X-Git-Url: https://sigrok.org/gitweb/?p=pulseview.git;a=blobdiff_plain;f=pv%2Fdata%2Fanalogsegment.cpp;h=7a3d62d880ff912356f7daac4bf962af6d1611b5;hp=cd4384ddd799cb1cdf392c7b2106ccfb6bd14bc0;hb=ba5f21864c459a24f71ce3b0045805813c032134;hpb=2ad82c2e40b6865481733913a2c32735602f63c4 diff --git a/pv/data/analogsegment.cpp b/pv/data/analogsegment.cpp index cd4384dd..7a3d62d8 100644 --- a/pv/data/analogsegment.cpp +++ b/pv/data/analogsegment.cpp @@ -14,43 +14,46 @@ * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * along with this program; if not, see . */ #include -#include -#include -#include +#include #include +#include +#include +#include #include +#include "analog.hpp" #include "analogsegment.hpp" using std::lock_guard; using std::recursive_mutex; +using std::make_pair; using std::max; using std::max_element; using std::min; using std::min_element; +using std::pair; +using std::unique_ptr; namespace pv { namespace data { const int AnalogSegment::EnvelopeScalePower = 4; const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower; -const float AnalogSegment::LogEnvelopeScaleFactor = - logf(EnvelopeScaleFactor); -const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024; // bytes - -AnalogSegment::AnalogSegment( - uint64_t samplerate, const uint64_t expected_num_samples) : - Segment(samplerate, sizeof(float)) +const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor); +const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024; // bytes + +AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) : + Segment(samplerate, sizeof(float)), + owner_(owner), + min_value_(0), + max_value_(0) { - set_capacity(expected_num_samples); - lock_guard lock(mutex_); memset(envelope_levels_, 0, sizeof(envelope_levels_)); } @@ -69,37 +72,63 @@ void AnalogSegment::append_interleaved_samples(const float *data, lock_guard lock(mutex_); - // If we're out of memory, this will throw std::bad_alloc - data_.resize((sample_count_ + sample_count) * sizeof(float)); + uint64_t prev_sample_count = sample_count_; - float *dst = (float*)data_.data() + sample_count_; - const float *dst_end = dst + sample_count; - while (dst != dst_end) { - *dst++ = *data; + // Deinterleave the samples and add them + unique_ptr deint_data(new float[sample_count]); + float *deint_data_ptr = deint_data.get(); + for (uint32_t i = 0; i < sample_count; i++) { + *deint_data_ptr = (float)(*data); + deint_data_ptr++; data += stride; } - sample_count_ += sample_count; + append_samples(deint_data.get(), sample_count); // Generate the first mip-map from the data append_payload_to_envelope_levels(); + + if (sample_count > 1) + owner_.notify_samples_added(this, prev_sample_count + 1, + prev_sample_count + 1 + sample_count); + else + owner_.notify_samples_added(this, prev_sample_count + 1, + prev_sample_count + 1); } -const float* AnalogSegment::get_samples( - int64_t start_sample, int64_t end_sample) const +void AnalogSegment::get_samples(int64_t start_sample, int64_t end_sample, + float* dest) const { assert(start_sample >= 0); assert(start_sample < (int64_t)sample_count_); assert(end_sample >= 0); - assert(end_sample < (int64_t)sample_count_); + assert(end_sample <= (int64_t)sample_count_); assert(start_sample <= end_sample); + assert(dest != nullptr); lock_guard lock(mutex_); - float *const data = new float[end_sample - start_sample]; - memcpy(data, (float*)data_.data() + start_sample, sizeof(float) * - (end_sample - start_sample)); - return data; + get_raw_samples(start_sample, (end_sample - start_sample), (uint8_t*)dest); +} + +const pair AnalogSegment::get_min_max() const +{ + return make_pair(min_value_, max_value_); +} + +SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start) +{ + return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start); +} + +void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase) +{ + Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase); +} + +void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it) +{ + Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it); } void AnalogSegment::get_envelope_section(EnvelopeSection &s, @@ -142,11 +171,27 @@ void AnalogSegment::append_payload_to_envelope_levels() Envelope &e0 = envelope_levels_[0]; uint64_t prev_length; EnvelopeSample *dest_ptr; + SegmentRawDataIterator* it; // Expand the data buffer to fit the new samples prev_length = e0.length; e0.length = sample_count_ / EnvelopeScaleFactor; + // Calculate min/max values in case we have too few samples for an envelope + const float old_min_value = min_value_, old_max_value = max_value_; + if (sample_count_ < EnvelopeScaleFactor) { + it = begin_raw_sample_iteration(0); + for (uint64_t i = 0; i < sample_count_; i++) { + const float sample = *((float*)it->value); + if (sample < min_value_) + min_value_ = sample; + if (sample > max_value_) + max_value_ = sample; + continue_raw_sample_iteration(it, 1); + } + end_raw_sample_iteration(it); + } + // Break off if there are no new samples to compute if (e0.length == prev_length) return; @@ -156,38 +201,48 @@ void AnalogSegment::append_payload_to_envelope_levels() dest_ptr = e0.samples + prev_length; // Iterate through the samples to populate the first level mipmap - const float *const end_src_ptr = (float*)data_.data() + - e0.length * EnvelopeScaleFactor; - for (const float *src_ptr = (float*)data_.data() + - prev_length * EnvelopeScaleFactor; - src_ptr < end_src_ptr; src_ptr += EnvelopeScaleFactor) { + uint64_t start_sample = prev_length * EnvelopeScaleFactor; + uint64_t end_sample = e0.length * EnvelopeScaleFactor; + + it = begin_raw_sample_iteration(start_sample); + for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) { + const float* samples = (float*)it->value; + const EnvelopeSample sub_sample = { - *min_element(src_ptr, src_ptr + EnvelopeScaleFactor), - *max_element(src_ptr, src_ptr + EnvelopeScaleFactor), + *min_element(samples, samples + EnvelopeScaleFactor), + *max_element(samples, samples + EnvelopeScaleFactor), }; + if (sub_sample.min < min_value_) + min_value_ = sub_sample.min; + if (sub_sample.max > max_value_) + max_value_ = sub_sample.max; + + continue_raw_sample_iteration(it, EnvelopeScaleFactor); *dest_ptr++ = sub_sample; } + end_raw_sample_iteration(it); // Compute higher level mipmaps for (unsigned int level = 1; level < ScaleStepCount; level++) { Envelope &e = envelope_levels_[level]; - const Envelope &el = envelope_levels_[level-1]; + const Envelope &el = envelope_levels_[level - 1]; // Expand the data buffer to fit the new samples prev_length = e.length; e.length = el.length / EnvelopeScaleFactor; - // Break off if there are no more samples to computed + // Break off if there are no more samples to be computed if (e.length == prev_length) break; reallocate_envelope(e); - // Subsample the level lower level + // Subsample the lower level const EnvelopeSample *src_ptr = el.samples + prev_length * EnvelopeScaleFactor; const EnvelopeSample *const end_dest_ptr = e.samples + e.length; + for (dest_ptr = e.samples + prev_length; dest_ptr < end_dest_ptr; dest_ptr++) { const EnvelopeSample *const end_src_ptr = @@ -195,7 +250,7 @@ void AnalogSegment::append_payload_to_envelope_levels() EnvelopeSample sub_sample = *src_ptr++; while (src_ptr < end_src_ptr) { - sub_sample.min = min(sub_sample.min, src_ptr->min); + sub_sample.min = min(sub_sample.min, src_ptr->min);; sub_sample.max = max(sub_sample.max, src_ptr->max); src_ptr++; } @@ -203,6 +258,10 @@ void AnalogSegment::append_payload_to_envelope_levels() *dest_ptr = sub_sample; } } + + // Notify if the min or max value changed + if ((old_min_value != min_value_) || (old_max_value != max_value_)) + owner_.min_max_changed(min_value_, max_value_); } } // namespace data