]> sigrok.org Git - pulseview.git/blobdiff - pv/data/signalbase.cpp
SignalBase: Don't assume all channel settings are restorable
[pulseview.git] / pv / data / signalbase.cpp
index e29bbe8745352ff84c0257391bf950949683a2bb..791094036ddcb23511329a9922c67f1774fa0268 100644 (file)
  */
 
 #include "analog.hpp"
+#include "analogsegment.hpp"
+#include "decode/row.hpp"
 #include "logic.hpp"
+#include "logicsegment.hpp"
 #include "signalbase.hpp"
 #include "signaldata.hpp"
-#include "decode/row.hpp"
+
+#include <QDebug>
 
 #include <pv/binding/decoder.hpp>
+#include <pv/session.hpp>
 
 using std::dynamic_pointer_cast;
+using std::make_shared;
+using std::out_of_range;
 using std::shared_ptr;
-
-using sigrok::Channel;
+using std::tie;
+using std::unique_lock;
 
 namespace pv {
 namespace data {
 
-const int SignalBase::ColourBGAlpha = 8*256/100;
+const int SignalBase::ColorBGAlpha = 8 * 256 / 100;
+const uint64_t SignalBase::ConversionBlockSize = 4096;
+const uint32_t SignalBase::ConversionDelay = 1000;  // 1 second
 
 SignalBase::SignalBase(shared_ptr<sigrok::Channel> channel, ChannelType channel_type) :
        channel_(channel),
-       channel_type_(channel_type)
+       channel_type_(channel_type),
+       conversion_type_(NoConversion),
+       min_value_(0),
+       max_value_(0)
 {
        if (channel_)
                internal_name_ = QString::fromStdString(channel_->name());
+
+       connect(&delayed_conversion_starter_, SIGNAL(timeout()),
+               this, SLOT(on_delayed_conversion_start()));
+       delayed_conversion_starter_.setSingleShot(true);
+       delayed_conversion_starter_.setInterval(ConversionDelay);
+}
+
+SignalBase::~SignalBase()
+{
+       stop_conversion();
 }
 
 shared_ptr<sigrok::Channel> SignalBase::channel() const
@@ -59,6 +81,14 @@ QString SignalBase::internal_name() const
        return internal_name_;
 }
 
+QString SignalBase::display_name() const
+{
+       if (name() != internal_name_)
+               return name() + " (" + internal_name_ + ")";
+       else
+               return name();
+}
+
 void SignalBase::set_name(QString name)
 {
        if (channel_)
@@ -89,65 +119,310 @@ SignalBase::ChannelType SignalBase::type() const
 
 unsigned int SignalBase::index() const
 {
-       return (channel_) ? channel_->index() : (unsigned int)-1;
+       return (channel_) ? channel_->index() : 0;
 }
 
-QColor SignalBase::colour() const
+unsigned int SignalBase::logic_bit_index() const
 {
-       return colour_;
+       if (channel_type_ == LogicChannel)
+               return channel_->index();
+       else
+               return 0;
+}
+
+QColor SignalBase::color() const
+{
+       return color_;
 }
 
-void SignalBase::set_colour(QColor colour)
+void SignalBase::set_color(QColor color)
 {
-       colour_ = colour;
+       color_ = color;
 
-       bgcolour_ = colour;
-       bgcolour_.setAlpha(ColourBGAlpha);
+       bgcolor_ = color;
+       bgcolor_.setAlpha(ColorBGAlpha);
 
-       colour_changed(colour);
+       color_changed(color);
 }
 
-QColor SignalBase::bgcolour() const
+QColor SignalBase::bgcolor() const
 {
-       return bgcolour_;
+       return bgcolor_;
 }
 
 void SignalBase::set_data(shared_ptr<pv::data::SignalData> data)
 {
+       if (data_) {
+               disconnect(data.get(), SIGNAL(samples_cleared()),
+                       this, SLOT(on_samples_cleared()));
+               disconnect(data.get(), SIGNAL(samples_added(QObject*, uint64_t, uint64_t)),
+                       this, SLOT(on_samples_added(QObject*, uint64_t, uint64_t)));
+
+               if (channel_type_ == AnalogChannel) {
+                       shared_ptr<Analog> analog = analog_data();
+                       assert(analog);
+
+                       disconnect(analog.get(), SIGNAL(min_max_changed(float, float)),
+                               this, SLOT(on_min_max_changed(float, float)));
+               }
+       }
+
        data_ = data;
+
+       if (data_) {
+               connect(data.get(), SIGNAL(samples_cleared()),
+                       this, SLOT(on_samples_cleared()));
+               connect(data.get(), SIGNAL(samples_added(QObject*, uint64_t, uint64_t)),
+                       this, SLOT(on_samples_added(QObject*, uint64_t, uint64_t)));
+
+               if (channel_type_ == AnalogChannel) {
+                       shared_ptr<Analog> analog = analog_data();
+                       assert(analog);
+
+                       connect(analog.get(), SIGNAL(min_max_changed(float, float)),
+                               this, SLOT(on_min_max_changed(float, float)));
+               }
+       }
 }
 
