]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: spew pretty FPGA register dump for development support
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
3ab60908
GS
83#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
84#define REG_UNKNOWN_30 0x30
96dc954e
GS
85#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
86#define REG_PWM1 0x70 /* Write config for user PWM1. */
87#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 88
972d191b
GS
89/* Bit patterns to write to REG_CAPT_MODE. */
90#define CAPTMODE_TO_RAM 0x00
91#define CAPTMODE_STREAM 0x01
92
852c7d14
GS
93/* Bit patterns to write to REG_RUN, setup run mode. */
94#define RUNMODE_HALT 0x00
95#define RUNMODE_RUN 0x03
96
b711fd8e
GS
97/* Bit patterns when reading from REG_RUN, get run state. */
98#define RUNSTATE_IDLE_BIT (1UL << 0)
99#define RUNSTATE_DRAM_BIT (1UL << 1)
100#define RUNSTATE_TRGD_BIT (1UL << 2)
101#define RUNSTATE_POST_BIT (1UL << 3)
102
f2cd2deb 103static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
104 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
105 void *data, uint16_t wLength)
f2cd2deb
FS
106{
107 struct sr_usb_dev_inst *usb;
108 int ret;
109
110 usb = sdi->conn;
111
411ad77c
GS
112 ret = libusb_control_transfer(usb->devhdl,
113 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
114 bRequest, wValue, wIndex, data, wLength,
115 DEFAULT_TIMEOUT_MS);
116 if (ret != wLength) {
91f73872
GS
117 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
118 wLength, bRequest, wValue, wIndex,
119 libusb_error_name(ret));
120 sr_err("Cannot read %d bytes from USB: %s.",
121 wLength, libusb_error_name(ret));
286b3e13 122 return SR_ERR_IO;
f2cd2deb
FS
123 }
124
125 return SR_OK;
126}
127
128static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
129 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
130 void *data, uint16_t wLength)
f2cd2deb
FS
131{
132 struct sr_usb_dev_inst *usb;
133 int ret;
134
135 usb = sdi->conn;
136
411ad77c
GS
137 ret = libusb_control_transfer(usb->devhdl,
138 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
139 bRequest, wValue, wIndex, data, wLength,
140 DEFAULT_TIMEOUT_MS);
141 if (ret != wLength) {
91f73872
GS
142 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
143 wLength, bRequest, wValue, wIndex,
144 libusb_error_name(ret));
145 sr_err("Cannot write %d bytes to USB: %s.",
146 wLength, libusb_error_name(ret));
286b3e13 147 return SR_ERR_IO;
f2cd2deb
FS
148 }
149
150 return SR_OK;
151}
152
33020165
GS
153/* HACK Experiment to spot FPGA registers of interest. */
154static void la2016_dump_fpga_registers(const struct sr_dev_inst *sdi,
155 const char *caption, size_t reg_lower, size_t reg_upper)
156{
157 static const size_t dump_chunk_len = 16;
158
159 size_t rdlen;
160 uint8_t rdbuf[0x80 - 0x00]; /* Span all FPGA registers. */
161 const uint8_t *rdptr;
162 int ret;
163 size_t dump_addr, indent, dump_len;
164 GString *txt;
165
166 if (sr_log_loglevel_get() < SR_LOG_SPEW)
167 return;
168
169 if (!reg_lower && !reg_upper) {
170 reg_lower = 0;
171 reg_upper = sizeof(rdbuf);
172 }
173 if (reg_upper - reg_lower > sizeof(rdbuf))
174 reg_upper = sizeof(rdbuf) - reg_lower;
175
176 rdlen = reg_upper - reg_lower;
177 ret = ctrl_in(sdi, CMD_FPGA_SPI, reg_lower, 0, rdbuf, rdlen);
178 if (ret != SR_OK) {
179 sr_err("Cannot get registers space.");
180 return;
181 }
182 rdptr = rdbuf;
183
184 sr_spew("FPGA registers dump: %s", caption ? : "for fun");
185 dump_addr = reg_lower;
186 while (rdlen) {
187 dump_len = rdlen;
188 indent = dump_addr % dump_chunk_len;
189 if (dump_len > dump_chunk_len)
190 dump_len = dump_chunk_len;
191 if (dump_len + indent > dump_chunk_len)
192 dump_len = dump_chunk_len - indent;
193 txt = sr_hexdump_new(rdptr, dump_len);
194 sr_spew(" %04zx %*s%s",
195 dump_addr, (int)(3 * indent), "", txt->str);
196 sr_hexdump_free(txt);
197 dump_addr += dump_len;
198 rdptr += dump_len;
199 rdlen -= dump_len;
200 }
201}
202
d6f89d4b
GS
203/*
204 * Check the necessity for FPGA bitstream upload, because another upload
205 * would take some 600ms which is undesirable after program startup. Try
206 * to access some FPGA registers and check the values' plausibility. The
207 * check should fail on the safe side, request another upload when in
208 * doubt. A positive response (the request to continue operation with the
209 * currently active bitstream) should be conservative. Accessing multiple
210 * registers is considered cheap compared to the cost of bitstream upload.
211 *
212 * It helps though that both the vendor software and the sigrok driver
213 * use the same bundle of MCU firmware and FPGA bitstream for any of the
214 * supported models. We don't expect to successfully communicate to the
215 * device yet disagree on its protocol. Ideally we would access version
216 * identifying registers for improved robustness, but are not aware of
217 * any. A bitstream reload can always be forced by a power cycle.
