]> sigrok.org Git - pulseview.git/blob - pv/data/segment.cpp
Speed up MipMap downsampling in logicsegment
[pulseview.git] / pv / data / segment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2017 Soeren Apel <soeren@apelpie.net>
5  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include "segment.hpp"
22
23 #include <cassert>
24 #include <cstdlib>
25 #include <cstring>
26
27 #include <QDebug>
28
29 using std::bad_alloc;
30 using std::lock_guard;
31 using std::min;
32 using std::recursive_mutex;
33
34 namespace pv {
35 namespace data {
36
37 const uint64_t Segment::MaxChunkSize = 10 * 1024 * 1024;  /* 10MiB */
38
39 Segment::Segment(uint32_t segment_id, uint64_t samplerate, unsigned int unit_size) :
40         segment_id_(segment_id),
41         sample_count_(0),
42         start_time_(0),
43         samplerate_(samplerate),
44         unit_size_(unit_size),
45         iterator_count_(0),
46         mem_optimization_requested_(false),
47         is_complete_(false)
48 {
49         lock_guard<recursive_mutex> lock(mutex_);
50         assert(unit_size_ > 0);
51
52         // Determine the number of samples we can fit in one chunk
53         // without exceeding MaxChunkSize
54         chunk_size_ = min(MaxChunkSize, (MaxChunkSize / unit_size_) * unit_size_);
55
56         // Create the initial chunk
57         current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */
58         data_chunks_.push_back(current_chunk_);
59         used_samples_ = 0;
60         unused_samples_ = chunk_size_ / unit_size_;
61 }
62
63 Segment::~Segment()
64 {
65         lock_guard<recursive_mutex> lock(mutex_);
66
67         for (uint8_t* chunk : data_chunks_)
68                 delete[] chunk;
69 }
70
71 uint64_t Segment::get_sample_count() const
72 {
73         lock_guard<recursive_mutex> lock(mutex_);
74         return sample_count_;
75 }
76
77 const pv::util::Timestamp& Segment::start_time() const
78 {
79         return start_time_;
80 }
81
82 double Segment::samplerate() const
83 {
84         return samplerate_;
85 }
86
87 void Segment::set_samplerate(double samplerate)
88 {
89         samplerate_ = samplerate;
90 }
91
92 unsigned int Segment::unit_size() const
93 {
94         return unit_size_;
95 }
96
97 uint32_t Segment::segment_id() const
98 {
99         return segment_id_;
100 }
101
102 void Segment::set_complete()
103 {
104         is_complete_ = true;
105 }
106
107 bool Segment::is_complete() const
108 {
109         return is_complete_;
110 }
111
112 void Segment::free_unused_memory()
113 {
114         lock_guard<recursive_mutex> lock(mutex_);
115
116         // Do not mess with the data chunks if we have iterators pointing at them
117         if (iterator_count_ > 0) {
118                 mem_optimization_requested_ = true;
119                 return;
120         }
121
122         if (current_chunk_) {
123                 // No more data will come in, so re-create the last chunk accordingly
124                 uint8_t* resized_chunk = new uint8_t[used_samples_ * unit_size_ + 7];  /* FIXME +7 is workaround for #1284 */
125                 memcpy(resized_chunk, current_chunk_, used_samples_ * unit_size_);
126
127                 delete[] current_chunk_;
128                 current_chunk_ = resized_chunk;
129
130                 data_chunks_.pop_back();
131                 data_chunks_.push_back(resized_chunk);
132         }
133 }
134
135 void Segment::append_single_sample(void *data)
136 {
137         lock_guard<recursive_mutex> lock(mutex_);
138
139         // There will always be space for at least one sample in
140         // the current chunk, so we do not need to test for space
141
142         memcpy(current_chunk_ + (used_samples_ * unit_size_), data, unit_size_);
143         used_samples_++;
144         unused_samples_--;
145
146         if (unused_samples_ == 0) {
147                 current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */
148                 data_chunks_.push_back(current_chunk_);
149                 used_samples_ = 0;
150                 unused_samples_ = chunk_size_ / unit_size_;
151         }
152
153         sample_count_++;
154 }
155
156 void Segment::append_samples(void* data, uint64_t samples)
157 {
158         lock_guard<recursive_mutex> lock(mutex_);
159
160         const uint8_t* data_byte_ptr = (uint8_t*)data;
161         uint64_t remaining_samples = samples;
162         uint64_t data_offset = 0;
163
164         do {
165                 uint64_t copy_count = 0;
166
167                 if (remaining_samples <= unused_samples_) {
168                         // All samples fit into the current chunk
169                         copy_count = remaining_samples;
170                 } else {
171                         // Only a part of the samples fit, fill up current chunk
172                         copy_count = unused_samples_;
173                 }
174
175                 const uint8_t* dest = &(current_chunk_[used_samples_ * unit_size_]);
176                 const uint8_t* src = &(data_byte_ptr[data_offset]);
177                 memcpy((void*)dest, (void*)src, (copy_count * unit_size_));
178
179                 used_samples_ += copy_count;
180                 unused_samples_ -= copy_count;
181                 remaining_samples -= copy_count;
182                 data_offset += (copy_count * unit_size_);
183
184                 if (unused_samples_ == 0) {
185                         try {
186                                 // If we're out of memory, allocating a chunk will throw
187                                 // std::bad_alloc. To give the application some usable memory
188                                 // to work with in case chunk allocation fails, we allocate
189                                 // extra memory and throw it away if it all succeeded.