 shared_ptr<data::Analog> SignalBase::analog_data() const
 {
+       shared_ptr<Analog> result = nullptr;
+
        if (channel_type_ == AnalogChannel)
-               return dynamic_pointer_cast<data::Analog>(data_);
-       else
-               return nullptr;
+               result = dynamic_pointer_cast<Analog>(data_);
+
+       return result;
 }
 
 shared_ptr<data::Logic> SignalBase::logic_data() const
 {
+       shared_ptr<Logic> result = nullptr;
+
+       if (channel_type_ == LogicChannel)
+               result = dynamic_pointer_cast<Logic>(data_);
+
+       if (((conversion_type_ == A2LConversionByThreshold) ||
+               (conversion_type_ == A2LConversionBySchmittTrigger)))
+               result = dynamic_pointer_cast<Logic>(converted_data_);
+
+       return result;
+}
+
+bool SignalBase::segment_is_complete(uint32_t segment_id) const
+{
+       bool result = true;
+
+       if (channel_type_ == AnalogChannel)
+       {
+               shared_ptr<Analog> data = dynamic_pointer_cast<Analog>(data_);
+               auto segments = data->analog_segments();
+               try {
+                       result = segments.at(segment_id)->is_complete();
+               } catch (out_of_range&) {
+                       // Do nothing
+               }
+       }
+
        if (channel_type_ == LogicChannel)
-               return dynamic_pointer_cast<data::Logic>(data_);
+       {
+               shared_ptr<Logic> data = dynamic_pointer_cast<Logic>(data_);
+               auto segments = data->logic_segments();
+               try {
+                       result = segments.at(segment_id)->is_complete();
+               } catch (out_of_range&) {
+                       // Do nothing
+               }
+       }
+
+       return result;
+}
+
+bool SignalBase::has_samples() const
+{
+       bool result = false;
+
+       if (channel_type_ == AnalogChannel)
+       {
+               shared_ptr<Analog> data = dynamic_pointer_cast<Analog>(data_);
+               if (data) {
+                       auto segments = data->analog_segments();
+                       if ((segments.size() > 0) && (segments.front()->get_sample_count() > 0))
+                               result = true;
+               }
+       }
+
+       if (channel_type_ == LogicChannel)
+       {
+               shared_ptr<Logic> data = dynamic_pointer_cast<Logic>(data_);
+               if (data) {
+                       auto segments = data->logic_segments();
+                       if ((segments.size() > 0) && (segments.front()->get_sample_count() > 0))
+                               result = true;
+               }
+       }
+
+       return result;
+}
+
+SignalBase::ConversionType SignalBase::get_conversion_type() const
+{
+       return conversion_type_;
+}
+
+void SignalBase::set_conversion_type(ConversionType t)
+{
+       if (conversion_type_ != NoConversion) {
+               stop_conversion();
+
+               // Discard converted data
+               converted_data_.reset();
+               samples_cleared();
+       }
+
+       conversion_type_ = t;
+
+       // Re-create an empty container
+       // so that the signal is recognized as providing logic data
+       // and thus can be assigned to a decoder
+       if (conversion_is_a2l())
+               if (!converted_data_)
+                       converted_data_ = make_shared<Logic>(1);  // Contains only one channel
+
+       start_conversion();
+
+       conversion_type_changed(t);
+}
+
+map<QString, QVariant> SignalBase::get_conversion_options() const
+{
+       return conversion_options_;
+}
+
+bool SignalBase::set_conversion_option(QString key, QVariant value)
+{
+       QVariant old_value;
+
+       auto key_iter = conversion_options_.find(key);
+       if (key_iter != conversion_options_.end())
+               old_value = key_iter->second;
+
+       conversion_options_[key] = value;
+
+       return (value != old_value);
+}
+
+vector<double> SignalBase::get_conversion_thresholds(const ConversionType t,
+       const bool always_custom) const
+{
+       vector<double> result;
+       ConversionType conv_type = t;
+       ConversionPreset preset;
+
+       // Use currently active conversion if no conversion type was supplied
+       if (conv_type == NoConversion)
+               conv_type = conversion_type_;
+
+       if (always_custom)
+               preset = NoPreset;
        else
-               return nullptr;
+               preset = get_current_conversion_preset();
+
+       if (conv_type == A2LConversionByThreshold) {
+               double thr = 0;
+
+               if (preset == NoPreset) {
+                       auto thr_iter = conversion_options_.find("threshold_value");
+                       if (thr_iter != conversion_options_.end())
+                               thr = (thr_iter->second).toDouble();
+               }
+
+               if (preset == DynamicPreset)
+                       thr = (min_value_ + max_value_) * 0.5;  // middle between min and max
+
+               if ((int)preset == 1) thr = 0.9;
+               if ((int)preset == 2) thr = 1.8;
+               if ((int)preset == 3) thr = 2.5;
+               if ((int)preset == 4) thr = 1.5;
+
+               result.push_back(thr);
+       }
+
+       if (conv_type == A2LConversionBySchmittTrigger) {
+               double thr_lo = 0, thr_hi = 0;
+
+               if (preset == NoPreset) {
+                       auto thr_lo_iter = conversion_options_.find("threshold_value_low");
+                       if (thr_lo_iter != conversion_options_.end())
+                               thr_lo = (thr_lo_iter->second).toDouble();
+
+                       auto thr_hi_iter = conversion_options_.find("threshold_value_high");
+                       if (thr_hi_iter != conversion_options_.end())
+                               thr_hi = (thr_hi_iter->second).toDouble();
+               }
+
+               if (preset == DynamicPreset) {
+                       const double amplitude = max_value_ - min_value_;
+                       const double center = min_value_ + (amplitude / 2);
+                       thr_lo = center - (amplitude * 0.15);  // 15% margin
+                       thr_hi = center + (amplitude * 0.15);  // 15% margin
+               }
+
+               if ((int)preset == 1) { thr_lo = 0.3; thr_hi = 1.2; }
+               if ((int)preset == 2) { thr_lo = 0.7; thr_hi = 2.5; }
+               if ((int)preset == 3) { thr_lo = 1.3; thr_hi = 3.7; }
+               if ((int)preset == 4) { thr_lo = 0.8; thr_hi = 2.0; }
+
+               result.push_back(thr_lo);
+               result.push_back(thr_hi);
+       }
+
+       return result;
 }
 