218 */
219static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
220{
221 uint8_t init_rsp;
3ab60908 222 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
d6f89d4b
GS
223 int ret;
224 uint16_t run_state;
225 uint8_t pwm_en;
226 size_t read_len;
d6f89d4b
GS
227 const uint8_t *rdptr;
228
229 sr_dbg("Checking operation of the FPGA bitstream.");
33020165 230 la2016_dump_fpga_registers(sdi, "bitstream check", 0, 0);
d6f89d4b 231
852c7d14 232 init_rsp = ~0;
d6f89d4b
GS
233 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
234 if (ret != SR_OK || init_rsp != 0) {
235 sr_dbg("FPGA init query failed, or unexpected response.");
236 return SR_ERR_IO;
237 }
238
239 read_len = sizeof(run_state);
240 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
241 if (ret != SR_OK) {
242 sr_dbg("FPGA register access failed (run state).");
243 return SR_ERR_IO;
244 }
245 rdptr = buff;
246 run_state = read_u16le_inc(&rdptr);
247 sr_spew("FPGA register: run state 0x%04x.", run_state);
248 if (run_state && (run_state & 0x3) != 0x1) {
249 sr_dbg("Unexpected FPGA register content (run state).");
250 return SR_ERR_DATA;
251 }
252 if (run_state && (run_state & ~0xf) != 0x85e0) {
253 sr_dbg("Unexpected FPGA register content (run state).");
254 return SR_ERR_DATA;
255 }
256
257 read_len = sizeof(pwm_en);
258 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
259 if (ret != SR_OK) {
260 sr_dbg("FPGA register access failed (PWM enable).");
261 return SR_ERR_IO;
262 }
263 rdptr = buff;
264 pwm_en = read_u8_inc(&rdptr);
265 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
266 if ((pwm_en & 0x3) != 0x0) {
267 sr_dbg("Unexpected FPGA register content (PWM enable).");
268 return SR_ERR_DATA;
269 }
270
271 sr_info("Could re-use current FPGA bitstream. No upload required.");
272 return SR_OK;
273}
274
1ed93110
GS
275static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
276 const char *bitstream_fname)
f2cd2deb
FS
277{
278 struct drv_context *drvc;
279 struct sr_usb_dev_inst *usb;
280 struct sr_resource bitstream;
b0d0131e 281 uint32_t bitstream_size;
c3d40037
HK
282 uint8_t buffer[sizeof(uint32_t)];
283 uint8_t *wrptr;
f2cd2deb 284 uint8_t block[4096];
3f48ab02
FS
285 int len, act_len;
286 unsigned int pos;
f2cd2deb 287 int ret;
b0d0131e 288 unsigned int zero_pad_to;
f2cd2deb
FS
289
290 drvc = sdi->driver->context;
291 usb = sdi->conn;
292
9de389b1 293 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 294
411ad77c
GS
295 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
296 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 297 if (ret != SR_OK) {
91f73872 298 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
299 return ret;
300 }
301
b0d0131e 302 bitstream_size = (uint32_t)bitstream.size;
c3d40037 303 wrptr = buffer;
b0d0131e 304 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
305 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
306 if (ret != SR_OK) {
91f73872 307 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
308 sr_resource_close(drvc->sr_ctx, &bitstream);
309 return ret;
310 }
b0d0131e
GS
311 zero_pad_to = bitstream_size;
312 zero_pad_to += LA2016_EP2_PADDING - 1;
313 zero_pad_to /= LA2016_EP2_PADDING;
314 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
315
316 pos = 0;
317 while (1) {
3f48ab02 318 if (pos < bitstream.size) {
411ad77c
GS
319 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
320 block, sizeof(block));
3f48ab02 321 if (len < 0) {
91f73872 322 sr_err("Cannot read FPGA bitstream.");
3f48ab02 323 sr_resource_close(drvc->sr_ctx, &bitstream);
286b3e13 324 return SR_ERR_IO;
3f48ab02
FS
325 }
326 } else {
96dc954e 327 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
328 len = zero_pad_to - pos;
329 if ((unsigned)len > sizeof(block))
330 len = sizeof(block);
331 memset(&block, 0, len);
f2cd2deb
FS
332 }
333 if (len == 0)
334 break;
335
852c7d14 336 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 337 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 338 if (ret != 0) {
91f73872
GS
339 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
340 pos, (int)len, libusb_error_name(ret));
286b3e13 341 ret = SR_ERR_IO;
f2cd2deb
FS
342 break;
343 }
344 if (act_len != len) {
91f73872
GS
345 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
346 pos, (int)len, act_len);
286b3e13 347 ret = SR_ERR_IO;
f2cd2deb
FS
348 break;
349 }
350 pos += len;
351 }
352 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 353 if (ret != SR_OK)
f2cd2deb 354 return ret;
91f73872
GS
355 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
356 bitstream.size);
f2cd2deb 357
d6f89d4b
GS
358 return SR_OK;
359}
360
361static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
362{
363 int ret;
411ad77c 364 uint8_t resp;
d6f89d4b 365
411ad77c
GS
366 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
367 if (ret != SR_OK) {
91f73872 368 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
369 return ret;
370 }
411ad77c 371 if (resp != 0) {
91f73872 372 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 373 resp);
286b3e13 374 return SR_ERR_DATA;
3f48ab02 375 }
852c7d14 376 g_usleep(30 * 1000);
f2cd2deb 377
411ad77c
GS
378 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
379 if (ret != SR_OK) {
91f73872 380 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
381 return ret;
382 }
852c7d14 383 g_usleep(40 * 1000);
d6f89d4b 384
f2cd2deb
FS
385 return SR_OK;
386}
387
388static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
389{
f2cd2deb 390 int ret;
1ed93110 391 uint16_t duty_R79, duty_R56;
3ab60908 392 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
f2ad79d1
KG
393 uint8_t *wrptr;
394
96dc954e 395 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
396 if (voltage > LA2016_THR_VOLTAGE_MAX) {
397 voltage = LA2016_THR_VOLTAGE_MAX;
398 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
399 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
400 }
401
402 /*
96dc954e
GS
403 * Two PWM output channels feed one DAC which generates a bias
404 * voltage, which offsets the input probe's voltage level, and
405 * in combination with the FPGA pins' fixed threshold result in
406 * a programmable input threshold from the user's perspective.
