]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: rework the device side of PWM configuration
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
83#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
84#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
85#define REG_PWM1 0x70 /* Write config for user PWM1. */
86#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 87
852c7d14
GS
88/* Bit patterns to write to REG_RUN, setup run mode. */
89#define RUNMODE_HALT 0x00
90#define RUNMODE_RUN 0x03
91
b711fd8e
GS
92/* Bit patterns when reading from REG_RUN, get run state. */
93#define RUNSTATE_IDLE_BIT (1UL << 0)
94#define RUNSTATE_DRAM_BIT (1UL << 1)
95#define RUNSTATE_TRGD_BIT (1UL << 2)
96#define RUNSTATE_POST_BIT (1UL << 3)
97
f2cd2deb 98static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
99 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
100 void *data, uint16_t wLength)
f2cd2deb
FS
101{
102 struct sr_usb_dev_inst *usb;
103 int ret;
104
105 usb = sdi->conn;
106
411ad77c
GS
107 ret = libusb_control_transfer(usb->devhdl,
108 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
109 bRequest, wValue, wIndex, data, wLength,
110 DEFAULT_TIMEOUT_MS);
111 if (ret != wLength) {
91f73872
GS
112 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
113 wLength, bRequest, wValue, wIndex,
114 libusb_error_name(ret));
115 sr_err("Cannot read %d bytes from USB: %s.",
116 wLength, libusb_error_name(ret));
f2cd2deb
FS
117 return SR_ERR;
118 }
119
120 return SR_OK;
121}
122
123static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
124 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
125 void *data, uint16_t wLength)
f2cd2deb
FS
126{
127 struct sr_usb_dev_inst *usb;
128 int ret;
129
130 usb = sdi->conn;
131
411ad77c
GS
132 ret = libusb_control_transfer(usb->devhdl,
133 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
134 bRequest, wValue, wIndex, data, wLength,
135 DEFAULT_TIMEOUT_MS);
136 if (ret != wLength) {
91f73872
GS
137 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
138 wLength, bRequest, wValue, wIndex,
139 libusb_error_name(ret));
140 sr_err("Cannot write %d bytes to USB: %s.",
141 wLength, libusb_error_name(ret));
f2cd2deb
FS
142 return SR_ERR;
143 }
144
145 return SR_OK;
146}
147
d6f89d4b
GS
148/*
149 * Check the necessity for FPGA bitstream upload, because another upload
150 * would take some 600ms which is undesirable after program startup. Try
151 * to access some FPGA registers and check the values' plausibility. The
152 * check should fail on the safe side, request another upload when in
153 * doubt. A positive response (the request to continue operation with the
154 * currently active bitstream) should be conservative. Accessing multiple
155 * registers is considered cheap compared to the cost of bitstream upload.
156 *
157 * It helps though that both the vendor software and the sigrok driver
158 * use the same bundle of MCU firmware and FPGA bitstream for any of the
159 * supported models. We don't expect to successfully communicate to the
160 * device yet disagree on its protocol. Ideally we would access version
161 * identifying registers for improved robustness, but are not aware of
162 * any. A bitstream reload can always be forced by a power cycle.
163 */
164static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
165{
166 uint8_t init_rsp;
167 int ret;
168 uint16_t run_state;
169 uint8_t pwm_en;
170 size_t read_len;
171 uint8_t buff[sizeof(run_state)];
172 const uint8_t *rdptr;
173
174 sr_dbg("Checking operation of the FPGA bitstream.");
175
852c7d14 176 init_rsp = ~0;
d6f89d4b
GS
177 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
178 if (ret != SR_OK || init_rsp != 0) {
179 sr_dbg("FPGA init query failed, or unexpected response.");
180 return SR_ERR_IO;
181 }
182
183 read_len = sizeof(run_state);
184 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
185 if (ret != SR_OK) {
186 sr_dbg("FPGA register access failed (run state).");
187 return SR_ERR_IO;
188 }
189 rdptr = buff;
190 run_state = read_u16le_inc(&rdptr);
191 sr_spew("FPGA register: run state 0x%04x.", run_state);
192 if (run_state && (run_state & 0x3) != 0x1) {
193 sr_dbg("Unexpected FPGA register content (run state).");
194 return SR_ERR_DATA;
195 }
196 if (run_state && (run_state & ~0xf) != 0x85e0) {
197 sr_dbg("Unexpected FPGA register content (run state).");
198 return SR_ERR_DATA;
199 }
200
201 read_len = sizeof(pwm_en);
202 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
203 if (ret != SR_OK) {
204 sr_dbg("FPGA register access failed (PWM enable).");
205 return SR_ERR_IO;
206 }
207 rdptr = buff;
208 pwm_en = read_u8_inc(&rdptr);
209 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
210 if ((pwm_en & 0x3) != 0x0) {
211 sr_dbg("Unexpected FPGA register content (PWM enable).");
212 return SR_ERR_DATA;
213 }
214
215 sr_info("Could re-use current FPGA bitstream. No upload required.");
216 return SR_OK;
217}
218
1ed93110
GS
219static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
220 const char *bitstream_fname)
f2cd2deb
FS
221{
222 struct drv_context *drvc;
223 struct sr_usb_dev_inst *usb;
224 struct sr_resource bitstream;
b0d0131e 225 uint32_t bitstream_size;
c3d40037
HK
226 uint8_t buffer[sizeof(uint32_t)];
227 uint8_t *wrptr;
f2cd2deb 228 uint8_t block[4096];
3f48ab02
FS
229 int len, act_len;
230 unsigned int pos;
f2cd2deb 231 int ret;
b0d0131e 232 unsigned int zero_pad_to;
f2cd2deb
FS
233