190                                 // This way, memory allocation will fail early enough to let
191                                 // PV remain alive. Otherwise, PV will crash in a random
192                                 // memory-allocating part of the application.
193                                 current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */
194
195                                 const int dummy_size = 2 * chunk_size_;
196                                 auto dummy_chunk = new uint8_t[dummy_size];
197                                 memset(dummy_chunk, 0xFF, dummy_size);
198                                 delete[] dummy_chunk;
199                         } catch (bad_alloc&) {
200                                 delete[] current_chunk_;  // The new may have succeeded
201                                 current_chunk_ = nullptr;
202                                 throw;
203                         }
204
205                         data_chunks_.push_back(current_chunk_);
206                         used_samples_ = 0;
207                         unused_samples_ = chunk_size_ / unit_size_;
208                 }
209         } while (remaining_samples > 0);
210
211         sample_count_ += samples;
212 }
213
214 void Segment::get_raw_samples(uint64_t start, uint64_t count,
215         uint8_t* dest) const
216 {
217         assert(start < sample_count_);
218         assert(start + count <= sample_count_);
219         assert(count > 0);
220         assert(dest != nullptr);
221
222         lock_guard<recursive_mutex> lock(mutex_);
223
224         uint8_t* dest_ptr = dest;
225
226         uint64_t chunk_num = (start * unit_size_) / chunk_size_;
227         uint64_t chunk_offs = (start * unit_size_) % chunk_size_;
228
229         while (count > 0) {
230                 const uint8_t* chunk = data_chunks_[chunk_num];
231
232                 uint64_t copy_size = min(count * unit_size_,
233                         chunk_size_ - chunk_offs);
234
235                 memcpy(dest_ptr, chunk + chunk_offs, copy_size);
236
237                 dest_ptr += copy_size;
238                 count -= (copy_size / unit_size_);
239
240                 chunk_num++;
241                 chunk_offs = 0;
242         }
243 }
244
245 SegmentDataIterator* Segment::begin_sample_iteration(uint64_t start)
246 {
247         SegmentDataIterator* it = new SegmentDataIterator;
248
249         assert(start < sample_count_);
250
251         iterator_count_++;
252
253         it->sample_index = start;
254         it->chunk_num = (start * unit_size_) / chunk_size_;
255         it->chunk_offs = (start * unit_size_) % chunk_size_;
256         it->chunk = data_chunks_[it->chunk_num];
257
258         return it;
259 }
260
261 void Segment::continue_sample_iteration(SegmentDataIterator* it, uint64_t increase)
262 {
263         it->sample_index += increase;
264         it->chunk_offs += (increase * unit_size_);
265
266         if (it->chunk_offs > (chunk_size_ - 1)) {
267                 it->chunk_num++;
268                 it->chunk_offs -= chunk_size_;
269                 it->chunk = data_chunks_[it->chunk_num];
270         }
271 }
272
273 void Segment::end_sample_iteration(SegmentDataIterator* it)
274 {
275         delete it;
276
277         iterator_count_--;
278
279         if ((iterator_count_ == 0) && mem_optimization_requested_) {
280                 mem_optimization_requested_ = false;
281                 free_unused_memory();
282         }
283 }
284
285 uint8_t* Segment::get_iterator_value(SegmentDataIterator* it)
286 {
287         assert(it->sample_index <= (sample_count_ - 1));
288
289         return (it->chunk + it->chunk_offs);
290 }
291
292 uint64_t Segment::get_iterator_valid_length(SegmentDataIterator* it)
293 {
294         assert(it->sample_index <= (sample_count_ - 1));
295
296         return ((chunk_size_ - it->chunk_offs) / unit_size_);
297 }
298
299 } // namespace data
300 } // namespace pv