407 * The PWM outputs can be seen on R79 and R56 respectively, the
408 * frequency is 100kHz and the duty cycle varies. The R79 PWM
409 * uses three discrete settings. The R56 PWM varies with desired
410 * thresholds and depends on the R79 PWM configuration. See the
411 * schematics comments which discuss the formulae.
f2ad79d1
KG
412 */
413 if (voltage >= 2.9) {
96dc954e 414 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 415 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 416 } else if (voltage > -0.4) {
96dc954e 417 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 418 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
419 } else {
420 duty_R79 = 0x02d7; /* 72% duty cycle. */
421 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
422 }
423
96dc954e 424 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
425 if (duty_R56 < 10) {
426 duty_R56 = 10;
1ed93110 427 } else if (duty_R56 > 1100) {
f2ad79d1
KG
428 duty_R56 = 1100;
429 }
430
91f73872
GS
431 sr_dbg("Set threshold voltage %.2fV.", voltage);
432 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
433
434 wrptr = buf;
435 write_u16le_inc(&wrptr, duty_R56);
436 write_u16le_inc(&wrptr, duty_R79);
437
438 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 439 if (ret != SR_OK) {
91f73872 440 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
441 return ret;
442 }
f2cd2deb
FS
443
444 return SR_OK;
445}
446
08a49848
GS
447/*
448 * Communicates a channel's configuration to the device after the
449 * parameters may have changed. Configuration of one channel may
450 * interfere with other channels since they share FPGA registers.
451 */
452static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 453{
08a49848 454 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 455
f2cd2deb 456 struct dev_context *devc;
08a49848
GS
457 struct pwm_setting *params;
458 uint8_t reg_base;
459 double val_f;
460 uint32_t val_u;
461 uint32_t period, duty;
462 size_t ch;
f2cd2deb 463 int ret;
08a49848
GS
464 uint8_t enable_all, enable_cfg, reg_val;
465 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 466 uint8_t *wrptr;
f2cd2deb
FS
467
468 devc = sdi->priv;
08a49848
GS
469 if (idx >= ARRAY_SIZE(devc->pwm_setting))
470 return SR_ERR_ARG;
471 params = &devc->pwm_setting[idx];
472 if (idx >= ARRAY_SIZE(reg_bases))
473 return SR_ERR_ARG;
474 reg_base = reg_bases[idx];
f2cd2deb 475
08a49848
GS
476 /*
477 * Map application's specs to hardware register values. Do math
478 * in floating point initially, but convert to u32 eventually.
479 */
480 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
481 idx, params->enabled ? 1 : 0, params->freq, params->duty);
482 val_f = PWM_CLOCK;
483 val_f /= params->freq;
484 val_u = val_f;
485 period = val_u;
486 val_f = period;
487 val_f *= params->duty;
488 val_f /= 100.0;
489 val_f += 0.5;
490 val_u = val_f;
491 duty = val_u;
492 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
493 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
494
495 /* Get the "enabled" state of all supported PWM channels. */
496 enable_all = 0;
497 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
498 if (!devc->pwm_setting[ch].enabled)
499 continue;
500 enable_all |= 1U << ch;
f2cd2deb 501 }
08a49848
GS
502 enable_cfg = 1U << idx;
503 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
504 enable_all, enable_cfg);
f2cd2deb 505
08a49848
GS
506 /*
507 * Disable the to-get-configured channel before its parameters
508 * will change. Or disable and exit when the channel is supposed
509 * to get turned off.
510 */
511 sr_spew("PWM config, disabling before param change.");
512 reg_val = enable_all & ~enable_cfg;
513 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
514 &reg_val, sizeof(reg_val));
f2cd2deb 515 if (ret != SR_OK) {
08a49848 516 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
517 return ret;
518 }
08a49848
GS
519 if (!params->enabled)
520 return SR_OK;
86d77b75 521
08a49848
GS
522 /* Write register values to device. */
523 sr_spew("PWM config, sending new parameters.");
524 wrptr = buf;
525 write_u32le_inc(&wrptr, period);
526 write_u32le_inc(&wrptr, duty);
527 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
528 if (ret != SR_OK) {
529 sr_err("Cannot change PWM parameters.");
f2cd2deb 530 return ret;
08a49848 531 }
f2cd2deb 532
08a49848
GS
533 /* Enable configured channel after write completion. */
534 sr_spew("PWM config, enabling after param change.");
535 reg_val = enable_all | enable_cfg;
536 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
537 &reg_val, sizeof(reg_val));
538 if (ret != SR_OK) {
539 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 540 return ret;
08a49848 541 }
f2cd2deb
FS
542
543 return SR_OK;
544}
545
4276ca94 546static uint32_t get_channels_mask(const struct sr_dev_inst *sdi)
ea436ba7 547{
4276ca94 548 uint32_t channels;
ea436ba7
GS
549 GSList *l;
550 struct sr_channel *ch;
551
552 channels = 0;
553 for (l = sdi->channels; l; l = l->next) {
554 ch = l->data;
555 if (ch->type != SR_CHANNEL_LOGIC)
556 continue;
557 if (!ch->enabled)
558 continue;
559 channels |= 1UL << ch->index;
560 }
561
562 return channels;
563}
564
f2cd2deb
FS
565static int set_trigger_config(const struct sr_dev_inst *sdi)
566{
567 struct dev_context *devc;
568 struct sr_trigger *trigger;
edb13f41 569 struct trigger_cfg {
972d191b
GS
570 uint32_t channels; /* Actually: Enabled channels? */
571 uint32_t enabled; /* Actually: Triggering channels? */
edb13f41
GS
572 uint32_t level;
573 uint32_t high_or_falling;
574 } cfg;
f2cd2deb
FS
575 GSList *stages;
576 GSList *channel;
577 struct sr_trigger_stage *stage1;
578 struct sr_trigger_match *match;
4276ca94 579 uint32_t ch_mask;
f2cd2deb 580 int ret;
3ab60908 581 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
c3d40037 582 uint8_t *wrptr;
f2cd2deb
FS
583
584 devc = sdi->priv;
585 trigger = sr_session_trigger_get(sdi->session);
586
587 memset(&cfg, 0, sizeof(cfg));
588
ea436ba7 589 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
590
591 if (trigger && trigger->stages) {
592 stages = trigger->stages;
593 stage1 = stages->data;
594 if (stages->next) {