234 drvc = sdi->driver->context;
235 usb = sdi->conn;
236
9de389b1 237 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 238
411ad77c
GS
239 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
240 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 241 if (ret != SR_OK) {
91f73872 242 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
243 return ret;
244 }
245
b0d0131e 246 bitstream_size = (uint32_t)bitstream.size;
c3d40037 247 wrptr = buffer;
b0d0131e 248 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
249 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
250 if (ret != SR_OK) {
91f73872 251 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
252 sr_resource_close(drvc->sr_ctx, &bitstream);
253 return ret;
254 }
b0d0131e
GS
255 zero_pad_to = bitstream_size;
256 zero_pad_to += LA2016_EP2_PADDING - 1;
257 zero_pad_to /= LA2016_EP2_PADDING;
258 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
259
260 pos = 0;
261 while (1) {
3f48ab02 262 if (pos < bitstream.size) {
411ad77c
GS
263 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
264 block, sizeof(block));
3f48ab02 265 if (len < 0) {
91f73872 266 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
267 sr_resource_close(drvc->sr_ctx, &bitstream);
268 return SR_ERR;
269 }
270 } else {
96dc954e 271 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
272 len = zero_pad_to - pos;
273 if ((unsigned)len > sizeof(block))
274 len = sizeof(block);
275 memset(&block, 0, len);
f2cd2deb
FS
276 }
277 if (len == 0)
278 break;
279
852c7d14 280 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 281 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 282 if (ret != 0) {
91f73872
GS
283 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
284 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
285 ret = SR_ERR;
286 break;
287 }
288 if (act_len != len) {
91f73872
GS
289 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
290 pos, (int)len, act_len);
f2cd2deb
FS
291 ret = SR_ERR;
292 break;
293 }
294 pos += len;
295 }
296 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 297 if (ret != SR_OK)
f2cd2deb 298 return ret;
91f73872
GS
299 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
300 bitstream.size);
f2cd2deb 301
d6f89d4b
GS
302 return SR_OK;
303}
304
305static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
306{
307 int ret;
411ad77c 308 uint8_t resp;
d6f89d4b 309
411ad77c
GS
310 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
311 if (ret != SR_OK) {
91f73872 312 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
313 return ret;
314 }
411ad77c 315 if (resp != 0) {
91f73872 316 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 317 resp);
3f48ab02
FS
318 return SR_ERR;
319 }
852c7d14 320 g_usleep(30 * 1000);
f2cd2deb 321
411ad77c
GS
322 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
323 if (ret != SR_OK) {
91f73872 324 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
325 return ret;
326 }
852c7d14 327 g_usleep(40 * 1000);
d6f89d4b 328
f2cd2deb
FS
329 return SR_OK;
330}
331
332static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
333{
334 struct dev_context *devc;
f2cd2deb 335 int ret;
1ed93110 336 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
337 uint8_t buf[2 * sizeof(uint16_t)];
338 uint8_t *wrptr;
339
084d6b92
GS
340 devc = sdi->priv;
341
96dc954e 342 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
343 if (voltage > 4.0) {
344 voltage = 4.0;
1ed93110 345 } else if (voltage < -4.0) {
f2ad79d1
KG
346 voltage = -4.0;
347 }
348
349 /*
96dc954e
GS
350 * Two PWM output channels feed one DAC which generates a bias
351 * voltage, which offsets the input probe's voltage level, and
352 * in combination with the FPGA pins' fixed threshold result in
353 * a programmable input threshold from the user's perspective.
354 * The PWM outputs can be seen on R79 and R56 respectively, the
355 * frequency is 100kHz and the duty cycle varies. The R79 PWM
356 * uses three discrete settings. The R56 PWM varies with desired
357 * thresholds and depends on the R79 PWM configuration. See the
358 * schematics comments which discuss the formulae.
f2ad79d1
KG
359 */
360 if (voltage >= 2.9) {
96dc954e 361 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 362 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 363 } else if (voltage > -0.4) {
96dc954e 364 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 365 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
366 } else {
367 duty_R79 = 0x02d7; /* 72% duty cycle. */
368 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
369 }
370
96dc954e 371 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
372 if (duty_R56 < 10) {
373 duty_R56 = 10;
1ed93110 374 } else if (duty_R56 > 1100) {
f2ad79d1
KG
375 duty_R56 = 1100;
376 }
377
91f73872
GS
378 sr_dbg("Set threshold voltage %.2fV.", voltage);
379 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
380
381 wrptr = buf;
382 write_u16le_inc(&wrptr, duty_R56);
383 write_u16le_inc(&wrptr, duty_R79);
384
385 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 386 if (ret != SR_OK) {
91f73872 387 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
388 return ret;
389 }
390 devc->threshold_voltage = voltage;
391
392 return SR_OK;
393}
394
08a49848
GS
395/*
396 * Communicates a channel's configuration to the device after the
397 * parameters may have changed. Configuration of one channel may
398 * interfere with other channels since they share FPGA registers.
