff, sample_value);
1070 while (repetitions--) {
1071 memcpy(wp, sample_buff, logic.unitsize);
1072 wp += logic.unitsize;
1073 }
1074
cf057ac4
GS
1075 if (devc->trigger_involved && !devc->trigger_marked) {
1076 if (!--devc->n_reps_until_trigger) {
1077 devc->trigger_marked = TRUE;
1078 do_signal_trigger = TRUE;
91f73872 1079 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1080 devc->total_samples,
1081 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1082 }
1083 }
1084 }
1085 (void)read_u8_inc(&rp); /* Skip sequence number. */
1086 }
1087 if (n_samples) {
fe953391 1088 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1089 sr_session_send(sdi, &sr_packet);
1090 if (do_signal_trigger) {
1091 std_session_send_df_trigger(sdi);
1092 }
1093 }
91f73872 1094 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1095}
1096
1097static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1098{
1099 struct sr_dev_inst *sdi;
1100 struct dev_context *devc;
1101 struct sr_usb_dev_inst *usb;
1102 int ret;
1103
1104 sdi = transfer->user_data;
1105 devc = sdi->priv;
1106 usb = sdi->conn;
1107
1108 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1109 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1110
1111 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1112 sr_err("USB bulk transfer timeout.");
cf057ac4 1113 devc->download_finished = TRUE;
dfac9592
GS
1114 }
1115 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1116
1117 devc->n_bytes_to_read -= transfer->actual_length;
1118 if (devc->n_bytes_to_read) {
1119 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1120 /*
1121 * Determine read size for the next USB transfer. Make
1122 * the buffer size a multiple of the endpoint packet
1123 * size. Don't exceed a maximum value.
1124 */
dfac9592
GS
1125 if (to_read >= LA2016_USB_BUFSZ)
1126 to_read = LA2016_USB_BUFSZ;
96dc954e 1127 else
dfac9592 1128 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1129 libusb_fill_bulk_transfer(transfer,
1130 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1131 transfer->buffer, to_read,
dfac9592
GS
1132 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1133
411ad77c
GS
1134 ret = libusb_submit_transfer(transfer);
1135 if (ret == 0)
dfac9592 1136 return;
91f73872
GS
1137 sr_err("Cannot submit another USB transfer: %s.",
1138 libusb_error_name(ret));
dfac9592
GS
1139 }
1140
1141 g_free(transfer->buffer);
1142 libusb_free_transfer(transfer);
cf057ac4 1143 devc->download_finished = TRUE;
dfac9592
GS
1144}
1145
1146SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1147{
1148 const struct sr_dev_inst *sdi;
1149 struct dev_context *devc;
1150 struct drv_context *drvc;
1151 struct timeval tv;
1152
1153 (void)fd;
1154 (void)revents;
1155
1156 sdi = cb_data;
1157 devc = sdi->priv;
1158 drvc = sdi->driver->context;
1159
cf057ac4
GS
1160 if (!devc->completion_seen) {
1161 if (!la2016_is_idle(sdi)) {
96dc954e 1162 /* Not yet ready for sample data download. */
dfac9592
GS
1163 return TRUE;
1164 }
cf057ac4
GS
1165 devc->completion_seen = TRUE;
1166 devc->download_finished = FALSE;
1167 devc->trigger_marked = FALSE;
dfac9592 1168 devc->total_samples = 0;
96dc954e 1169 /* We can start downloading sample data. */
cf057ac4 1170 if (la2016_start_download(sdi, receive_transfer) != SR_OK) {
91f73872 1171 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1172 return FALSE;
1173 }
91f73872 1174 sr_dbg("Acquisition data download started.");
dfac9592
GS
1175 std_session_send_df_frame_begin(sdi);
1176
1177 return TRUE;
1178 }
1179
1180 tv.tv_sec = tv.tv_usec = 0;
1181 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1182
cf057ac4 1183 if (devc->download_finished) {
91f73872 1184 sr_dbg("Download finished, post processing.");
dfac9592
GS
1185 std_session_send_df_frame_end(sdi);
1186
1187 usb_source_remove(sdi->session, drvc->sr_ctx);
1188 std_session_send_df_end(sdi);
1189
1190 la2016_stop_acquisition(sdi);
1191
1192 g_free(devc->convbuffer);
1193 devc->convbuffer = NULL;
1194
1195 devc->transfer = NULL;
1196
91f73872 1197 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1198 }
1199
1200 return TRUE;
1201}
1202
f2cd2deb
FS
1203SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1204{
8b172e78 1205 struct dev_context *devc;
f2cd2deb 1206 uint16_t state;
9de389b1 1207 uint8_t buf[8];
43d2e52f
GS
1208 const uint8_t *rdptr;
1209 uint8_t date_yy, date_mm;
1210 uint8_t dinv_yy, dinv_mm;
9de389b1 1211 uint8_t magic;
d6f89d4b 1212 const char *bitstream_fn;
9de389b1 1213 int ret;
f2cd2deb 1214
8b172e78
KG
1215 devc = sdi->priv;
1216
96dc954e 1217 /*
43d2e52f
GS
1218 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1219 * year and month in BCD format, followed by inverted values for
1220 * consistency checks. For example bytes 20 04 df fb translate
1221 * to 2020-04. This information can help identify the vintage of
1222 * devices when unknown magic numbers are seen.
