]> sigrok.org Git - pulseview.git/blob - pv/data/logicsnapshot.cpp
Pad mip-map buffers to allow for uint64_t write word
[pulseview.git] / pv / data / logicsnapshot.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  */
20
21 #include <extdef.h>
22
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <math.h>
27
28 #include <boost/foreach.hpp>
29
30 #include "logicsnapshot.h"
31
32 using namespace boost;
33 using namespace std;
34
35 namespace pv {
36 namespace data {
37
38 const int LogicSnapshot::MipMapScalePower = 4;
39 const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
40 const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
41 const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
42
43 LogicSnapshot::LogicSnapshot(const sr_datafeed_logic &logic) :
44         Snapshot(logic.unitsize),
45         _last_append_sample(0)
46 {
47         lock_guard<recursive_mutex> lock(_mutex);
48         memset(_mip_map, 0, sizeof(_mip_map));
49         append_payload(logic);
50 }
51
52 LogicSnapshot::~LogicSnapshot()
53 {
54         lock_guard<recursive_mutex> lock(_mutex);
55         BOOST_FOREACH(MipMapLevel &l, _mip_map)
56                 free(l.data);
57 }
58
59 void LogicSnapshot::append_payload(
60         const sr_datafeed_logic &logic)
61 {
62         assert(_unit_size == logic.unitsize);
63         assert((logic.length % _unit_size) == 0);
64
65         lock_guard<recursive_mutex> lock(_mutex);
66
67         append_data(logic.data, logic.length / _unit_size);
68
69         // Generate the first mip-map from the data
70         append_payload_to_mipmap();
71 }
72
73 void LogicSnapshot::reallocate_mip_map(MipMapLevel &m)
74 {
75         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
76                 MipMapDataUnit) * MipMapDataUnit;
77         if (new_data_length > m.data_length)
78         {
79                 m.data_length = new_data_length;
80
81                 // Padding is added to allow for the uint64_t write word
82                 m.data = realloc(m.data, new_data_length * _unit_size +
83                         sizeof(uint64_t));
84         }
85 }
86
87 void LogicSnapshot::append_payload_to_mipmap()
88 {
89         MipMapLevel &m0 = _mip_map[0];
90         uint64_t prev_length;
91         const uint8_t *src_ptr;
92         uint8_t *dest_ptr;
93         uint64_t accumulator;
94         unsigned int diff_counter;
95
96         // Expand the data buffer to fit the new samples
97         prev_length = m0.length;
98         m0.length = _sample_count / MipMapScaleFactor;
99
100         // Break off if there are no new samples to compute
101         if (m0.length == prev_length)
102                 return;
103
104         reallocate_mip_map(m0);
105
106         dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
107
108         // Iterate through the samples to populate the first level mipmap
109         accumulator = 0;
110         diff_counter = MipMapScaleFactor;
111         const uint8_t *end_src_ptr = (uint8_t*)_data +
112                 m0.length * _unit_size * MipMapScaleFactor;
113         for (src_ptr = (uint8_t*)_data +
114                 prev_length * _unit_size * MipMapScaleFactor;
115                 src_ptr < end_src_ptr;)
116         {
117                 // Accumulate transitions which have occurred in this sample
118                 accumulator = 0;
119                 diff_counter = MipMapScaleFactor;
120                 while (diff_counter-- > 0)
121                 {
122                         const uint64_t sample = *(uint64_t*)src_ptr;
123                         accumulator |= _last_append_sample ^ sample;
124                         _last_append_sample = sample;
125                         src_ptr += _unit_size;
126                 }
127
128                 *(uint64_t*)dest_ptr = accumulator;
129                 dest_ptr += _unit_size;
130         }
131
132         // Compute higher level mipmaps
133         for (unsigned int level = 1; level < ScaleStepCount; level++)
134         {
135                 MipMapLevel &m = _mip_map[level];
136                 const MipMapLevel &ml = _mip_map[level-1];
137
138                 // Expand the data buffer to fit the new samples
139                 prev_length = m.length;
140                 m.length = ml.length / MipMapScaleFactor;
141
142                 // Break off if there are no more samples to computed
143                 if (m.length == prev_length)
144                         break;
145
146                 reallocate_mip_map(m);
147
148                 // Subsample the level lower level
149                 src_ptr = (uint8_t*)ml.data +
150                         _unit_size * prev_length * MipMapScaleFactor;
151                 const uint8_t *end_dest_ptr =
152                         (uint8_t*)m.data + _unit_size * m.length;
153                 for (dest_ptr = (uint8_t*)m.data +
154                         _unit_size * prev_length;
155                         dest_ptr < end_dest_ptr;
156                         dest_ptr += _unit_size)
157                 {
158                         accumulator = 0;
159                         diff_counter = MipMapScaleFactor;
160                         while (diff_counter-- > 0)
161                         {
162                                 accumulator |= *(uint64_t*)src_ptr;
163                                 src_ptr += _unit_size;
164                         }
165
166                         *(uint64_t*)dest_ptr = accumulator;
167                 }
168         }
169 }
170
171 uint64_t LogicSnapshot::get_sample(uint64_t index) const
172 {
173         assert(_data);
174         assert(index < _sample_count);
175
176         return *(uint64_t*)((uint8_t*)_data + index * _unit_size);
177 }
178
179 void LogicSnapshot::get_subsampled_edges(
180         std::vector<EdgePair> &edges,
181         uint64_t start, uint64_t end,
182         float min_length, int sig_index)
183 {
184         uint64_t index = start;
185         unsigned int level;
186         bool last_sample;
187         bool fast_forward;
188
189         assert(end <= get_sample_count());
190         assert(start <= end);
191         assert(min_length > 0);
192         assert(sig_index >= 0);
193         assert(sig_index < SR_MAX_NUM_PROBES);
194
195         lock_guard<recursive_mutex> lock(_mutex);
196
197         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
198         const unsigned int min_level = max((int)floorf(logf(min_length) /
199                 LogMipMapScaleFactor) - 1, 0);
200         const uint64_t sig_mask = 1ULL << sig_index;
201
202         // Store the initial state
203         last_sample = (get_sample(start) & sig_mask) != 0;
204         edges.push_back(pair<int64_t, bool>(index++, last_sample));
205
206         while (index + block_length <= end)
207         {
208                 //----- Continue to search -----//
209                 level = min_level;
210
211                 // We cannot fast-forward if there is no mip-map data at
212                 // at the minimum level.