595 sr_err("Only one trigger stage supported for now.");
286b3e13 596 return SR_ERR_ARG;
f2cd2deb
FS
597 }
598 channel = stage1->matches;
599 while (channel) {
600 match = channel->data;
cf057ac4 601 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
602
603 switch (match->match) {
604 case SR_TRIGGER_ZERO:
605 cfg.level |= ch_mask;
606 cfg.high_or_falling &= ~ch_mask;
607 break;
608 case SR_TRIGGER_ONE:
609 cfg.level |= ch_mask;
610 cfg.high_or_falling |= ch_mask;
611 break;
612 case SR_TRIGGER_RISING:
613 if ((cfg.enabled & ~cfg.level)) {
91f73872 614 sr_err("Device only supports one edge trigger.");
286b3e13 615 return SR_ERR_ARG;
f2cd2deb
FS
616 }
617 cfg.level &= ~ch_mask;
618 cfg.high_or_falling &= ~ch_mask;
619 break;
620 case SR_TRIGGER_FALLING:
621 if ((cfg.enabled & ~cfg.level)) {
91f73872 622 sr_err("Device only supports one edge trigger.");
286b3e13 623 return SR_ERR_ARG;
f2cd2deb
FS
624 }
625 cfg.level &= ~ch_mask;
626 cfg.high_or_falling |= ch_mask;
627 break;
628 default:
91f73872 629 sr_err("Unknown trigger condition.");
286b3e13 630 return SR_ERR_ARG;
f2cd2deb
FS
631 }
632 cfg.enabled |= ch_mask;
633 channel = channel->next;
634 }
635 }
91f73872 636 sr_dbg("Set trigger config: "
972d191b 637 "enabled-channels 0x%04x, triggering-channels 0x%04x, "
91f73872
GS
638 "level-triggered 0x%04x, high/falling 0x%04x.",
639 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 640
cf057ac4 641 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 642
c3d40037
HK
643 wrptr = buf;
644 write_u32le_inc(&wrptr, cfg.channels);
645 write_u32le_inc(&wrptr, cfg.enabled);
646 write_u32le_inc(&wrptr, cfg.level);
647 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
648 /* TODO
649 * Comment on this literal 16. Origin, meaning? Cannot be the
650 * register offset, nor the transfer length. Is it a channels
651 * count that is relevant for 16 and 32 channel models? Is it
652 * an obsolete experiment?
653 */
42f6dd55 654 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 655 if (ret != SR_OK) {
91f73872 656 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
657 return ret;
658 }
659
660 return SR_OK;
661}
662
663static int set_sample_config(const struct sr_dev_inst *sdi)
664{
665 struct dev_context *devc;
d8fbfcd9 666 uint64_t min_samplerate, eff_samplerate;
adab4d91 667 uint16_t divider_u16;
a38f0f5e 668 uint64_t limit_samples;
adab4d91
GS
669 uint64_t pre_trigger_samples;
670 uint64_t pre_trigger_memory;
671 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 672 uint8_t *wrptr;
adab4d91 673 int ret;
f2cd2deb
FS
674
675 devc = sdi->priv;
f2cd2deb 676
edc0b015 677 if (devc->samplerate > devc->model->samplerate) {
91f73872 678 sr_err("Too high a sample rate: %" PRIu64 ".",
edc0b015 679 devc->samplerate);
ea436ba7
GS
680 return SR_ERR_ARG;
681 }
d8fbfcd9
GS
682 min_samplerate = devc->model->samplerate;
683 min_samplerate /= 65536;
edc0b015 684 if (devc->samplerate < min_samplerate) {
ea436ba7 685 sr_err("Too low a sample rate: %" PRIu64 ".",
edc0b015 686 devc->samplerate);
ea436ba7 687 return SR_ERR_ARG;
f2cd2deb 688 }
edc0b015 689 divider_u16 = devc->model->samplerate / devc->samplerate;
d8fbfcd9 690 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 691
a38f0f5e
GS
692 ret = sr_sw_limits_get_remain(&devc->sw_limits,
693 &limit_samples, NULL, NULL, NULL);
694 if (ret != SR_OK) {
695 sr_err("Cannot get acquisition limits.");
696 return ret;
f2cd2deb 697 }
a38f0f5e 698 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
699 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
700 limit_samples);
701 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 702 }
d8fbfcd9
GS
703 if (limit_samples == 0) {
704 limit_samples = LA2016_NUM_SAMPLES_MAX;
705 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
706 limit_samples);
ea436ba7 707 }
f2cd2deb 708
adab4d91
GS
709 /*
710 * The acquisition configuration communicates "pre-trigger"
711 * specs in several formats. sigrok users provide a percentage
712 * (0-100%), which translates to a pre-trigger samples count
713 * (assuming that a total samples count limit was specified).
714 * The device supports hardware compression, which depends on
715 * slowly changing input data to be effective. Fast changing
716 * input data may occupy more space in sample memory than its
717 * uncompressed form would. This is why a third parameter can
718 * limit the amount of sample memory to use for pre-trigger
719 * data. Only the upper 24 bits of that memory size spec get
720 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
721 *
722 * TODO Determine whether the pre-trigger memory size gets
723 * specified in samples or in bytes. A previous implementation
724 * suggests bytes but this is suspicious when every other spec
725 * is in terms of samples.
adab4d91 726 */
d8fbfcd9
GS
727 if (devc->trigger_involved) {
728 pre_trigger_samples = limit_samples;
729 pre_trigger_samples *= devc->capture_ratio;
730 pre_trigger_samples /= 100;
731 pre_trigger_memory = devc->model->memory_bits;
732 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
733 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
734 pre_trigger_memory *= devc->capture_ratio;
735 pre_trigger_memory /= 100;
736 } else {
737 sr_dbg("No trigger setup, skipping pre-trigger config.");
738 pre_trigger_samples = 1;
739 pre_trigger_memory = 0;
740 }
741 /* Ensure non-zero value after LSB shift out in HW reg. */
742 if (pre_trigger_memory < 0x100) {
743 pre_trigger_memory = 0x100;
744 }
f2cd2deb 745
adab4d91 746 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 747 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
748 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
749 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 750
b1a17c1a
GS
751 /*
752 * The acquisition configuration occupies a total of 16 bytes:
753 * - A 34bit total samples count limit (up to 10 billions) that
754 * is kept in a 40bit register.
755 * - A 34bit pre-trigger samples count limit (up to 10 billions)
756 * in another 40bit register.
757 * - A 32bit pre-trigger memory space limit (in bytes) of which
758 * the upper 24bits are kept in an FPGA register.