399 */
400static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 401{
08a49848 402 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 403
f2cd2deb 404 struct dev_context *devc;
08a49848
GS
405 struct pwm_setting *params;
406 uint8_t reg_base;
407 double val_f;
408 uint32_t val_u;
409 uint32_t period, duty;
410 size_t ch;
f2cd2deb 411 int ret;
08a49848
GS
412 uint8_t enable_all, enable_cfg, reg_val;
413 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 414 uint8_t *wrptr;
f2cd2deb
FS
415
416 devc = sdi->priv;
08a49848
GS
417 if (idx >= ARRAY_SIZE(devc->pwm_setting))
418 return SR_ERR_ARG;
419 params = &devc->pwm_setting[idx];
420 if (idx >= ARRAY_SIZE(reg_bases))
421 return SR_ERR_ARG;
422 reg_base = reg_bases[idx];
f2cd2deb 423
08a49848
GS
424 /*
425 * Map application's specs to hardware register values. Do math
426 * in floating point initially, but convert to u32 eventually.
427 */
428 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
429 idx, params->enabled ? 1 : 0, params->freq, params->duty);
430 val_f = PWM_CLOCK;
431 val_f /= params->freq;
432 val_u = val_f;
433 period = val_u;
434 val_f = period;
435 val_f *= params->duty;
436 val_f /= 100.0;
437 val_f += 0.5;
438 val_u = val_f;
439 duty = val_u;
440 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
441 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
442
443 /* Get the "enabled" state of all supported PWM channels. */
444 enable_all = 0;
445 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
446 if (!devc->pwm_setting[ch].enabled)
447 continue;
448 enable_all |= 1U << ch;
f2cd2deb 449 }
08a49848
GS
450 enable_cfg = 1U << idx;
451 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
452 enable_all, enable_cfg);
f2cd2deb 453
08a49848
GS
454 /*
455 * Disable the to-get-configured channel before its parameters
456 * will change. Or disable and exit when the channel is supposed
457 * to get turned off.
458 */
459 sr_spew("PWM config, disabling before param change.");
460 reg_val = enable_all & ~enable_cfg;
461 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
462 &reg_val, sizeof(reg_val));
f2cd2deb 463 if (ret != SR_OK) {
08a49848 464 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
465 return ret;
466 }
08a49848
GS
467 if (!params->enabled)
468 return SR_OK;
86d77b75 469
08a49848
GS
470 /* Write register values to device. */
471 sr_spew("PWM config, sending new parameters.");
472 wrptr = buf;
473 write_u32le_inc(&wrptr, period);
474 write_u32le_inc(&wrptr, duty);
475 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
476 if (ret != SR_OK) {
477 sr_err("Cannot change PWM parameters.");
f2cd2deb 478 return ret;
08a49848 479 }
f2cd2deb 480
08a49848
GS
481 /* Enable configured channel after write completion. */
482 sr_spew("PWM config, enabling after param change.");
483 reg_val = enable_all | enable_cfg;
484 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
485 &reg_val, sizeof(reg_val));
486 if (ret != SR_OK) {
487 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 488 return ret;
08a49848 489 }
f2cd2deb
FS
490
491 return SR_OK;
492}
493
ea436ba7
GS
494static uint16_t get_channels_mask(const struct sr_dev_inst *sdi)
495{
496 uint16_t channels;
497 GSList *l;
498 struct sr_channel *ch;
499
500 channels = 0;
501 for (l = sdi->channels; l; l = l->next) {
502 ch = l->data;
503 if (ch->type != SR_CHANNEL_LOGIC)
504 continue;
505 if (!ch->enabled)
506 continue;
507 channels |= 1UL << ch->index;
508 }
509
510 return channels;
511}
512
f2cd2deb
FS
513static int set_trigger_config(const struct sr_dev_inst *sdi)
514{
515 struct dev_context *devc;
516 struct sr_trigger *trigger;
66f5f697 517 struct trigger_cfg cfg;
f2cd2deb
FS
518 GSList *stages;
519 GSList *channel;
520 struct sr_trigger_stage *stage1;
521 struct sr_trigger_match *match;
522 uint16_t ch_mask;
523 int ret;
c3d40037
HK
524 uint8_t buf[4 * sizeof(uint32_t)];
525 uint8_t *wrptr;
f2cd2deb
FS
526
527 devc = sdi->priv;
528 trigger = sr_session_trigger_get(sdi->session);
529
530 memset(&cfg, 0, sizeof(cfg));
531
ea436ba7 532 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
533
534 if (trigger && trigger->stages) {
535 stages = trigger->stages;
536 stage1 = stages->data;
537 if (stages->next) {
538 sr_err("Only one trigger stage supported for now.");
539 return SR_ERR;
540 }
541 channel = stage1->matches;
542 while (channel) {
543 match = channel->data;
cf057ac4 544 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
545
546 switch (match->match) {
547 case SR_TRIGGER_ZERO:
548 cfg.level |= ch_mask;
549 cfg.high_or_falling &= ~ch_mask;
550 break;
551 case SR_TRIGGER_ONE:
552 cfg.level |= ch_mask;
553 cfg.high_or_falling |= ch_mask;
554 break;
555 case SR_TRIGGER_RISING:
556 if ((cfg.enabled & ~cfg.level)) {
91f73872 557 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
558 return SR_ERR;
559 }
560 cfg.level &= ~ch_mask;
561 cfg.high_or_falling &= ~ch_mask;
562 break;
563 case SR_TRIGGER_FALLING:
564 if ((cfg.enabled & ~cfg.level)) {
91f73872 565 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
566 return SR_ERR;
567 }
568 cfg.level &= ~ch_mask;
569 cfg.high_or_falling |= ch_mask;
570 break;
571 default:
91f73872 572 sr_err("Unknown trigger condition.");
f2cd2deb
FS
573 return SR_ERR;
574 }
575 cfg.enabled |= ch_mask;
576 channel = channel->next;
577 }
578 }
91f73872
GS
579 sr_dbg("Set trigger config: "
580 "channels 0x%04x, trigger-enabled 0x%04x, "
581 "level-triggered 0x%04x, high/falling 0x%04x.",
582 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 583
cf057ac4 584 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 585
c3d40037
HK
586 wrptr = buf;
587 write_u32le_inc(&wrptr, cfg.channels);
588 write_u32le_inc(&wrptr, cfg.enabled);
589 write_u32le_inc(&wrptr, cfg.level);
590 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
591 /* TODO
592 * Comment on this literal 16. Origin, meaning? Cannot be the
593 * register offset, nor the transfer length. Is it a channels
594 * count that is relevant for 16 and 32 channel models? Is it
595 * an obsolete experiment?