-#ifdef ENABLE_DECODE
-bool SignalBase::is_decode_signal() const
+vector< pair<QString, int> > SignalBase::get_conversion_presets() const
+{
+       vector< pair<QString, int> > presets;
+
+       if (conversion_type_ == A2LConversionByThreshold) {
+               // Source: http://www.interfacebus.com/voltage_threshold.html
+               presets.emplace_back(tr("Signal average"), 0);
+               presets.emplace_back(tr("0.9V (for 1.8V CMOS)"), 1);
+               presets.emplace_back(tr("1.8V (for 3.3V CMOS)"), 2);
+               presets.emplace_back(tr("2.5V (for 5.0V CMOS)"), 3);
+               presets.emplace_back(tr("1.5V (for TTL)"), 4);
+       }
+
+       if (conversion_type_ == A2LConversionBySchmittTrigger) {
+               // Source: http://www.interfacebus.com/voltage_threshold.html
+               presets.emplace_back(tr("Signal average +/- 15%"), 0);
+               presets.emplace_back(tr("0.3V/1.2V (for 1.8V CMOS)"), 1);
+               presets.emplace_back(tr("0.7V/2.5V (for 3.3V CMOS)"), 2);
+               presets.emplace_back(tr("1.3V/3.7V (for 5.0V CMOS)"), 3);
+               presets.emplace_back(tr("0.8V/2.0V (for TTL)"), 4);
+       }
+
+       return presets;
+}
+
+SignalBase::ConversionPreset SignalBase::get_current_conversion_preset() const
 {
-       return (decoder_stack_ != nullptr);
+       auto preset = conversion_options_.find("preset");
+       if (preset != conversion_options_.end())
+               return (ConversionPreset)((preset->second).toInt());
+
+       return DynamicPreset;
 }
 