759 * - A 16bit clock divider which gets applied to the maximum
760 * samplerate of the device.
761 * - An 8bit register of unknown meaning. Currently always 0.
762 */
c3d40037 763 wrptr = buf;
a38f0f5e 764 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
765 write_u40le_inc(&wrptr, pre_trigger_samples);
766 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 767 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 768 write_u8_inc(&wrptr, 0);
42f6dd55 769 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 770 if (ret != SR_OK) {
91f73872 771 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
772 return ret;
773 }
774
775 return SR_OK;
776}
777
96dc954e
GS
778/*
779 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
780 * of interest:
781 * bit 0: value 1 = idle
782 * bit 1: value 1 = writing to SDRAM
783 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
784 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
785 * The meaning of other bit fields is unknown.
7601dca7 786 *
96dc954e 787 * Typical values in order of appearance during execution:
b711fd8e
GS
788 * 0x85e1: idle, no acquisition pending
789 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
790 * "In idle state." Takes precedence over all others.
96dc954e
GS
791 * 0x85e2: pre-sampling, samples before the trigger position,
792 * when capture ratio > 0%
b711fd8e
GS
793 * IDLE clear, TRGD clear, POST clear; DRAM don't care
794 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
795 * 0x85ea: pre-sampling complete, now waiting for the trigger
796 * (whilst sampling continuously)
b711fd8e
GS
797 * IDLE clear, TRGD clear, POST set; DRAM don't care
798 * "Post set thus after pre, not triggered yet"
96dc954e 799 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
800 * IDLE clear, TRGD set, POST set; DRAM don't care
801 * "Triggered and in post, not idle yet."
96dc954e 802 * 0x85ed: idle
b711fd8e
GS
803 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
804 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 805 */
b711fd8e
GS
806static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
807static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
808static const uint16_t runstate_mask_step =
809 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
810static const uint16_t runstate_patt_pre_trig = 0;
811static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
812static const uint16_t runstate_patt_post_trig =
813 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
814
f2cd2deb
FS
815static uint16_t run_state(const struct sr_dev_inst *sdi)
816{
21d68fd9
GS
817 static uint16_t previous_state;
818
f2cd2deb 819 int ret;
21d68fd9 820 uint16_t state;
3ab60908 821 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
21d68fd9
GS
822 const uint8_t *rdptr;
823 const char *label;
f2cd2deb 824
411ad77c
GS
825 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
826 if (ret != SR_OK) {
91f73872 827 sr_err("Cannot read run state.");
f2cd2deb
FS
828 return ret;
829 }
21d68fd9
GS
830 rdptr = buff;
831 state = read_u16le_inc(&rdptr);
7601dca7 832
96dc954e
GS
833 /*
834 * Avoid flooding the log, only dump values as they change.
835 * The routine is called about every 50ms.
7601dca7 836 */
b711fd8e
GS
837 if (state == previous_state)
838 return state;
839
840 previous_state = state;
841 label = NULL;
842 if ((state & runstate_mask_idle) == runstate_patt_idle)
843 label = "idle";
844 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
845 label = "pre-trigger sampling";
846 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
847 label = "sampling, waiting for trigger";
848 if ((state & runstate_mask_step) == runstate_patt_post_trig)
849 label = "post-trigger sampling";
850 if (label && *label)
851 sr_dbg("Run state: 0x%04x (%s).", state, label);
852 else
853 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
854
855 return state;
856}
857
cf057ac4 858static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
859{
860 uint16_t state;
861
862 state = run_state(sdi);
b711fd8e 863 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
864 return 1;
865
866 return 0;
867}
868
869static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
870{
871 int ret;
872
411ad77c
GS
873 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
874 if (ret != SR_OK) {
c34f4a89 875 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
876 return ret;
877 }
878
879 return SR_OK;
880}
881
882static int get_capture_info(const struct sr_dev_inst *sdi)
883{
884 struct dev_context *devc;
885 int ret;
3ab60908 886 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 887 const uint8_t *rdptr;
f2cd2deb
FS
888
889 devc = sdi->priv;
890
411ad77c
GS
891 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
892 if (ret != SR_OK) {
91f73872 893 sr_err("Cannot read capture info.");
f2cd2deb
FS
894 return ret;
895 }
c3d40037
HK
896
897 rdptr = buf;
898 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
899 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
900 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 901
cf057ac4 902 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
903 devc->info.n_rep_packets, devc->info.n_rep_packets,
904 devc->info.n_rep_packets_before_trigger,
905 devc->info.n_rep_packets_before_trigger,
906 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 907
038e65c1
GS
908 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
909 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
852c7d14 910 (unsigned long)devc->info.n_rep_packets,
038e65c1 911 (unsigned long)devc->packets_per_chunk);
91f73872 912 }
f2cd2deb
FS
913
914 return SR_OK;
915}
916
d466f61c 917SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
91aa0f04 918 struct sr_context *sr_ctx, libusb_device *dev, gboolean skip_upload)
f2cd2deb 919{
d466f61c 920 struct dev_context *devc;
91aa0f04
GS
921 uint16_t pid;
922 char *fw;
d466f61c
GS
923 int ret;
924
925 devc = sdi ? sdi->priv : NULL;
91aa0f04
GS
926 if (!devc || !devc->usb_pid)
927 return SR_ERR_ARG;
928 pid = devc->usb_pid;
d466f61c 929
91aa0f04
GS
930 fw = g_strdup_printf(MCU_FWFILE_FMT, pid);
931 sr_info("USB PID %04hx, MCU firmware '%s'.", pid, fw);
932 devc->mcu_firmware = g_strdup(fw);
d466f61c 933
91aa0f04
GS
934 if (skip_upload)
935 ret = SR_OK;
936 else
937 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw);
938 g_free(fw);
939 if (ret != SR_OK)
d466f61c 940 return ret;
d466f61c
GS
941
942 return SR_OK;
f2cd2deb
FS
943}
944
9270f8f4
GS
945SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
946 double voltage)
f2cd2deb 947{
f2cd2deb
FS
948 int ret;
949 uint8_t cmd;
950
9270f8f4 951 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
952 if (ret != SR_OK)
953 return ret;
954
972d191b 955 cmd = CAPTMODE_TO_RAM;
411ad77c
GS
956 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
957 if (ret != SR_OK) {
91f73872 958 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
959 return ret;
960 }
961
962 ret = set_trigger_config(sdi);
963 if (ret != SR_OK)
964 return ret;
965
966 ret = set_sample_config(sdi);
967 if (ret != SR_OK)
968 return ret;
969
970 return SR_OK;
971}
972
973SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
974{
3ebc1cb2
GS
975 int ret;
976