9de389b1 1223 */
43d2e52f
GS
1224 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1225 if (ret != SR_OK) {
1226 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1227 } else {
43d2e52f
GS
1228 rdptr = &buf[0];
1229 date_yy = read_u8_inc(&rdptr);
1230 date_mm = read_u8_inc(&rdptr);
1231 dinv_yy = read_u8_inc(&rdptr);
1232 dinv_mm = read_u8_inc(&rdptr);
1233 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1234 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1235 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1236 }
f2cd2deb 1237
9de389b1 1238 /*
96dc954e
GS
1239 * Several Kingst logic analyzer devices share the same USB VID
1240 * and PID. The product ID determines which MCU firmware to load.
1241 * The MCU firmware provides access to EEPROM content which then
1242 * allows to identify the device model. Which in turn determines
1243 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1244 * to get inspected.
9de389b1 1245 *
96dc954e
GS
1246 * EEPROM content for model identification is kept redundantly
1247 * in memory. The values are stored in verbatim and in inverted
1248 * form, multiple copies are kept at different offsets. Example
1249 * data:
9de389b1 1250 *
96dc954e
GS
1251 * magic 0x08
1252 * | ~magic 0xf7
1253 * | |
1254 * 08f7000008f710ef
1255 * | |
1256 * | ~magic backup
1257 * magic backup
9de389b1 1258 *
96dc954e
GS
1259 * Exclusively inspecting the magic byte appears to be sufficient,
1260 * other fields seem to be 'don't care'.
9de389b1 1261 *
96dc954e
GS
1262 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1263 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1264 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1265 * (latest v1.3.0 PCB, perhaps others)
1266 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1267 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1268 *
96dc954e
GS
1269 * When EEPROM content does not match the hardware configuration
1270 * (the board layout), the software may load but yield incorrect
1271 * results (like swapped channels). The FPGA bitstream itself
1272 * will authenticate with IC U10 and fail when its capabilities
1273 * do not match the hardware model. An LA1016 won't become a
1274 * LA2016 by faking its EEPROM content.
9de389b1 1275 */
9de389b1 1276 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1277 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1278 return ret;
1279 }
43d2e52f 1280 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1281 /* Primary copy of magic passes complement check. */
43d2e52f 1282 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1283 magic = buf[0];
43d2e52f 1284 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1285 /* Backup copy of magic passes complement check. */
91f73872 1286 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1287 magic = buf[4];
43d2e52f
GS
1288 } else {
1289 sr_err("Cannot find consistent device type identification.");
1290 magic = 0;
f2cd2deb 1291 }
91f73872 1292 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1293
96dc954e 1294 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1295 switch (magic) {
1296 case 2:
d6f89d4b 1297 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1298 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1299 break;
1300 case 3:
d6f89d4b 1301 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1302 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1303 break;
1304 case 8:
d6f89d4b 1305 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1306 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1307 break;
1308 case 9:
d6f89d4b 1309 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1310 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1311 break;
1312 default:
d6f89d4b
GS
1313 bitstream_fn = NULL;
1314 break;
1315 }
1316 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1317 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1318 return SR_ERR;
1319 }
f2cd2deb 1320
d6f89d4b
GS
1321 if (check_fpga_bitstream(sdi) != SR_OK) {
1322 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1323 if (ret != SR_OK) {
1324 sr_err("Cannot upload FPGA bitstream.");
1325 return ret;
1326 }
1327 }
1328 ret = enable_fpga_bitstream(sdi);
9de389b1 1329 if (ret != SR_OK) {
d6f89d4b 1330 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1331 return ret;
1332 }
1333
f2cd2deb 1334 state = run_state(sdi);
9de389b1 1335 if (state != 0x85e9) {
91f73872 1336 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1337 }
f2cd2deb 1338
00849545 1339 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1340 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1341 return ret;
1342 }
9de389b1 1343
91f73872 1344 sr_dbg("Device should be initialized.");
f2cd2deb 1345
c34f4a89
GS
1346 ret = set_defaults(sdi);
1347 if (ret != SR_OK)
1348 return ret;
1349
1350 return SR_OK;
f2cd2deb
FS
1351}
1352
1353SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1354{
1355 int ret;
1356
00849545 1357 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1358 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1359 return ret;
1360 }
1361
1362 return SR_OK;
1363}