]> sigrok.org Git - pulseview.git/blob - pv/data/logicsnapshot.cpp
Replaced BOOST_FOREACH with C++11 range-based for loops
[pulseview.git] / pv / data / logicsnapshot.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  */
20
21 #include <extdef.h>
22
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <math.h>
27
28 #include "config.h"
29 #include "logicsnapshot.h"
30
31 using boost::lock_guard;
32 using boost::recursive_mutex;
33 using std::max;
34 using std::min;
35 using std::pair;
36
37 namespace pv {
38 namespace data {
39
40 const int LogicSnapshot::MipMapScalePower = 4;
41 const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
42 const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
43 const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
44
45 LogicSnapshot::LogicSnapshot(const sr_datafeed_logic &logic,
46                              const uint64_t expected_num_samples) :
47         Snapshot(logic.unitsize),
48         _last_append_sample(0)
49 {
50         set_capacity(expected_num_samples);
51
52         lock_guard<recursive_mutex> lock(_mutex);
53         memset(_mip_map, 0, sizeof(_mip_map));
54         append_payload(logic);
55 }
56
57 LogicSnapshot::~LogicSnapshot()
58 {
59         lock_guard<recursive_mutex> lock(_mutex);
60         for (MipMapLevel &l : _mip_map)
61                 free(l.data);
62 }
63
64 uint64_t LogicSnapshot::unpack_sample(const uint8_t *ptr) const
65 {
66 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
67         return *(uint64_t*)ptr;
68 #else
69         uint64_t value = 0;
70         switch(_unit_size) {
71         default:
72                 value |= ((uint64_t)ptr[7]) << 56;
73                 /* FALLTHRU */
74         case 7:
75                 value |= ((uint64_t)ptr[6]) << 48;
76                 /* FALLTHRU */
77         case 6:
78                 value |= ((uint64_t)ptr[5]) << 40;
79                 /* FALLTHRU */
80         case 5:
81                 value |= ((uint64_t)ptr[4]) << 32;
82                 /* FALLTHRU */
83         case 4:
84                 value |= ((uint32_t)ptr[3]) << 24;
85                 /* FALLTHRU */
86         case 3:
87                 value |= ((uint32_t)ptr[2]) << 16;
88                 /* FALLTHRU */
89         case 2:
90                 value |= ptr[1] << 8;
91                 /* FALLTHRU */
92         case 1:
93                 value |= ptr[0];
94                 /* FALLTHRU */
95         case 0:
96                 break;
97         }
98         return value;
99 #endif
100 }
101
102 void LogicSnapshot::pack_sample(uint8_t *ptr, uint64_t value)
103 {
104 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
105         *(uint64_t*)ptr = value;
106 #else
107         switch(_unit_size) {
108         default:
109                 ptr[7] = value >> 56;
110                 /* FALLTHRU */
111         case 7:
112                 ptr[6] = value >> 48;
113                 /* FALLTHRU */
114         case 6:
115                 ptr[5] = value >> 40;
116                 /* FALLTHRU */
117         case 5:
118                 ptr[4] = value >> 32;
119                 /* FALLTHRU */
120         case 4:
121                 ptr[3] = value >> 24;
122                 /* FALLTHRU */
123         case 3:
124                 ptr[2] = value >> 16;
125                 /* FALLTHRU */
126         case 2:
127                 ptr[1] = value >> 8;
128                 /* FALLTHRU */
129         case 1:
130                 ptr[0] = value;
131                 /* FALLTHRU */
132         case 0:
133                 break;
134         }
135 #endif
136 }
137
138 void LogicSnapshot::append_payload(
139         const sr_datafeed_logic &logic)
140 {
141         assert(_unit_size == logic.unitsize);
142         assert((logic.length % _unit_size) == 0);
143
144         lock_guard<recursive_mutex> lock(_mutex);
145
146         append_data(logic.data, logic.length / _unit_size);
147
148         // Generate the first mip-map from the data
149         append_payload_to_mipmap();
150 }
151
152 void LogicSnapshot::get_samples(uint8_t *const data,
153         int64_t start_sample, int64_t end_sample) const
154 {
155         assert(data);
156         assert(start_sample >= 0);
157         assert(start_sample <= (int64_t)_sample_count);
158         assert(end_sample >= 0);
159         assert(end_sample <= (int64_t)_sample_count);
160         assert(start_sample <= end_sample);
161
162         lock_guard<recursive_mutex> lock(_mutex);
163
164         const size_t size = (end_sample - start_sample) * _unit_size;
165         memcpy(data, (const uint8_t*)_data + start_sample * _unit_size, size);
166 }
167
168 void LogicSnapshot::reallocate_mipmap_level(MipMapLevel &m)
169 {
170         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
171                 MipMapDataUnit) * MipMapDataUnit;
172         if (new_data_length > m.data_length)
173         {
174                 m.data_length = new_data_length;
175
176                 // Padding is added to allow for the uint64_t write word