852c7d14 977 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
978 if (ret != SR_OK)
979 return ret;
980
981 return SR_OK;
f2cd2deb
FS
982}
983
3ebc1cb2 984static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 985{
3ebc1cb2
GS
986 int ret;
987
852c7d14 988 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
989 if (ret != SR_OK)
990 return ret;
991
992 return SR_OK;
f2cd2deb
FS
993}
994
995SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
996{
3ebc1cb2
GS
997 int ret;
998 struct dev_context *devc;
999
1000 ret = la2016_stop_acquisition(sdi);
1001 if (ret != SR_OK)
1002 return ret;
1003
1004 devc = sdi ? sdi->priv : NULL;
1005 if (devc && devc->transfer)
1006 libusb_cancel_transfer(devc->transfer);
1007
1008 return SR_OK;
f2cd2deb
FS
1009}
1010
cf057ac4 1011static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 1012 libusb_transfer_cb_fn cb)
f2cd2deb
FS
1013{
1014 struct dev_context *devc;
1015 struct sr_usb_dev_inst *usb;
1016 int ret;
3ab60908 1017 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
c3d40037 1018 uint8_t *wrptr;
f2cd2deb
FS
1019 uint32_t to_read;
1020 uint8_t *buffer;
1021
1022 devc = sdi->priv;
1023 usb = sdi->conn;
1024
411ad77c
GS
1025 ret = get_capture_info(sdi);
1026 if (ret != SR_OK)
f2cd2deb
FS
1027 return ret;
1028
038e65c1
GS
1029 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
1030 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
1031 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
1032 devc->n_bytes_to_read *= TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
1033 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
1034 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
1035
91f73872 1036 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 1037 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 1038
411ad77c
GS
1039 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1040 if (ret != SR_OK) {
91f73872 1041 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
1042 return ret;
1043 }
91f73872
GS
1044 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
1045 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
1046 wrptr = wrbuf;
1047 write_u32le_inc(&wrptr, devc->read_pos);
1048 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
1049 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
1050 if (ret != SR_OK) {
91f73872 1051 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
1052 return ret;
1053 }
411ad77c
GS
1054 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1055 if (ret != SR_OK) {
91f73872 1056 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1057 return ret;
1058 }
1059
96dc954e
GS
1060 /*
1061 * Pick a buffer size for all USB transfers. The buffer size
1062 * must be a multiple of the endpoint packet size. And cannot
1063 * exceed a maximum value.
1064 */
f2cd2deb 1065 to_read = devc->n_bytes_to_read;
96dc954e
GS
1066 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1067 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1068 to_read += LA2016_EP6_PKTSZ - 1;
1069 to_read /= LA2016_EP6_PKTSZ;
1070 to_read *= LA2016_EP6_PKTSZ;
f2cd2deb
FS
1071 buffer = g_try_malloc(to_read);
1072 if (!buffer) {
91f73872
GS
1073 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1074 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1075 return SR_ERR_MALLOC;
1076 }
1077
1078 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1079 libusb_fill_bulk_transfer(devc->transfer,
1080 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1081 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1082
411ad77c
GS
1083 ret = libusb_submit_transfer(devc->transfer);
1084 if (ret != 0) {
91f73872 1085 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1086 libusb_free_transfer(devc->transfer);
1087 devc->transfer = NULL;
1088 g_free(buffer);
286b3e13 1089 return SR_ERR_IO;
f2cd2deb
FS
1090 }
1091
1092 return SR_OK;
1093}
1094
480efba2
GS
1095/*
1096 * A chunk (received via USB) contains a number of transfers (USB length
1097 * divided by 16) which contain a number of packets (5 per transfer) which
1098 * contain a number of samples (8bit repeat count per 16bit sample data).
1099 */
dfac9592 1100static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1101 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1102{
1103 struct dev_context *devc;
480efba2 1104 size_t num_pkts;
dfac9592 1105 const uint8_t *rp;
4276ca94 1106 uint32_t sample_value;
480efba2
GS
1107 size_t repetitions;
1108 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1109
1110 devc = sdi->priv;
1111
a38f0f5e
GS
1112 /* Ignore incoming USB data after complete sample data download. */
1113 if (devc->download_finished)
1114 return;
dfac9592 1115
cf057ac4 1116 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1117 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1118 devc->trigger_marked = TRUE;
dfac9592
GS
1119 }
1120
4276ca94 1121 sample_value = 0;
dfac9592 1122 rp = packets;
480efba2 1123 while (num_xfers--) {
038e65c1 1124 num_pkts = devc->packets_per_chunk;
480efba2 1125 while (num_pkts--) {
dfac9592 1126
4276ca94
GS
1127 /* TODO Verify 32channel layout. */
1128 if (devc->model->channel_count == 32)
1129 sample_value = read_u32le_inc(&rp);
1130 else if (devc->model->channel_count == 16)
1131 sample_value = read_u16le_inc(&rp);
dfac9592 1132 repetitions = read_u8_inc(&rp);
dfac9592 1133
dfac9592 1134 devc->total_samples += repetitions;
480efba2 1135
4276ca94 1136 write_u32le(sample_buff, sample_value);
a38f0f5e
GS
1137 feed_queue_logic_submit(devc->feed_queue,
1138 sample_buff, repetitions);
1139 sr_sw_limits_update_samples_read(&devc->sw_limits,
1140 repetitions);
480efba2 1141
cf057ac4
GS
1142 if (devc->trigger_involved && !devc->trigger_marked) {
1143 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1144 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1145 devc->trigger_marked = TRUE;
91f73872 1146 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110 1147 devc->total_samples,
edc0b015 1148 (double)devc->total_samples / devc->samplerate * 1e3);
dfac9592
GS
1149 }
1150 }
1151 }
1152 (void)read_u8_inc(&rp); /* Skip sequence number. */
1153 }
a38f0f5e
GS
1154
1155 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1156 sr_dbg("Acquisition limit reached.");
1157 devc->download_finished = TRUE;
1158 }
1159 if (devc->download_finished) {
1160 sr_dbg("Download finished, flushing session feed queue.");
1161 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1162 }
a38f0f5e 1163 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1164}
1165
1166static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1167{
1168 struct sr_dev_inst *sdi;
1169 struct dev_context *devc;
1170 struct sr_usb_dev_inst *usb;
a38f0f5e 1171 size_t num_xfers;
dfac9592
GS
1172 int ret;
1173
1174 sdi = transfer->user_data;
1175 devc = sdi->priv;
1176 usb = sdi->conn;
1177
1178 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1179 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1180 /*
1181 * Implementation detail: A USB transfer timeout is not fatal
1182 * here. We just process whatever was received, empty input is
1183 * perfectly acceptable. Reaching (or exceeding) the sw limits
1184 * or exhausting the device's captured data will complete the
1185 * sample data download.