596 */
42f6dd55 597 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 598 if (ret != SR_OK) {
91f73872 599 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
600 return ret;
601 }
602
603 return SR_OK;
604}
605
606static int set_sample_config(const struct sr_dev_inst *sdi)
607{
608 struct dev_context *devc;
d8fbfcd9 609 uint64_t min_samplerate, eff_samplerate;
adab4d91 610 uint16_t divider_u16;
a38f0f5e 611 uint64_t limit_samples;
adab4d91
GS
612 uint64_t pre_trigger_samples;
613 uint64_t pre_trigger_memory;
614 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 615 uint8_t *wrptr;
adab4d91 616 int ret;
f2cd2deb
FS
617
618 devc = sdi->priv;
f2cd2deb 619
d466f61c 620 if (devc->cur_samplerate > devc->model->samplerate) {
91f73872
GS
621 sr_err("Too high a sample rate: %" PRIu64 ".",
622 devc->cur_samplerate);
ea436ba7
GS
623 return SR_ERR_ARG;
624 }
d8fbfcd9
GS
625 min_samplerate = devc->model->samplerate;
626 min_samplerate /= 65536;
627 if (devc->cur_samplerate < min_samplerate) {
ea436ba7
GS
628 sr_err("Too low a sample rate: %" PRIu64 ".",
629 devc->cur_samplerate);
630 return SR_ERR_ARG;
f2cd2deb 631 }
d8fbfcd9
GS
632 divider_u16 = devc->model->samplerate / devc->cur_samplerate;
633 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 634
a38f0f5e
GS
635 ret = sr_sw_limits_get_remain(&devc->sw_limits,
636 &limit_samples, NULL, NULL, NULL);
637 if (ret != SR_OK) {
638 sr_err("Cannot get acquisition limits.");
639 return ret;
f2cd2deb 640 }
a38f0f5e 641 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
642 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
643 limit_samples);
644 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 645 }
d8fbfcd9
GS
646 if (limit_samples == 0) {
647 limit_samples = LA2016_NUM_SAMPLES_MAX;
648 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
649 limit_samples);
ea436ba7 650 }
f2cd2deb 651
adab4d91
GS
652 /*
653 * The acquisition configuration communicates "pre-trigger"
654 * specs in several formats. sigrok users provide a percentage
655 * (0-100%), which translates to a pre-trigger samples count
656 * (assuming that a total samples count limit was specified).
657 * The device supports hardware compression, which depends on
658 * slowly changing input data to be effective. Fast changing
659 * input data may occupy more space in sample memory than its
660 * uncompressed form would. This is why a third parameter can
661 * limit the amount of sample memory to use for pre-trigger
662 * data. Only the upper 24 bits of that memory size spec get
663 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
664 *
665 * TODO Determine whether the pre-trigger memory size gets
666 * specified in samples or in bytes. A previous implementation
667 * suggests bytes but this is suspicious when every other spec
668 * is in terms of samples.
adab4d91 669 */
d8fbfcd9
GS
670 if (devc->trigger_involved) {
671 pre_trigger_samples = limit_samples;
672 pre_trigger_samples *= devc->capture_ratio;
673 pre_trigger_samples /= 100;
674 pre_trigger_memory = devc->model->memory_bits;
675 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
676 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
677 pre_trigger_memory *= devc->capture_ratio;
678 pre_trigger_memory /= 100;
679 } else {
680 sr_dbg("No trigger setup, skipping pre-trigger config.");
681 pre_trigger_samples = 1;
682 pre_trigger_memory = 0;
683 }
684 /* Ensure non-zero value after LSB shift out in HW reg. */
685 if (pre_trigger_memory < 0x100) {
686 pre_trigger_memory = 0x100;
687 }
f2cd2deb 688
adab4d91 689 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 690 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
691 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
692 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 693
b1a17c1a
GS
694 /*
695 * The acquisition configuration occupies a total of 16 bytes:
696 * - A 34bit total samples count limit (up to 10 billions) that
697 * is kept in a 40bit register.
698 * - A 34bit pre-trigger samples count limit (up to 10 billions)
699 * in another 40bit register.
700 * - A 32bit pre-trigger memory space limit (in bytes) of which
701 * the upper 24bits are kept in an FPGA register.
702 * - A 16bit clock divider which gets applied to the maximum
703 * samplerate of the device.
704 * - An 8bit register of unknown meaning. Currently always 0.
705 */
c3d40037 706 wrptr = buf;
a38f0f5e 707 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
708 write_u40le_inc(&wrptr, pre_trigger_samples);
709 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 710 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 711 write_u8_inc(&wrptr, 0);
42f6dd55 712 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 713 if (ret != SR_OK) {
91f73872 714 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
715 return ret;
716 }
717
718 return SR_OK;
719}
720
96dc954e
GS
721/*
722 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
723 * of interest:
724 * bit 0: value 1 = idle
725 * bit 1: value 1 = writing to SDRAM
726 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
727 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
728 * The meaning of other bit fields is unknown.