177                 m.data = realloc(m.data, new_data_length * _unit_size +
178                         sizeof(uint64_t));
179         }
180 }
181
182 void LogicSnapshot::append_payload_to_mipmap()
183 {
184         MipMapLevel &m0 = _mip_map[0];
185         uint64_t prev_length;
186         const uint8_t *src_ptr;
187         uint8_t *dest_ptr;
188         uint64_t accumulator;
189         unsigned int diff_counter;
190
191         // Expand the data buffer to fit the new samples
192         prev_length = m0.length;
193         m0.length = _sample_count / MipMapScaleFactor;
194
195         // Break off if there are no new samples to compute
196         if (m0.length == prev_length)
197                 return;
198
199         reallocate_mipmap_level(m0);
200
201         dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
202
203         // Iterate through the samples to populate the first level mipmap
204         const uint8_t *const end_src_ptr = (uint8_t*)_data +
205                 m0.length * _unit_size * MipMapScaleFactor;
206         for (src_ptr = (uint8_t*)_data +
207                 prev_length * _unit_size * MipMapScaleFactor;
208                 src_ptr < end_src_ptr;)
209         {
210                 // Accumulate transitions which have occurred in this sample
211                 accumulator = 0;
212                 diff_counter = MipMapScaleFactor;
213                 while (diff_counter-- > 0)
214                 {
215                         const uint64_t sample = unpack_sample(src_ptr);
216                         accumulator |= _last_append_sample ^ sample;
217                         _last_append_sample = sample;
218                         src_ptr += _unit_size;
219                 }
220
221                 pack_sample(dest_ptr, accumulator);
222                 dest_ptr += _unit_size;
223         }
224
225         // Compute higher level mipmaps
226         for (unsigned int level = 1; level < ScaleStepCount; level++)
227         {
228                 MipMapLevel &m = _mip_map[level];
229                 const MipMapLevel &ml = _mip_map[level-1];
230
231                 // Expand the data buffer to fit the new samples
232                 prev_length = m.length;
233                 m.length = ml.length / MipMapScaleFactor;
234
235                 // Break off if there are no more samples to computed
236                 if (m.length == prev_length)
237                         break;
238
239                 reallocate_mipmap_level(m);
240
241                 // Subsample the level lower level
242                 src_ptr = (uint8_t*)ml.data +
243                         _unit_size * prev_length * MipMapScaleFactor;
244                 const uint8_t *const end_dest_ptr =
245                         (uint8_t*)m.data + _unit_size * m.length;
246                 for (dest_ptr = (uint8_t*)m.data +
247                         _unit_size * prev_length;
248                         dest_ptr < end_dest_ptr;
249                         dest_ptr += _unit_size)
250                 {
251                         accumulator = 0;
252                         diff_counter = MipMapScaleFactor;
253                         while (diff_counter-- > 0)
254                         {
255                                 accumulator |= unpack_sample(src_ptr);
256                                 src_ptr += _unit_size;
257                         }
258
259                         pack_sample(dest_ptr, accumulator);
260                 }
261         }
262 }
263
264 uint64_t LogicSnapshot::get_sample(uint64_t index) const
265 {
266         assert(_data);
267         assert(index < _sample_count);
268
269         return unpack_sample((uint8_t*)_data + index * _unit_size);
270 }
271
272 void LogicSnapshot::get_subsampled_edges(
273         std::vector<EdgePair> &edges,
274         uint64_t start, uint64_t end,
275         float min_length, int sig_index)
276 {
277         uint64_t index = start;
278         unsigned int level;
279         bool last_sample;
280         bool fast_forward;
281
282         assert(end <= get_sample_count());
283         assert(start <= end);
284         assert(min_length > 0);
285         assert(sig_index >= 0);
286         assert(sig_index < 64);
287
288         lock_guard<recursive_mutex> lock(_mutex);
289
290         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
291         const unsigned int min_level = max((int)floorf(logf(min_length) /
292                 LogMipMapScaleFactor) - 1, 0);
293         const uint64_t sig_mask = 1ULL << sig_index;
294
295         // Store the initial state
296         last_sample = (get_sample(start) & sig_mask) != 0;
297         edges.push_back(pair<int64_t, bool>(index++, last_sample));
298
299         while (index + block_length <= end)
300         {
301                 //----- Continue to search -----//
302                 level = min_level;
303
304                 // We cannot fast-forward if there is no mip-map data at
305                 // at the minimum level.