-shared_ptr<pv::data::DecoderStack> SignalBase::decoder_stack() const
+void SignalBase::set_conversion_preset(ConversionPreset id)
 {
-       return decoder_stack_;
+       conversion_options_["preset"] = (int)id;
 }
 
-void SignalBase::set_decoder_stack(shared_ptr<pv::data::DecoderStack>
-       decoder_stack)
+#ifdef ENABLE_DECODE
+bool SignalBase::is_decode_signal() const
 {
-       decoder_stack_ = decoder_stack;
+       return (channel_type_ == DecodeChannel);
 }
 #endif
 
@@ -155,16 +430,329 @@ void SignalBase::save_settings(QSettings &settings) const
 {
        settings.setValue("name", name());
        settings.setValue("enabled", enabled());
-       settings.setValue("colour", colour());
+       settings.setValue("color", color());
+       settings.setValue("conversion_type", (int)conversion_type_);
+
+       settings.setValue("conv_options", (int)(conversion_options_.size()));
+       int i = 0;
+       for (auto kvp : conversion_options_) {
+               settings.setValue(QString("conv_option%1_key").arg(i), kvp.first);
+               settings.setValue(QString("conv_option%1_value").arg(i), kvp.second);
+               i++;
+       }
 }
 
 void SignalBase::restore_settings(QSettings &settings)
 {
-       set_name(settings.value("name").toString());
-       set_enabled(settings.value("enabled").toBool());
-       set_colour(settings.value("colour").value<QColor>());
+       if (settings.contains("name"))
+               set_name(settings.value("name").toString());
+
+       if (settings.contains("enabled"))
+               set_enabled(settings.value("enabled").toBool());
+
+       if (settings.contains("color"))
+               set_color(settings.value("color").value<QColor>());
+
+       if (settings.contains("conversion_type"))
+               set_conversion_type((ConversionType)settings.value("conversion_type").toInt());
+
+       int conv_options = 0;
+       if (settings.contains("conv_options"))
+               conv_options = settings.value("conv_options").toInt();
+
+       if (conv_options)
+               for (int i = 0; i < conv_options; i++) {
+                       const QString key_id = QString("conv_option%1_key").arg(i);
+                       const QString value_id = QString("conv_option%1_value").arg(i);
+
+                       if (settings.contains(key_id) && settings.contains(value_id))
+                               conversion_options_[settings.value(key_id).toString()] =
+                                       settings.value(value_id);
+               }
+}
+
+bool SignalBase::conversion_is_a2l() const
+{
+       return ((channel_type_ == AnalogChannel) &&
+               ((conversion_type_ == A2LConversionByThreshold) ||
+               (conversion_type_ == A2LConversionBySchmittTrigger)));
 }
 
