== Decoders Protocol decoders are one of the key elements of PulseView's functionality. They take input data that you acquired and process it in a way that results in a (hopefully) much easier to understand representation of that same data. In its simplest form, a protocol decoder (PD) converts a group of 1-bit signals into a stream of n-bit events. This is exactly what the parallel PD does: it takes for example 8 logic channels and treats them like an 8-bit parallel bus, emitting annotations that show the current state of the bus at any point in time. === Basic Operation Another one of the protocol decoders available to you is the I²C decoder. It takes the two I²C signals SCL and SDA (serial clock / serial data) and shows you the details of the I²C communication without the need to evaluate the signal bit by bit yourself. As an example, let's have look at one of the sample .sr files we keep around for validation of the PD code base: https://sigrok.org/gitweb/?p=sigrok-dumps.git;a=blob_plain;f=i2c/rtc_dallas_ds1307/rtc_ds1307_200khz.sr;hb=HEAD[rtc_ds1307_200khz.sr]. It contains the capture of an I²C master interacting with a https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS1307.html[Dallas DS1307 I²C Real-Time Clock] where the master repeatedly sets and queries the time of day. After loading and using "zoom-to-fit", it looks similar to this: image::pv_decoders_1.png[] Adding the I²C decoder by clicking on ➊ and selecting I²C from the list adds a new decode signal to the view. PulseView tries to match existing signals to the signals that the newly added protocol decoder needs to function, which is what happened here - SCL and SDA have been automatically assigned and the PD has decoded the communication with the default parameters. If you need to change the signal assignment or change the decoding parameters, you can click on ➋ to do so. When you zoom in, you now see that PulseView has decoded the I²C messages and displays these annotations as part of the decode signal (note that we have zoomed in so far that PulseView shows you the individual samples): image::pv_decoders_2.png[] This is already very useful, and a massive improvement over counting out pulses on an oscilloscope screen. However, sigrok allows us to go one step further with the use of so-called stacked decoders. === Decoder Stacking To add a stacked decoder we open the settings of the decode signal, go to the _Stack Decoder_ menu ➊, and select the DS1307 decoder: image::pv_decoders_3.png[] With the stacked decoder added, we can now see that PulseView has decoded the meaning of the I²C commands, so that we don't need to bother searching the reference manual. In this view, we can see that the I²C packet was a command to read the date and time, which was then reported to be 10.03.2013 23:35:30. In this example, we added the I²C and DS1307 decoders separately. However, when opening the decoder selector window, you can also double-click on the DS1307 decoder and PulseView will try to auto-resolve the dependencies needed to use this decoder. In case there are ambiguities (e.g. when several different protocol decoders offer 'uart' output), it will ask you to choose which one to use. For a list of available and planned protocol decoders, you can https://sigrok.org/wiki/Protocol_decoders[check the wiki]. === Using Decoders on Analog Signals If you're capturing data using an oscilloscope or import analog signal data from a file, you'll quickly notice that protocol decoders don't give you the option to select analog channels as inputs. That is because as of now, decoders only work on logic signals. You can however convert analog signals into logic signals by choosing a conversion setting from the signal setting popup. image::pv_conversion_a2l.png[] Here, A1 has been converted using a threshold (with default settings) and A2 has been converted using a Schmitt-Trigger emulation (also with default settings). Additionally, the conversion threshold display mode has been set to _Background_ in the _Views_ settings dialog. This way, you can tell how PulseView decided to change the logic signal level as you can now visually understand where the ranges for high and low are placed. Aside from the default conversion threshold(s), you can choose from a few common presets or enter custom values as well. They take the form "0.0V" and "0.0V/0.0V", respectively. === Troubleshooting In case a protocol decoder doesn't provide the expected result, there are several things you can check. The first check you should perform is whether the time unit in the ruler is given as "sa". This is short for "samples" and means that the device didn't provide a sample rate and so PulseView has no way of showing a time scale in seconds or fractions thereof. While some decoders can run without timing information, or only optionally make use of the time scale, others may not be able to interpret the input data since timing information is an essential part of the very protocol. Another issue to remain aware of is that decoders need enough samples per protocol step to reliably interpret the information. In typical cases the minimum sample rate should be four to five times the rate of the fastest activity in the protocol. If a protocol decoder runs but shows you annotations that don't seem to make any sense, it's worth double-checking the decoder settings. One common source of error is the baud rate. For example, the CAN protocol decoder doesn't know what baud rate is used on the bus that you captured, so it could be that a different baud rate is used than the one you set. Also, if this is still not the reason for the malfunction, it's worth checking whether any of the signals have been captured inverted. Again using the CAN bus as an example, the decoder will decode the signal just fine if it's inverted but it'll show data even when the signal looks "idle". When a protocol decoder stops execution because of an unmet constraint (required input not connected, essential parameter not specified) or a bug in the decoder itself, you will be presented a static red message in the protocol decoder's display area. In that case, you check the log output in the settings menu. There you'll find the Python error description which you can use to either adjust the configuration, or debug the decoder (and let us know of the fix) or you can copy that information and file a bug report so that we can fix it. Further helpful knowledge and explanations on logic analyzers can be found in our https://sigrok.org/wiki/FAQ#Where_can_I_learn_more_about_logic_analyzers.3F["Learn about logic analyzers" FAQ item]. === Exporting Annotations If you want to postprocess annotations that were generated by a protocol decoder, you can do so by right-clicking into the area of the decode signal (not on the signal label on the left). You are shown several export methods to choose from, with the last one being only available if the cursor is enabled. After you chose a method that suits your needs, you are prompted for a file to export the annotations to. The contents of the file very much depend on the option you chose but also on the annotation export format string that you can define in the _Decoders_ menu of the settings dialog. If the default output isn't useful to you, you can customize it there. === Creating a Protocol Decoder Protocol decoders are written in Python and can be created using nothing more than a text editor. You, too, can write one! To find out how to go about it, please see our https://sigrok.org/wiki/Protocol_decoder_HOWTO[Protocol Decoder How-To] and the https://sigrok.org/wiki/Protocol_decoder_API[Protocol Decoder API Reference]. If you do write one, we'd appreciate if you'd contribute to our project so that everyone can benefit from your work.