]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
LogicSegment: Remove constructor requiring sigrok::Logic
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cstring>
24 #include <cstdlib>
25 #include <cmath>
26
27 #include "logic.hpp"
28 #include "logicsegment.hpp"
29
30 #include <libsigrokcxx/libsigrokcxx.hpp>
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::max;
35 using std::min;
36 using std::pair;
37 using std::shared_ptr;
38 using std::vector;
39
40 using sigrok::Logic;
41
42 namespace pv {
43 namespace data {
44
45 const int LogicSegment::MipMapScalePower = 4;
46 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
47 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
48 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
49
50 LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
51         uint64_t samplerate) :
52         Segment(samplerate, unit_size),
53         owner_(owner),
54         last_append_sample_(0)
55 {
56         memset(mip_map_, 0, sizeof(mip_map_));
57 }
58
59 LogicSegment::~LogicSegment()
60 {
61         lock_guard<recursive_mutex> lock(mutex_);
62         for (MipMapLevel &l : mip_map_)
63                 free(l.data);
64 }
65
66 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
67 {
68 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
69         return *(uint64_t*)ptr;
70 #else
71         uint64_t value = 0;
72         switch (unit_size_) {
73         default:
74                 value |= ((uint64_t)ptr[7]) << 56;
75                 /* FALLTHRU */
76         case 7:
77                 value |= ((uint64_t)ptr[6]) << 48;
78                 /* FALLTHRU */
79         case 6:
80                 value |= ((uint64_t)ptr[5]) << 40;
81                 /* FALLTHRU */
82         case 5:
83                 value |= ((uint64_t)ptr[4]) << 32;
84                 /* FALLTHRU */
85         case 4:
86                 value |= ((uint32_t)ptr[3]) << 24;
87                 /* FALLTHRU */
88         case 3:
89                 value |= ((uint32_t)ptr[2]) << 16;
90                 /* FALLTHRU */
91         case 2:
92                 value |= ptr[1] << 8;
93                 /* FALLTHRU */
94         case 1:
95                 value |= ptr[0];
96                 /* FALLTHRU */
97         case 0:
98                 break;
99         }
100         return value;
101 #endif
102 }
103
104 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
105 {
106 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
107         *(uint64_t*)ptr = value;
108 #else
109         switch (unit_size_) {
110         default:
111                 ptr[7] = value >> 56;
112                 /* FALLTHRU */
113         case 7:
114                 ptr[6] = value >> 48;
115                 /* FALLTHRU */
116         case 6:
117                 ptr[5] = value >> 40;
118                 /* FALLTHRU */
119         case 5:
120                 ptr[4] = value >> 32;
121                 /* FALLTHRU */
122         case 4:
123                 ptr[3] = value >> 24;
124                 /* FALLTHRU */
125         case 3:
126                 ptr[2] = value >> 16;
127                 /* FALLTHRU */
128         case 2:
129                 ptr[1] = value >> 8;
130                 /* FALLTHRU */
131         case 1:
132                 ptr[0] = value;
133                 /* FALLTHRU */
134         case 0:
135                 break;
136         }
137 #endif
138 }
139
140 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
141 {
142         assert(unit_size_ == logic->unit_size());
143         assert((logic->data_length() % unit_size_) == 0);
144
145         append_payload(logic->data_pointer(), logic->data_length());
146 }
147
148 void LogicSegment::append_payload(void *data, uint64_t data_size)
149 {
150         assert((data_size % unit_size_) == 0);
151
152         lock_guard<recursive_mutex> lock(mutex_);
153
154         uint64_t prev_sample_count = sample_count_;
155         uint64_t sample_count = data_size / unit_size_;
156
157         append_samples(data, sample_count);
158
159         // Generate the first mip-map from the data
160         append_payload_to_mipmap();
161
162         if (sample_count > 1)
163                 owner_.notify_samples_added(this, prev_sample_count + 1,
164                         prev_sample_count + 1 + sample_count);
165         else
166                 owner_.notify_samples_added(this, prev_sample_count + 1,
167                         prev_sample_count + 1);
168 }
169
170 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
171         int64_t end_sample) const
172 {
173         assert(start_sample >= 0);
174         assert(start_sample <= (int64_t)sample_count_);
175         assert(end_sample >= 0);
176         assert(end_sample <= (int64_t)sample_count_);
177         assert(start_sample <= end_sample);
178
179         lock_guard<recursive_mutex> lock(mutex_);
180
181         return get_raw_samples(start_sample, (end_sample-start_sample));
182 }
183
184 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
185 {
186         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
187 }
188
189 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
190 {
191         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
192 }
193
194 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
195 {
196         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
197 }
198
199 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
200 {
201         lock_guard<recursive_mutex> lock(mutex_);
202
203         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
204                 MipMapDataUnit) * MipMapDataUnit;
205
206         if (new_data_length > m.data_length) {
207                 m.data_length = new_data_length;
208
209                 // Padding is added to allow for the uint64_t write word
210                 m.data = realloc(m.data, new_data_length * unit_size_ +
211                         sizeof(uint64_t));
212         }
213 }
214
215 void LogicSegment::append_payload_to_mipmap()
216 {
217         MipMapLevel &m0 = mip_map_[0];