+void SignalBase::convert_single_segment_range(AnalogSegment *asegment,
+       LogicSegment *lsegment, uint64_t start_sample, uint64_t end_sample)
+{
+       if (end_sample > start_sample) {
+               tie(min_value_, max_value_) = asegment->get_min_max();
+
+               // Create sigrok::Analog instance
+               float *asamples = new float[ConversionBlockSize];
+               uint8_t *lsamples = new uint8_t[ConversionBlockSize];
+
+               vector<shared_ptr<sigrok::Channel> > channels;
+               channels.push_back(channel_);
+
+               vector<const sigrok::QuantityFlag*> mq_flags;
+               const sigrok::Quantity * const mq = sigrok::Quantity::VOLTAGE;
+               const sigrok::Unit * const unit = sigrok::Unit::VOLT;
+
+               shared_ptr<sigrok::Packet> packet =
+                       Session::sr_context->create_analog_packet(channels,
+                       asamples, ConversionBlockSize, mq, unit, mq_flags);
+
+               shared_ptr<sigrok::Analog> analog =
+                       dynamic_pointer_cast<sigrok::Analog>(packet->payload());
+
+               // Convert
+               uint64_t i = start_sample;
+
+               if (conversion_type_ == A2LConversionByThreshold) {
+                       const double threshold = get_conversion_thresholds()[0];
+
+                       // Convert as many sample blocks as we can
+                       while ((end_sample - i) > ConversionBlockSize) {
+                               asegment->get_samples(i, i + ConversionBlockSize, asamples);
+
+                               shared_ptr<sigrok::Logic> logic =
+                                       analog->get_logic_via_threshold(threshold, lsamples);
+
+                               lsegment->append_payload(logic->data_pointer(), logic->data_length());
+                               samples_added(lsegment->segment_id(), i, i + ConversionBlockSize);
+                               i += ConversionBlockSize;
+                       }
+
+                       // Re-create sigrok::Analog and convert remaining samples
+                       packet = Session::sr_context->create_analog_packet(channels,
+                               asamples, end_sample - i, mq, unit, mq_flags);
+
+                       analog = dynamic_pointer_cast<sigrok::Analog>(packet->payload());
+
+                       asegment->get_samples(i, end_sample, asamples);
+                       shared_ptr<sigrok::Logic> logic =
+                               analog->get_logic_via_threshold(threshold, lsamples);
+                       lsegment->append_payload(logic->data_pointer(), logic->data_length());
+                       samples_added(lsegment->segment_id(), i, end_sample);
+               }
+
+               if (conversion_type_ == A2LConversionBySchmittTrigger) {
+                       const vector<double> thresholds = get_conversion_thresholds();
+                       const double lo_thr = thresholds[0];
+                       const double hi_thr = thresholds[1];
+
+                       uint8_t state = 0;  // TODO Use value of logic sample n-1 instead of 0
+
+                       // Convert as many sample blocks as we can
+                       while ((end_sample - i) > ConversionBlockSize) {
+                               asegment->get_samples(i, i + ConversionBlockSize, asamples);
+
+                               shared_ptr<sigrok::Logic> logic =
+                                       analog->get_logic_via_schmitt_trigger(lo_thr, hi_thr,
+                                               &state, lsamples);
+
+                               lsegment->append_payload(logic->data_pointer(), logic->data_length());
+                               samples_added(lsegment->segment_id(), i, i + ConversionBlockSize);
+                               i += ConversionBlockSize;
+                       }
+
+                       // Re-create sigrok::Analog and convert remaining samples
+                       packet = Session::sr_context->create_analog_packet(channels,
+                               asamples, end_sample - i, mq, unit, mq_flags);
+
+                       analog = dynamic_pointer_cast<sigrok::Analog>(packet->payload());
+
+                       asegment->get_samples(i, end_sample, asamples);
+                       shared_ptr<sigrok::Logic> logic =
+                               analog->get_logic_via_schmitt_trigger(lo_thr, hi_thr,
+                                       &state, lsamples);
+                       lsegment->append_payload(logic->data_pointer(), logic->data_length());
+                       samples_added(lsegment->segment_id(), i, end_sample);
+               }
+
+               // If acquisition is ongoing, start-/endsample may have changed
+               end_sample = asegment->get_sample_count();
+
+               delete[] lsamples;
+               delete[] asamples;
+       }
+}
+
+void SignalBase::convert_single_segment(AnalogSegment *asegment, LogicSegment *lsegment)
+{
+       uint64_t start_sample, end_sample, old_end_sample;
+       start_sample = end_sample = 0;
+       bool complete_state, old_complete_state;
+
+       start_sample = lsegment->get_sample_count();
+       end_sample = asegment->get_sample_count();
+       complete_state = asegment->is_complete();
+
+       // Don't do anything if the segment is still being filled and the sample count is too small
+       if ((!complete_state) && (end_sample - start_sample < ConversionBlockSize))
+               return;
+
+       do {
+               convert_single_segment_range(asegment, lsegment, start_sample, end_sample);
+
+               old_end_sample = end_sample;
+               old_complete_state = complete_state;
+
+               start_sample = lsegment->get_sample_count();
+               end_sample = asegment->get_sample_count();