1186 */
1187 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1188 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1189
1190 devc->n_bytes_to_read -= transfer->actual_length;
1191 if (devc->n_bytes_to_read) {
1192 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1193 /*
1194 * Determine read size for the next USB transfer. Make
1195 * the buffer size a multiple of the endpoint packet
1196 * size. Don't exceed a maximum value.
1197 */
dfac9592
GS
1198 if (to_read >= LA2016_USB_BUFSZ)
1199 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1200 to_read += LA2016_EP6_PKTSZ - 1;
1201 to_read /= LA2016_EP6_PKTSZ;
1202 to_read *= LA2016_EP6_PKTSZ;
852c7d14
GS
1203 libusb_fill_bulk_transfer(transfer,
1204 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1205 transfer->buffer, to_read,
dfac9592
GS
1206 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1207
411ad77c
GS
1208 ret = libusb_submit_transfer(transfer);
1209 if (ret == 0)
dfac9592 1210 return;
91f73872
GS
1211 sr_err("Cannot submit another USB transfer: %s.",
1212 libusb_error_name(ret));
dfac9592
GS
1213 }
1214
1215 g_free(transfer->buffer);
1216 libusb_free_transfer(transfer);
cf057ac4 1217 devc->download_finished = TRUE;
dfac9592
GS
1218}
1219
1220SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1221{
1222 const struct sr_dev_inst *sdi;
1223 struct dev_context *devc;
1224 struct drv_context *drvc;
1225 struct timeval tv;
a38f0f5e 1226 int ret;
dfac9592
GS
1227
1228 (void)fd;
1229 (void)revents;
1230
1231 sdi = cb_data;
1232 devc = sdi->priv;
1233 drvc = sdi->driver->context;
1234
a38f0f5e
GS
1235 /*
1236 * Wait for the acquisition to complete in hardware.
1237 * Periodically check a potentially configured msecs timeout.
1238 */
cf057ac4
GS
1239 if (!devc->completion_seen) {
1240 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1241 if (sr_sw_limits_check(&devc->sw_limits)) {
1242 devc->sw_limits.limit_msec = 0;
1243 sr_dbg("Limit reached. Stopping acquisition.");
1244 la2016_stop_acquisition(sdi);
1245 }
96dc954e 1246 /* Not yet ready for sample data download. */
dfac9592
GS
1247 return TRUE;
1248 }
a38f0f5e
GS
1249 sr_dbg("Acquisition completion seen (hardware).");
1250 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1251 devc->completion_seen = TRUE;
1252 devc->download_finished = FALSE;
1253 devc->trigger_marked = FALSE;
dfac9592 1254 devc->total_samples = 0;
a38f0f5e 1255
33020165
GS
1256 la2016_dump_fpga_registers(sdi, "acquisition complete", 0, 0);
1257
a38f0f5e
GS
1258 /* Initiate the download of acquired sample data. */
1259 std_session_send_df_frame_begin(sdi);
96a405ab 1260 devc->frame_begin_sent = TRUE;
a38f0f5e
GS
1261 ret = la2016_start_download(sdi, receive_transfer);
1262 if (ret != SR_OK) {
91f73872 1263 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1264 return FALSE;
1265 }
91f73872 1266 sr_dbg("Acquisition data download started.");
dfac9592
GS
1267
1268 return TRUE;
1269 }
1270
a38f0f5e 1271 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1272 tv.tv_sec = tv.tv_usec = 0;
1273 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1274
a38f0f5e 1275 /* Postprocess completion of sample data download. */
cf057ac4 1276 if (devc->download_finished) {
91f73872 1277 sr_dbg("Download finished, post processing.");
dfac9592
GS
1278
1279 la2016_stop_acquisition(sdi);
a38f0f5e 1280 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1281 devc->transfer = NULL;
1282
a38f0f5e
GS
1283 feed_queue_logic_flush(devc->feed_queue);
1284 feed_queue_logic_free(devc->feed_queue);
1285 devc->feed_queue = NULL;
96a405ab
GS
1286 if (devc->frame_begin_sent) {
1287 std_session_send_df_frame_end(sdi);
1288 devc->frame_begin_sent = FALSE;
1289 }
a38f0f5e
GS
1290 std_session_send_df_end(sdi);
1291
91f73872 1292 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1293 }
1294
1295 return TRUE;
1296}
1297
d466f61c
GS
1298SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1299 gboolean show_message)
f2cd2deb 1300{
8b172e78 1301 struct dev_context *devc;
3ab60908 1302 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
64172b16 1303 size_t rdoff, rdlen;
43d2e52f
GS
1304 const uint8_t *rdptr;
1305 uint8_t date_yy, date_mm;
1306 uint8_t dinv_yy, dinv_mm;
9de389b1 1307 uint8_t magic;
d466f61c
GS
1308 size_t model_idx;
1309 const struct kingst_model *model;
9de389b1 1310 int ret;
f2cd2deb 1311
8b172e78
KG
1312 devc = sdi->priv;
1313
96dc954e 1314 /*
43d2e52f
GS
1315 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1316 * year and month in BCD format, followed by inverted values for
1317 * consistency checks. For example bytes 20 04 df fb translate
1318 * to 2020-04. This information can help identify the vintage of
1319 * devices when unknown magic numbers are seen.