213                 fast_forward = (_mip_map[level].data != NULL);
214
215                 if (min_length < MipMapScaleFactor)
216                 {
217                         // Search individual samples up to the beginning of
218                         // the next first level mip map block
219                         const uint64_t final_index = min(end,
220                                 pow2_ceil(index, MipMapScalePower));
221
222                         for (; index < final_index &&
223                                 (index & ~(~0 << MipMapScalePower)) != 0;
224                                 index++)
225                         {
226                                 const bool sample =
227                                         (get_sample(index) & sig_mask) != 0;
228
229                                 // If there was a change we cannot fast forward
230                                 if (sample != last_sample) {
231                                         fast_forward = false;
232                                         break;
233                                 }
234                         }
235                 }
236                 else
237                 {
238                         // If resolution is less than a mip map block,
239                         // round up to the beginning of the mip-map block
240                         // for this level of detail
241                         const int min_level_scale_power =
242                                 (level + 1) * MipMapScalePower;
243                         index = pow2_ceil(index, min_level_scale_power);
244                         if (index >= end)
245                                 break;
246
247                         // We can fast forward only if there was no change
248                         const bool sample =
249                                 (get_sample(index) & sig_mask) != 0;
250                         if (last_sample != sample)
251                                 fast_forward = false;
252                 }
253
254                 if (fast_forward) {
255
256                         // Fast forward: This involves zooming out to higher
257                         // levels of the mip map searching for changes, then
258                         // zooming in on them to find the point where the edge
259                         // begins.
260
261                         // Slide right and zoom out at the beginnings of mip-map
262                         // blocks until we encounter a change
263                         while (1) {
264                                 const int level_scale_power =
265                                         (level + 1) * MipMapScalePower;
266                                 const uint64_t offset =
267                                         index >> level_scale_power;
268
269                                 // Check if we reached the last block at this
270                                 // level, or if there was a change in this block
271                                 if (offset >= _mip_map[level].length ||
272                                         (get_subsample(level, offset) &
273                                                 sig_mask))
274                                         break;
275
276                                 if ((offset & ~(~0 << MipMapScalePower)) == 0) {
277                                         // If we are now at the beginning of a
278                                         // higher level mip-map block ascend one
279                                         // level
280                                         if (level + 1 >= ScaleStepCount ||
281                                                 !_mip_map[level + 1].data)
282                                                 break;
283
284                                         level++;
285                                 } else {
286                                         // Slide right to the beginning of the
287                                         // next mip map block
288                                         index = pow2_ceil(index + 1,
289                                                 level_scale_power);
290                                 }
291                         }
292
293                         // Zoom in, and slide right until we encounter a change,
294                         // and repeat until we reach min_level
295                         while (1) {
296                                 assert(_mip_map[level].data);
297
298                                 const int level_scale_power =
299                                         (level + 1) * MipMapScalePower;
300                                 const uint64_t offset =
301                                         index >> level_scale_power;
302
303                                 // Check if we reached the last block at this
304                                 // level, or if there was a change in this block
305                                 if (offset >= _mip_map[level].length ||
306                                         (get_subsample(level, offset) &
307                                                 sig_mask)) {
308                                         // Zoom in unless we reached the minimum
309                                         // zoom
310                                         if (level == min_level)
311                                                 break;
312
313                                         level--;
314                                 } else {
315                                         // Slide right to the beginning of the
316                                         // next mip map block
317                                         index = pow2_ceil(index + 1,
318                                                 level_scale_power);
319                                 }
320                         }
321
322                         // If individual samples within the limit of resolution,
323                         // do a linear search for the next transition within the
324                         // block
325                         if (min_length < MipMapScaleFactor) {
326                                 for (; index < end; index++) {
327                                         const bool sample = (get_sample(index) &
328                                                 sig_mask) != 0;
329                                         if (sample != last_sample)
330                                                 break;
331                                 }
332                         }
333                 }
334
335                 //----- Store the edge -----//
336
337                 // Take the last sample of the quanization block
338                 const int64_t final_index = index + block_length;
339                 if (index + block_length > end)
340                         break;
341
342                 // Store the final state
343                 const bool final_sample =
344                         (get_sample(final_index - 1) & sig_mask) != 0;
345                 edges.push_back(pair<int64_t, bool>(index, final_sample));
346
347                 index = final_index;
348                 last_sample = final_sample;
349         }
350
351         // Add the final state
352         edges.push_back(pair<int64_t, bool>(end,
353                 get_sample(end) & sig_mask));
354 }
355
356 uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
357 {
358         assert(level >= 0);
359         assert(_mip_map[level].data);
360         return *(uint64_t*)((uint8_t*)_mip_map[level].data +
361                 _unit_size * offset);
362 }
363
364 uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
365 {
366         const uint64_t p = 1 << power;
367         return (x + p - 1) / p * p;
368 }
369
370 } // namespace data
371 } // namespace pv