306                 fast_forward = (_mip_map[level].data != NULL);
307
308                 if (min_length < MipMapScaleFactor)
309                 {
310                         // Search individual samples up to the beginning of
311                         // the next first level mip map block
312                         const uint64_t final_index = min(end,
313                                 pow2_ceil(index, MipMapScalePower));
314
315                         for (; index < final_index &&
316                                 (index & ~(~0 << MipMapScalePower)) != 0;
317                                 index++)
318                         {
319                                 const bool sample =
320                                         (get_sample(index) & sig_mask) != 0;
321
322                                 // If there was a change we cannot fast forward
323                                 if (sample != last_sample) {
324                                         fast_forward = false;
325                                         break;
326                                 }
327                         }
328                 }
329                 else
330                 {
331                         // If resolution is less than a mip map block,
332                         // round up to the beginning of the mip-map block
333                         // for this level of detail
334                         const int min_level_scale_power =
335                                 (level + 1) * MipMapScalePower;
336                         index = pow2_ceil(index, min_level_scale_power);
337                         if (index >= end)
338                                 break;
339
340                         // We can fast forward only if there was no change
341                         const bool sample =
342                                 (get_sample(index) & sig_mask) != 0;
343                         if (last_sample != sample)
344                                 fast_forward = false;
345                 }
346
347                 if (fast_forward) {
348
349                         // Fast forward: This involves zooming out to higher
350                         // levels of the mip map searching for changes, then
351                         // zooming in on them to find the point where the edge
352                         // begins.
353
354                         // Slide right and zoom out at the beginnings of mip-map
355                         // blocks until we encounter a change
356                         while (1) {
357                                 const int level_scale_power =
358                                         (level + 1) * MipMapScalePower;
359                                 const uint64_t offset =
360                                         index >> level_scale_power;
361
362                                 // Check if we reached the last block at this
363                                 // level, or if there was a change in this block
364                                 if (offset >= _mip_map[level].length ||
365                                         (get_subsample(level, offset) &
366                                                 sig_mask))
367                                         break;
368
369                                 if ((offset & ~(~0 << MipMapScalePower)) == 0) {
370                                         // If we are now at the beginning of a
371                                         // higher level mip-map block ascend one
372                                         // level
373                                         if (level + 1 >= ScaleStepCount ||
374                                                 !_mip_map[level + 1].data)
375                                                 break;
376
377                                         level++;
378                                 } else {
379                                         // Slide right to the beginning of the
380                                         // next mip map block
381                                         index = pow2_ceil(index + 1,
382                                                 level_scale_power);
383                                 }
384                         }
385
386                         // Zoom in, and slide right until we encounter a change,
387                         // and repeat until we reach min_level
388                         while (1) {
389                                 assert(_mip_map[level].data);
390
391                                 const int level_scale_power =
392                                         (level + 1) * MipMapScalePower;
393                                 const uint64_t offset =
394                                         index >> level_scale_power;
395
396                                 // Check if we reached the last block at this
397                                 // level, or if there was a change in this block
398                                 if (offset >= _mip_map[level].length ||
399                                         (get_subsample(level, offset) &
400                                                 sig_mask)) {
401                                         // Zoom in unless we reached the minimum
402                                         // zoom
403                                         if (level == min_level)
404                                                 break;
405
406                                         level--;
407                                 } else {
408                                         // Slide right to the beginning of the
409                                         // next mip map block
410                                         index = pow2_ceil(index + 1,
411                                                 level_scale_power);
412                                 }
413                         }
414
415                         // If individual samples within the limit of resolution,
416                         // do a linear search for the next transition within the
417                         // block
418                         if (min_length < MipMapScaleFactor) {
419                                 for (; index < end; index++) {
420                                         const bool sample = (get_sample(index) &
421                                                 sig_mask) != 0;
422                                         if (sample != last_sample)
423                                                 break;
424                                 }
425                         }
426                 }
427
428                 //----- Store the edge -----//
429
430                 // Take the last sample of the quanization block
431                 const int64_t final_index = index + block_length;
432                 if (index + block_length > end)
433                         break;
434
435                 // Store the final state
436                 const bool final_sample =
437                         (get_sample(final_index - 1) & sig_mask) != 0;
438                 edges.push_back(pair<int64_t, bool>(index, final_sample));
439
440                 index = final_index;
441                 last_sample = final_sample;
442         }
443
444         // Add the final state
445         const bool end_sample = get_sample(end) & sig_mask;
446         if (last_sample != end_sample)
447                 edges.push_back(pair<int64_t, bool>(end, end_sample));
448         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
449 }
450
451 uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
452 {
453         assert(level >= 0);
454         assert(_mip_map[level].data);
455         return unpack_sample((uint8_t*)_mip_map[level].data +
456                 _unit_size * offset);
457 }
458
459 uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
460 {
461         const uint64_t p = 1 << power;
462         return (x + p - 1) / p * p;
463 }
464
465 } // namespace data
466 } // namespace pv