9de389b1 1320 */
64172b16
GS
1321 rdoff = 0x20;
1322 rdlen = 4 * sizeof(uint8_t);
1323 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1324 if (ret != SR_OK && !show_message) {
64172b16 1325 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1326 sr_dbg("Cannot access EEPROM.");
1327 return SR_ERR_IO;
1328 } else if (ret != SR_OK) {
64172b16 1329 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1330 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1331 } else {
64172b16
GS
1332 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1333 GString *txt;
1334 txt = sr_hexdump_new(buf, rdlen);
1335 sr_spew("Manufacture date bytes %s.", txt->str);
1336 sr_hexdump_free(txt);
1337 }
43d2e52f
GS
1338 rdptr = &buf[0];
1339 date_yy = read_u8_inc(&rdptr);
1340 date_mm = read_u8_inc(&rdptr);
1341 dinv_yy = read_u8_inc(&rdptr);
1342 dinv_mm = read_u8_inc(&rdptr);
1343 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1344 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1345 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1346 }
f2cd2deb 1347
9de389b1 1348 /*
96dc954e
GS
1349 * Several Kingst logic analyzer devices share the same USB VID
1350 * and PID. The product ID determines which MCU firmware to load.
1351 * The MCU firmware provides access to EEPROM content which then
1352 * allows to identify the device model. Which in turn determines
1353 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1354 * to get inspected.
9de389b1 1355 *
96dc954e
GS
1356 * EEPROM content for model identification is kept redundantly
1357 * in memory. The values are stored in verbatim and in inverted
1358 * form, multiple copies are kept at different offsets. Example
1359 * data:
9de389b1 1360 *
96dc954e
GS
1361 * magic 0x08
1362 * | ~magic 0xf7
1363 * | |
1364 * 08f7000008f710ef
1365 * | |
1366 * | ~magic backup
1367 * magic backup
9de389b1 1368 *
96dc954e
GS
1369 * Exclusively inspecting the magic byte appears to be sufficient,
1370 * other fields seem to be 'don't care'.
9de389b1 1371 *
96dc954e
GS
1372 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1373 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1374 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1375 * (latest v1.3.0 PCB, perhaps others)
1376 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1377 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1378 *
96dc954e
GS
1379 * When EEPROM content does not match the hardware configuration
1380 * (the board layout), the software may load but yield incorrect
1381 * results (like swapped channels). The FPGA bitstream itself
1382 * will authenticate with IC U10 and fail when its capabilities
1383 * do not match the hardware model. An LA1016 won't become a
1384 * LA2016 by faking its EEPROM content.
9de389b1 1385 */
d466f61c 1386 devc->identify_magic = 0;
64172b16
GS
1387 rdoff = 0x08;
1388 rdlen = 8 * sizeof(uint8_t);
1389 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1390 if (ret != SR_OK) {
91f73872 1391 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1392 return ret;
1393 }
64172b16
GS
1394 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1395 GString *txt;
1396 txt = sr_hexdump_new(buf, rdlen);
1397 sr_spew("EEPROM magic bytes %s.", txt->str);
1398 sr_hexdump_free(txt);
1399 }
43d2e52f 1400 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1401 /* Primary copy of magic passes complement check. */
9de389b1 1402 magic = buf[0];
64172b16 1403 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1404 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1405 /* Backup copy of magic passes complement check. */
9de389b1 1406 magic = buf[4];
64172b16 1407 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1408 } else {
1409 sr_err("Cannot find consistent device type identification.");
1410 magic = 0;
f2cd2deb 1411 }
d466f61c 1412 devc->identify_magic = magic;
9de389b1 1413
d466f61c
GS
1414 devc->model = NULL;
1415 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1416 model = &models[model_idx];
1417 if (model->magic != magic)
1418 continue;
1419 devc->model = model;
64172b16
GS
1420 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1421 model->name, model->channel_count,
1422 model->samplerate / SR_MHZ(1));
d466f61c
GS
1423 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1424 model->fpga_stem);
d466f61c 1425 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1426 break;
1427 }
d466f61c 1428 if (!devc->model) {
91f73872 1429 sr_err("Cannot identify as one of the supported models.");
286b3e13 1430 return SR_ERR_DATA;
3f48ab02 1431 }
f2cd2deb 1432
d466f61c
GS
1433 return SR_OK;
1434}
1435
6d53e949 1436SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1437{
1438 struct dev_context *devc;
1439 const char *bitstream_fn;
1440 int ret;
1441 uint16_t state;
1442
1443 devc = sdi->priv;
1444 bitstream_fn = devc ? devc->fpga_bitstream : "";
1445
1446 ret = check_fpga_bitstream(sdi);
1447 if (ret != SR_OK) {
d6f89d4b
GS
1448 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1449 if (ret != SR_OK) {
1450 sr_err("Cannot upload FPGA bitstream.");
1451 return ret;
1452 }
1453 }
1454 ret = enable_fpga_bitstream(sdi);
9de389b1 1455 if (ret != SR_OK) {
d6f89d4b 1456 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1457 return ret;
1458 }
1459
f2cd2deb 1460 state = run_state(sdi);
44947217
GS
1461 if ((state & 0xfff0) != 0x85e0) {
1462 sr_warn("Unexpected run state, want 0x85eX, got 0x%04x.", state);
9de389b1 1463 }
f2cd2deb 1464
6d53e949
GS
1465 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1466 if (ret != SR_OK) {
91f73872 1467 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1468 return ret;
1469 }
9de389b1 1470
91f73872 1471 sr_dbg("Device should be initialized.");
f2cd2deb 1472
6d53e949
GS
1473 return SR_OK;
1474}
1475
6d53e949 1476SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1477{
1478 int ret;
1479
6d53e949
GS
1480 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1481 if (ret != SR_OK) {
91f73872 1482 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1483 return ret;
1484 }
1485
1486 return SR_OK;
1487}
08a49848
GS
1488
1489SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1490{
1491 return set_pwm_config(sdi, idx);
1492}