+               complete_state = asegment->is_complete();
+
+               // If the segment has been incomplete when we were called and has been
+               // completed in the meanwhile, we convert the remaining samples as well.
+               // Also, if a sufficient number of samples was added in the meanwhile,
+               // we do another round of sample conversion.
+       } while ((complete_state != old_complete_state) ||
+               (end_sample - old_end_sample >= ConversionBlockSize));
+}
+
+void SignalBase::conversion_thread_proc()
+{
+       shared_ptr<Analog> analog_data;
+
+       if (conversion_is_a2l()) {
+               analog_data = dynamic_pointer_cast<Analog>(data_);
+
+               if (analog_data->analog_segments().size() == 0) {
+                       unique_lock<mutex> input_lock(conversion_input_mutex_);
+                       conversion_input_cond_.wait(input_lock);
+               }
+
+       } else
+               // Currently, we only handle A2L conversions
+               return;
+
+       // If we had to wait for input data, we may have been notified to terminate
+       if (conversion_interrupt_)
+               return;
+
+       uint32_t segment_id = 0;
+
+       AnalogSegment *asegment = analog_data->analog_segments().front().get();
+       assert(asegment);
+
+       const shared_ptr<Logic> logic_data = dynamic_pointer_cast<Logic>(converted_data_);
+       assert(logic_data);
+
+       // Create the initial logic data segment if needed
+       if (logic_data->logic_segments().size() == 0) {
+               shared_ptr<LogicSegment> new_segment =
+                       make_shared<LogicSegment>(*logic_data.get(), 0, 1, asegment->samplerate());
+               logic_data->push_segment(new_segment);
+       }
+
+       LogicSegment *lsegment = logic_data->logic_segments().front().get();
+       assert(lsegment);
+
+       do {
+               convert_single_segment(asegment, lsegment);
+
+               // Only advance to next segment if the current input segment is complete
+               if (asegment->is_complete() &&
+                       analog_data->analog_segments().size() > logic_data->logic_segments().size()) {
+                       // There are more segments to process
+                       segment_id++;
+
+                       try {
+                               asegment = analog_data->analog_segments().at(segment_id).get();
+                       } catch (out_of_range&) {
+                               qDebug() << "Conversion error for" << name() << ": no analog segment" \
+                                       << segment_id << ", segments size is" << analog_data->analog_segments().size();
+                               return;
+                       }
+
+                       shared_ptr<LogicSegment> new_segment = make_shared<LogicSegment>(
+                               *logic_data.get(), segment_id, 1, asegment->samplerate());
+                       logic_data->push_segment(new_segment);
+
+                       lsegment = logic_data->logic_segments().back().get();
+               } else {
+                       // No more samples/segments to process, wait for data or interrupt
+                       if (!conversion_interrupt_) {
+                               unique_lock<mutex> input_lock(conversion_input_mutex_);
+                               conversion_input_cond_.wait(input_lock);
+                       }
+               }
+       } while (!conversion_interrupt_);
+}
+
+void SignalBase::start_conversion(bool delayed_start)
+{
+       if (delayed_start) {
+               delayed_conversion_starter_.start();
+               return;
+       }
+
+       stop_conversion();
+
+       if (converted_data_)
+               converted_data_->clear();
+       samples_cleared();
+
+       conversion_interrupt_ = false;
+       conversion_thread_ = std::thread(
+               &SignalBase::conversion_thread_proc, this);
+}
+
+void SignalBase::stop_conversion()
+{
+       // Stop conversion so we can restart it from the beginning
+       conversion_interrupt_ = true;
+       conversion_input_cond_.notify_one();
+       if (conversion_thread_.joinable())
+               conversion_thread_.join();
+}
+
+void SignalBase::on_samples_cleared()
+{
+       if (converted_data_)
+               converted_data_->clear();
+
+       samples_cleared();
+}
+
+void SignalBase::on_samples_added(QObject* segment, uint64_t start_sample,
+       uint64_t end_sample)
+{
+       if (conversion_type_ != NoConversion) {
+               if (conversion_thread_.joinable()) {
+                       // Notify the conversion thread since it's running
+                       conversion_input_cond_.notify_one();
+               } else {
+                       // Start the conversion thread unless the delay timer is running
+                       if (!delayed_conversion_starter_.isActive())
+                               start_conversion();
+               }
+       }
+
+       data::Segment* s = qobject_cast<data::Segment*>(segment);
+       samples_added(s->segment_id(), start_sample, end_sample);
+}
+
+void SignalBase::on_min_max_changed(float min, float max)
+{
+       // Restart conversion if one is enabled and uses a calculated threshold
+       if ((conversion_type_ != NoConversion) &&
+               (get_current_conversion_preset() == DynamicPreset))
+               start_conversion(true);
+
+       min_max_changed(min, max);
+}
+
+void SignalBase::on_capture_state_changed(int state)
+{
+       if (state == Session::Running) {
+               // Restart conversion if one is enabled
+               if (conversion_type_ != NoConversion)
+                       start_conversion();
+       }
+}
+
+void SignalBase::on_delayed_conversion_start()
+{
+       start_conversion();
+}
 
 } // namespace data
 } // namespace pv