]> sigrok.org Git - pulseview.git/blobdiff - pv/data/analogsegment.cpp
DecodeSignal: Allow muxed logic data to be cached
[pulseview.git] / pv / data / analogsegment.cpp
index 6719340c5e9e06eb58698de193c3dfd7927d238c..7a3d62d880ff912356f7daac4bf962af6d1611b5 100644 (file)
 #include <extdef.h>
 
 #include <cassert>
-#include <cstring>
-#include <cstdlib>
 #include <cmath>
+#include <cstdlib>
+#include <cstring>
+#include <memory>
 
 #include <algorithm>
 
@@ -37,15 +38,15 @@ using std::max_element;
 using std::min;
 using std::min_element;
 using std::pair;
+using std::unique_ptr;
 
 namespace pv {
 namespace data {
 
 const int AnalogSegment::EnvelopeScalePower = 4;
 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
-const float AnalogSegment::LogEnvelopeScaleFactor =
-       logf(EnvelopeScaleFactor);
-const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024;      // bytes
+const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
+const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024;    // bytes
 
 AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) :
        Segment(samplerate, sizeof(float)),
@@ -73,11 +74,17 @@ void AnalogSegment::append_interleaved_samples(const float *data,
 
        uint64_t prev_sample_count = sample_count_;
 
-       for (uint32_t i=0; i < sample_count; i++) {
-               append_single_sample((void*)data);
+       // Deinterleave the samples and add them
+       unique_ptr<float[]> deint_data(new float[sample_count]);
+       float *deint_data_ptr = deint_data.get();
+       for (uint32_t i = 0; i < sample_count; i++) {
+               *deint_data_ptr = (float)(*data);
+               deint_data_ptr++;
                data += stride;
        }
 
+       append_samples(deint_data.get(), sample_count);
+
        // Generate the first mip-map from the data
        append_payload_to_envelope_levels();
 
@@ -89,18 +96,19 @@ void AnalogSegment::append_interleaved_samples(const float *data,
                        prev_sample_count + 1);
 }
 
-const float* AnalogSegment::get_samples(
-       int64_t start_sample, int64_t end_sample) const
+void AnalogSegment::get_samples(int64_t start_sample, int64_t end_sample,
+       float* dest) const
 {
        assert(start_sample >= 0);
        assert(start_sample < (int64_t)sample_count_);
        assert(end_sample >= 0);
-       assert(end_sample < (int64_t)sample_count_);
+       assert(end_sample <= (int64_t)sample_count_);
        assert(start_sample <= end_sample);
+       assert(dest != nullptr);
 
        lock_guard<recursive_mutex> lock(mutex_);
 
-       return (float*)get_raw_samples(start_sample, (end_sample - start_sample));
+       get_raw_samples(start_sample, (end_sample - start_sample), (uint8_t*)dest);
 }
 
 const pair<float, float> AnalogSegment::get_min_max() const
@@ -170,12 +178,15 @@ void AnalogSegment::append_payload_to_envelope_levels()
        e0.length = sample_count_ / EnvelopeScaleFactor;
 
        // Calculate min/max values in case we have too few samples for an envelope
+       const float old_min_value = min_value_, old_max_value = max_value_;
        if (sample_count_ < EnvelopeScaleFactor) {
                it = begin_raw_sample_iteration(0);
                for (uint64_t i = 0; i < sample_count_; i++) {
                        const float sample = *((float*)it->value);
-                       if (sample < min_value_) min_value_ = sample;
-                       if (sample > max_value_) max_value_ = sample;
+                       if (sample < min_value_)
+                               min_value_ = sample;
+                       if (sample > max_value_)
+                               max_value_ = sample;
                        continue_raw_sample_iteration(it, 1);
                }
                end_raw_sample_iteration(it);
@@ -191,7 +202,7 @@ void AnalogSegment::append_payload_to_envelope_levels()
 
        // Iterate through the samples to populate the first level mipmap
        uint64_t start_sample = prev_length * EnvelopeScaleFactor;
-       uint64_t end_sample   = e0.length * EnvelopeScaleFactor;
+       uint64_t end_sample = e0.length * EnvelopeScaleFactor;
 
        it = begin_raw_sample_iteration(start_sample);
        for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
@@ -202,8 +213,10 @@ void AnalogSegment::append_payload_to_envelope_levels()
                        *max_element(samples, samples + EnvelopeScaleFactor),
                };
 
-               if (sub_sample.min < min_value_) min_value_ = sub_sample.min;
-               if (sub_sample.max > max_value_) max_value_ = sub_sample.max;
+               if (sub_sample.min < min_value_)
+                       min_value_ = sub_sample.min;
+               if (sub_sample.max > max_value_)
+                       max_value_ = sub_sample.max;
 
                continue_raw_sample_iteration(it, EnvelopeScaleFactor);
                *dest_ptr++ = sub_sample;
@@ -213,7 +226,7 @@ void AnalogSegment::append_payload_to_envelope_levels()
        // Compute higher level mipmaps
        for (unsigned int level = 1; level < ScaleStepCount; level++) {
                Envelope &e = envelope_levels_[level];
-               const Envelope &el = envelope_levels_[level-1];
+               const Envelope &el = envelope_levels_[level - 1];
 
                // Expand the data buffer to fit the new samples
                prev_length = e.length;
@@ -245,6 +258,10 @@ void AnalogSegment::append_payload_to_envelope_levels()
                        *dest_ptr = sub_sample;
                }
        }
+
+       // Notify if the min or max value changed
+       if ((old_min_value != min_value_) || (old_max_value != max_value_))
+               owner_.min_max_changed(min_value_, max_value_);
 }
 
 } // namespace data