7601dca7 729 *
96dc954e 730 * Typical values in order of appearance during execution:
b711fd8e
GS
731 * 0x85e1: idle, no acquisition pending
732 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
733 * "In idle state." Takes precedence over all others.
96dc954e
GS
734 * 0x85e2: pre-sampling, samples before the trigger position,
735 * when capture ratio > 0%
b711fd8e
GS
736 * IDLE clear, TRGD clear, POST clear; DRAM don't care
737 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
738 * 0x85ea: pre-sampling complete, now waiting for the trigger
739 * (whilst sampling continuously)
b711fd8e
GS
740 * IDLE clear, TRGD clear, POST set; DRAM don't care
741 * "Post set thus after pre, not triggered yet"
96dc954e 742 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
743 * IDLE clear, TRGD set, POST set; DRAM don't care
744 * "Triggered and in post, not idle yet."
96dc954e 745 * 0x85ed: idle
b711fd8e
GS
746 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
747 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 748 */
b711fd8e
GS
749static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
750static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
751static const uint16_t runstate_mask_step =
752 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
753static const uint16_t runstate_patt_pre_trig = 0;
754static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
755static const uint16_t runstate_patt_post_trig =
756 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
757
f2cd2deb
FS
758static uint16_t run_state(const struct sr_dev_inst *sdi)
759{
21d68fd9
GS
760 static uint16_t previous_state;
761
f2cd2deb 762 int ret;
21d68fd9
GS
763 uint16_t state;
764 uint8_t buff[sizeof(state)];
765 const uint8_t *rdptr;
766 const char *label;
f2cd2deb 767
411ad77c
GS
768 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
769 if (ret != SR_OK) {
91f73872 770 sr_err("Cannot read run state.");
f2cd2deb
FS
771 return ret;
772 }
21d68fd9
GS
773 rdptr = buff;
774 state = read_u16le_inc(&rdptr);
7601dca7 775
96dc954e
GS
776 /*
777 * Avoid flooding the log, only dump values as they change.
778 * The routine is called about every 50ms.
7601dca7 779 */
b711fd8e
GS
780 if (state == previous_state)
781 return state;
782
783 previous_state = state;
784 label = NULL;
785 if ((state & runstate_mask_idle) == runstate_patt_idle)
786 label = "idle";
787 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
788 label = "pre-trigger sampling";
789 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
790 label = "sampling, waiting for trigger";
791 if ((state & runstate_mask_step) == runstate_patt_post_trig)
792 label = "post-trigger sampling";
793 if (label && *label)
794 sr_dbg("Run state: 0x%04x (%s).", state, label);
795 else
796 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
797
798 return state;
799}
800
cf057ac4 801static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
802{
803 uint16_t state;
804
805 state = run_state(sdi);
b711fd8e 806 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
807 return 1;
808
809 return 0;
810}
811
812static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
813{
814 int ret;
815
411ad77c
GS
816 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
817 if (ret != SR_OK) {
c34f4a89 818 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
819 return ret;
820 }
821
822 return SR_OK;
823}
824
825static int get_capture_info(const struct sr_dev_inst *sdi)
826{
827 struct dev_context *devc;
828 int ret;
c3d40037
HK
829 uint8_t buf[3 * sizeof(uint32_t)];
830 const uint8_t *rdptr;
f2cd2deb
FS
831
832 devc = sdi->priv;
833
411ad77c
GS
834 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
835 if (ret != SR_OK) {
91f73872 836 sr_err("Cannot read capture info.");
f2cd2deb
FS
837 return ret;
838 }
c3d40037
HK
839
840 rdptr = buf;
841 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
842 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
843 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 844
cf057ac4 845 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
846 devc->info.n_rep_packets, devc->info.n_rep_packets,
847 devc->info.n_rep_packets_before_trigger,
848 devc->info.n_rep_packets_before_trigger,
849 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 850
852c7d14
GS
851 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
852 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
853 (unsigned long)devc->info.n_rep_packets,
854 NUM_PACKETS_IN_CHUNK);
91f73872 855 }
f2cd2deb
FS
856
857 return SR_OK;
858}
859
d466f61c
GS
860SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
861 struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
f2cd2deb 862{
d466f61c
GS
863 struct dev_context *devc;
864 char *fw_file;
865 int ret;
866
867 devc = sdi ? sdi->priv : NULL;
868
869 fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
870 sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
871
872 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
873 if (ret != SR_OK) {
874 g_free(fw_file);
875 return ret;
876 }
877
878 if (devc) {
879 devc->mcu_firmware = fw_file;
880 fw_file = NULL;
881 }
882 g_free(fw_file);
883
884 return SR_OK;
f2cd2deb
FS
885}
886
887SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
888{
889 struct dev_context *devc;
890 int ret;
891 uint8_t cmd;
892
893 devc = sdi->priv;
894
895 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
896 if (ret != SR_OK)
897 return ret;
898
899 cmd = 0;
411ad77c
GS
900 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
901 if (ret != SR_OK) {
91f73872 902 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
903 return ret;
904 }
905
906 ret = set_trigger_config(sdi);
907 if (ret != SR_OK)
908 return ret;
909
910 ret = set_sample_config(sdi);
911 if (ret != SR_OK)
912 return ret;
913
914 return SR_OK;
915}
916
917SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
918{
3ebc1cb2
GS
919 int ret;
920
852c7d14 921 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
922 if (ret != SR_OK)
923 return ret;
924
925 return SR_OK;
f2cd2deb
FS
926}
927
3ebc1cb2 928static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 929{
3ebc1cb2
GS
930 int ret;
931
852c7d14 932 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
933 if (ret != SR_OK)
934 return ret;
935
936 return SR_OK;
f2cd2deb
FS
937}
938
939SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
940{
3ebc1cb2
GS
941 int ret;
942 struct dev_context *devc;
943
944 ret = la2016_stop_acquisition(sdi);
945 if (ret != SR_OK)
946 return ret;
947
948 devc = sdi ? sdi->priv : NULL;
949 if (devc && devc->transfer)
950 libusb_cancel_transfer(devc->transfer);
951
952 return SR_OK;
f2cd2deb
FS
953}
954
cf057ac4 955static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 956 libusb_transfer_cb_fn cb)
f2cd2deb
FS
957{
958 struct dev_context *devc;
959 struct sr_usb_dev_inst *usb;
960 int ret;
c3d40037
HK
961 uint8_t wrbuf[2 * sizeof(uint32_t)];
962 uint8_t *wrptr;
f2cd2deb
FS
963 uint32_t to_read;
964 uint8_t *buffer;
965
966 devc = sdi->priv;
967 usb = sdi->conn;
968
411ad77c
GS
969 ret = get_capture_info(sdi);
970 if (ret != SR_OK)
f2cd2deb
FS
971 return ret;
972
c3d40037
HK
973 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
974 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
975 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
976 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
977
91f73872 978 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 979 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 980
411ad77c
GS
981 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
982 if (ret != SR_OK) {
91f73872 983 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
984 return ret;
985 }
91f73872
GS
986 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
987 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
988 wrptr = wrbuf;
989 write_u32le_inc(&wrptr, devc->read_pos);
990 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
991 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
992 if (ret != SR_OK) {
91f73872 993 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
994 return ret;
995 }
411ad77c
GS
996 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
997 if (ret != SR_OK) {
91f73872 998 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
999 return ret;
1000 }
1001
96dc954e
GS
1002 /*
1003 * Pick a buffer size for all USB transfers. The buffer size
1004 * must be a multiple of the endpoint packet size. And cannot
1005 * exceed a maximum value.
1006 */
f2cd2deb 1007 to_read = devc->n_bytes_to_read;
96dc954e
GS
1008 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1009 to_read = LA2016_USB_BUFSZ;
1010 else /* One transfer. */
e847645b 1011 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
1012 buffer = g_try_malloc(to_read);
1013 if (!buffer) {
91f73872
GS
1014 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1015 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1016 return SR_ERR_MALLOC;
1017 }
1018
1019 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1020 libusb_fill_bulk_transfer(devc->transfer,
1021 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1022 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1023
411ad77c
GS
1024 ret = libusb_submit_transfer(devc->transfer);
1025 if (ret != 0) {
91f73872 1026 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1027 libusb_free_transfer(devc->transfer);
1028 devc->transfer = NULL;
1029 g_free(buffer);
1030 return SR_ERR;
1031 }
1032
1033 return SR_OK;
1034}
1035
480efba2
GS
1036/*
1037 * A chunk (received via USB) contains a number of transfers (USB length
1038 * divided by 16) which contain a number of packets (5 per transfer) which
1039 * contain a number of samples (8bit repeat count per 16bit sample data).
1040 */
dfac9592 1041static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1042 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1043{
1044 struct dev_context *devc;
480efba2 1045 size_t num_pkts;
dfac9592 1046 const uint8_t *rp;
480efba2
GS
1047 uint16_t sample_value;
1048 size_t repetitions;
1049 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1050
1051 devc = sdi->priv;
1052
a38f0f5e
GS
1053 /* Ignore incoming USB data after complete sample data download. */
1054 if (devc->download_finished)
1055 return;
dfac9592 1056
cf057ac4 1057 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1058 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1059 devc->trigger_marked = TRUE;
dfac9592
GS
1060 }
1061
1062 rp = packets;
480efba2
GS
1063 while (num_xfers--) {
1064 num_pkts = NUM_PACKETS_IN_CHUNK;
1065 while (num_pkts--) {
dfac9592 1066
480efba2 1067 sample_value = read_u16le_inc(&rp);
dfac9592 1068 repetitions = read_u8_inc(&rp);
dfac9592 1069
dfac9592 1070 devc->total_samples += repetitions;
480efba2
GS
1071
1072 write_u16le(sample_buff, sample_value);
a38f0f5e
GS
1073 feed_queue_logic_submit(devc->feed_queue,
1074 sample_buff, repetitions);
1075 sr_sw_limits_update_samples_read(&devc->sw_limits,
1076 repetitions);
480efba2 1077
cf057ac4
GS
1078 if (devc->trigger_involved && !devc->trigger_marked) {
1079 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1080 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1081 devc->trigger_marked = TRUE;
91f73872 1082 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1083 devc->total_samples,
1084 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1085 }
1086 }
1087 }
1088 (void)read_u8_inc(&rp); /* Skip sequence number. */
1089 }
a38f0f5e
GS
1090
1091 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1092 sr_dbg("Acquisition limit reached.");
1093 devc->download_finished = TRUE;
1094 }
1095 if (devc->download_finished) {
1096 sr_dbg("Download finished, flushing session feed queue.");
1097 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1098 }
a38f0f5e 1099 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1100}
1101
1102static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1103{
1104 struct sr_dev_inst *sdi;
1105 struct dev_context *devc;
1106 struct sr_usb_dev_inst *usb;
a38f0f5e 1107 size_t num_xfers;
dfac9592
GS
1108 int ret;
1109
1110 sdi = transfer->user_data;
1111 devc = sdi->priv;
1112 usb = sdi->conn;
1113
1114 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1115 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1116 /*
1117 * Implementation detail: A USB transfer timeout is not fatal
1118 * here. We just process whatever was received, empty input is
1119 * perfectly acceptable. Reaching (or exceeding) the sw limits
1120 * or exhausting the device's captured data will complete the
1121 * sample data download.
1122 */
1123 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1124 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1125
1126 devc->n_bytes_to_read -= transfer->actual_length;
1127 if (devc->n_bytes_to_read) {
1128 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1129 /*
1130 * Determine read size for the next USB transfer. Make
1131 * the buffer size a multiple of the endpoint packet
1132 * size. Don't exceed a maximum value.
1133 */
dfac9592
GS
1134 if (to_read >= LA2016_USB_BUFSZ)
1135 to_read = LA2016_USB_BUFSZ;
96dc954e 1136 else
dfac9592 1137 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1138 libusb_fill_bulk_transfer(transfer,
1139 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1140 transfer->buffer, to_read,
dfac9592
GS
1141 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1142
411ad77c
GS
1143 ret = libusb_submit_transfer(transfer);
1144 if (ret == 0)
dfac9592 1145 return;
91f73872
GS
1146 sr_err("Cannot submit another USB transfer: %s.",
1147 libusb_error_name(ret));
dfac9592
GS
1148 }
1149
1150 g_free(transfer->buffer);
1151 libusb_free_transfer(transfer);
cf057ac4 1152 devc->download_finished = TRUE;
dfac9592
GS
1153}
1154
1155SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1156{
1157 const struct sr_dev_inst *sdi;
1158 struct dev_context *devc;
1159 struct drv_context *drvc;
1160 struct timeval tv;
a38f0f5e 1161 int ret;
dfac9592
GS
1162
1163 (void)fd;
1164 (void)revents;
1165
1166 sdi = cb_data;
1167 devc = sdi->priv;
1168 drvc = sdi->driver->context;
1169
a38f0f5e
GS
1170 /*
1171 * Wait for the acquisition to complete in hardware.
1172 * Periodically check a potentially configured msecs timeout.
1173 */
cf057ac4
GS
1174 if (!devc->completion_seen) {
1175 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1176 if (sr_sw_limits_check(&devc->sw_limits)) {
1177 devc->sw_limits.limit_msec = 0;
1178 sr_dbg("Limit reached. Stopping acquisition.");
1179 la2016_stop_acquisition(sdi);
1180 }
96dc954e 1181 /* Not yet ready for sample data download. */
dfac9592
GS
1182 return TRUE;
1183 }
a38f0f5e
GS
1184 sr_dbg("Acquisition completion seen (hardware).");
1185 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1186 devc->completion_seen = TRUE;
1187 devc->download_finished = FALSE;
1188 devc->trigger_marked = FALSE;
dfac9592 1189 devc->total_samples = 0;
a38f0f5e
GS
1190
1191 /* Initiate the download of acquired sample data. */
1192 std_session_send_df_frame_begin(sdi);
1193 ret = la2016_start_download(sdi, receive_transfer);
1194 if (ret != SR_OK) {
91f73872 1195 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1196 return FALSE;
1197 }
91f73872 1198 sr_dbg("Acquisition data download started.");
dfac9592
GS
1199
1200 return TRUE;
1201 }
1202
a38f0f5e 1203 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1204 tv.tv_sec = tv.tv_usec = 0;
1205 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1206
a38f0f5e 1207 /* Postprocess completion of sample data download. */
cf057ac4 1208 if (devc->download_finished) {
91f73872 1209 sr_dbg("Download finished, post processing.");
dfac9592
GS
1210
1211 la2016_stop_acquisition(sdi);
a38f0f5e 1212 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1213 devc->transfer = NULL;
1214
a38f0f5e
GS
1215 feed_queue_logic_flush(devc->feed_queue);
1216 feed_queue_logic_free(devc->feed_queue);
1217 devc->feed_queue = NULL;
1218 std_session_send_df_frame_end(sdi);
1219 std_session_send_df_end(sdi);
1220
91f73872 1221 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1222 }
1223
1224 return TRUE;
1225}
1226
d466f61c
GS
1227SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1228 gboolean show_message)
f2cd2deb 1229{
8b172e78 1230 struct dev_context *devc;
9de389b1 1231 uint8_t buf[8];
64172b16 1232 size_t rdoff, rdlen;
43d2e52f
GS
1233 const uint8_t *rdptr;
1234 uint8_t date_yy, date_mm;
1235 uint8_t dinv_yy, dinv_mm;
9de389b1 1236 uint8_t magic;
d466f61c
GS
1237 size_t model_idx;
1238 const struct kingst_model *model;
9de389b1 1239 int ret;
f2cd2deb 1240
8b172e78
KG
1241 devc = sdi->priv;
1242
96dc954e 1243 /*
43d2e52f
GS
1244 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1245 * year and month in BCD format, followed by inverted values for
1246 * consistency checks. For example bytes 20 04 df fb translate
1247 * to 2020-04. This information can help identify the vintage of
1248 * devices when unknown magic numbers are seen.
9de389b1 1249 */
64172b16
GS
1250 rdoff = 0x20;
1251 rdlen = 4 * sizeof(uint8_t);
1252 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1253 if (ret != SR_OK && !show_message) {
64172b16 1254 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1255 sr_dbg("Cannot access EEPROM.");
1256 return SR_ERR_IO;
1257 } else if (ret != SR_OK) {
64172b16 1258 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1259 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1260 } else {
64172b16
GS
1261 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1262 GString *txt;
1263 txt = sr_hexdump_new(buf, rdlen);
1264 sr_spew("Manufacture date bytes %s.", txt->str);
1265 sr_hexdump_free(txt);
1266 }
43d2e52f
GS
1267 rdptr = &buf[0];
1268 date_yy = read_u8_inc(&rdptr);
1269 date_mm = read_u8_inc(&rdptr);
1270 dinv_yy = read_u8_inc(&rdptr);
1271 dinv_mm = read_u8_inc(&rdptr);
1272 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1273 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1274 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1275 }
f2cd2deb 1276
9de389b1 1277 /*
96dc954e
GS
1278 * Several Kingst logic analyzer devices share the same USB VID
1279 * and PID. The product ID determines which MCU firmware to load.
1280 * The MCU firmware provides access to EEPROM content which then
1281 * allows to identify the device model. Which in turn determines
1282 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1283 * to get inspected.
9de389b1 1284 *
96dc954e
GS
1285 * EEPROM content for model identification is kept redundantly
1286 * in memory. The values are stored in verbatim and in inverted
1287 * form, multiple copies are kept at different offsets. Example
1288 * data:
9de389b1 1289 *
96dc954e
GS
1290 * magic 0x08
1291 * | ~magic 0xf7
1292 * | |
1293 * 08f7000008f710ef
1294 * | |
1295 * | ~magic backup
1296 * magic backup
9de389b1 1297 *
96dc954e
GS
1298 * Exclusively inspecting the magic byte appears to be sufficient,
1299 * other fields seem to be 'don't care'.
9de389b1 1300 *
96dc954e
GS
1301 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1302 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1303 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1304 * (latest v1.3.0 PCB, perhaps others)
1305 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1306 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1307 *
96dc954e
GS
1308 * When EEPROM content does not match the hardware configuration
1309 * (the board layout), the software may load but yield incorrect
1310 * results (like swapped channels). The FPGA bitstream itself
1311 * will authenticate with IC U10 and fail when its capabilities
1312 * do not match the hardware model. An LA1016 won't become a
1313 * LA2016 by faking its EEPROM content.
9de389b1 1314 */
d466f61c 1315 devc->identify_magic = 0;
64172b16
GS
1316 rdoff = 0x08;
1317 rdlen = 8 * sizeof(uint8_t);
1318 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1319 if (ret != SR_OK) {
91f73872 1320 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1321 return ret;
1322 }
64172b16
GS
1323 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1324 GString *txt;
1325 txt = sr_hexdump_new(buf, rdlen);
1326 sr_spew("EEPROM magic bytes %s.", txt->str);
1327 sr_hexdump_free(txt);
1328 }
43d2e52f 1329 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1330 /* Primary copy of magic passes complement check. */
9de389b1 1331 magic = buf[0];
64172b16 1332 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1333 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1334 /* Backup copy of magic passes complement check. */
9de389b1 1335 magic = buf[4];
64172b16 1336 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1337 } else {
1338 sr_err("Cannot find consistent device type identification.");
1339 magic = 0;
f2cd2deb 1340 }
d466f61c 1341 devc->identify_magic = magic;
9de389b1 1342
d466f61c
GS
1343 devc->model = NULL;
1344 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1345 model = &models[model_idx];
1346 if (model->magic != magic)
1347 continue;
1348 devc->model = model;
64172b16
GS
1349 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1350 model->name, model->channel_count,
1351 model->samplerate / SR_MHZ(1));
d466f61c
GS
1352 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1353 model->fpga_stem);
d466f61c 1354 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1355 break;
1356 }
d466f61c 1357 if (!devc->model) {
91f73872 1358 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1359 return SR_ERR;
1360 }
f2cd2deb 1361
d466f61c
GS
1362 return SR_OK;
1363}
1364
6d53e949 1365SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1366{
1367 struct dev_context *devc;
1368 const char *bitstream_fn;
1369 int ret;
1370 uint16_t state;
1371
1372 devc = sdi->priv;
1373 bitstream_fn = devc ? devc->fpga_bitstream : "";
1374
1375 ret = check_fpga_bitstream(sdi);
1376 if (ret != SR_OK) {
d6f89d4b
GS
1377 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1378 if (ret != SR_OK) {
1379 sr_err("Cannot upload FPGA bitstream.");
1380 return ret;
1381 }
1382 }
1383 ret = enable_fpga_bitstream(sdi);
9de389b1 1384 if (ret != SR_OK) {
d6f89d4b 1385 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1386 return ret;
1387 }
1388
f2cd2deb 1389 state = run_state(sdi);
9de389b1 1390 if (state != 0x85e9) {
91f73872 1391 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1392 }
f2cd2deb 1393
6d53e949
GS
1394 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1395 if (ret != SR_OK) {
91f73872 1396 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1397 return ret;
1398 }
9de389b1 1399
91f73872 1400 sr_dbg("Device should be initialized.");
f2cd2deb 1401
6d53e949
GS
1402 return SR_OK;
1403}
1404
6d53e949 1405SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1406{
1407 int ret;
1408
6d53e949
GS
1409 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1410 if (ret != SR_OK) {
91f73872 1411 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1412 return ret;
1413 }
1414
1415 return SR_OK;
1416}
08a49848
GS
1417
1418SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1419{
1420 return set_pwm_config(sdi, idx);
1421}