218         uint64_t prev_length;
219         uint8_t *dest_ptr;
220         SegmentRawDataIterator* it;
221         uint64_t accumulator;
222         unsigned int diff_counter;
223
224         // Expand the data buffer to fit the new samples
225         prev_length = m0.length;
226         m0.length = sample_count_ / MipMapScaleFactor;
227
228         // Break off if there are no new samples to compute
229         if (m0.length == prev_length)
230                 return;
231
232         reallocate_mipmap_level(m0);
233
234         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
235
236         // Iterate through the samples to populate the first level mipmap
237         uint64_t start_sample = prev_length * MipMapScaleFactor;
238         uint64_t end_sample = m0.length * MipMapScaleFactor;
239
240         it = begin_raw_sample_iteration(start_sample);
241         for (uint64_t i = start_sample; i < end_sample;) {
242                 // Accumulate transitions which have occurred in this sample
243                 accumulator = 0;
244                 diff_counter = MipMapScaleFactor;
245                 while (diff_counter-- > 0) {
246                         const uint64_t sample = unpack_sample(it->value);
247                         accumulator |= last_append_sample_ ^ sample;
248                         last_append_sample_ = sample;
249                         continue_raw_sample_iteration(it, 1);
250                         i++;
251                 }
252
253                 pack_sample(dest_ptr, accumulator);
254                 dest_ptr += unit_size_;
255         }
256         end_raw_sample_iteration(it);
257
258         // Compute higher level mipmaps
259         for (unsigned int level = 1; level < ScaleStepCount; level++) {
260                 MipMapLevel &m = mip_map_[level];
261                 const MipMapLevel &ml = mip_map_[level-1];
262
263                 // Expand the data buffer to fit the new samples
264                 prev_length = m.length;
265                 m.length = ml.length / MipMapScaleFactor;
266
267                 // Break off if there are no more samples to be computed
268                 if (m.length == prev_length)
269                         break;
270
271                 reallocate_mipmap_level(m);
272
273                 // Subsample the lower level
274                 const uint8_t* src_ptr = (uint8_t*)ml.data +
275                         unit_size_ * prev_length * MipMapScaleFactor;
276                 const uint8_t *const end_dest_ptr =
277                         (uint8_t*)m.data + unit_size_ * m.length;
278
279                 for (dest_ptr = (uint8_t*)m.data +
280                                 unit_size_ * prev_length;
281                                 dest_ptr < end_dest_ptr;
282                                 dest_ptr += unit_size_) {
283                         accumulator = 0;
284                         diff_counter = MipMapScaleFactor;
285                         while (diff_counter-- > 0) {
286                                 accumulator |= unpack_sample(src_ptr);
287                                 src_ptr += unit_size_;
288                         }
289
290                         pack_sample(dest_ptr, accumulator);
291                 }
292         }
293 }
294
295 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
296 {
297         assert(index < sample_count_);
298
299         const uint8_t* data = get_raw_samples(index, 1);
300         uint64_t sample = unpack_sample(data);
301         delete[] data;
302
303         return sample;
304 }
305
306 void LogicSegment::get_subsampled_edges(
307         vector<EdgePair> &edges,
308         uint64_t start, uint64_t end,
309         float min_length, int sig_index)
310 {
311         uint64_t index = start;
312         unsigned int level;
313         bool last_sample;
314         bool fast_forward;
315
316         assert(end <= get_sample_count());
317         assert(start <= end);
318         assert(min_length > 0);
319         assert(sig_index >= 0);
320         assert(sig_index < 64);
321
322         lock_guard<recursive_mutex> lock(mutex_);
323
324         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
325         const unsigned int min_level = max((int)floorf(logf(min_length) /
326                 LogMipMapScaleFactor) - 1, 0);
327         const uint64_t sig_mask = 1ULL << sig_index;
328
329         // Store the initial state
330         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
331         edges.emplace_back(index++, last_sample);
332
333         while (index + block_length <= end) {
334                 //----- Continue to search -----//
335                 level = min_level;
336
337                 // We cannot fast-forward if there is no mip-map data at
338                 // at the minimum level.
339                 fast_forward = (mip_map_[level].data != nullptr);
340
341                 if (min_length < MipMapScaleFactor) {
342                         // Search individual samples up to the beginning of
343                         // the next first level mip map block
344                         const uint64_t final_index = min(end,
345                                 pow2_ceil(index, MipMapScalePower));
346
347                         for (; index < final_index &&
348                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
349                                         index++) {
350                                 const bool sample =
351                                         (get_unpacked_sample(index) & sig_mask) != 0;
352
353                                 // If there was a change we cannot fast forward
354                                 if (sample != last_sample) {
355                                         fast_forward = false;
356                                         break;
357                                 }
358                         }
359                 } else {
360                         // If resolution is less than a mip map block,
361                         // round up to the beginning of the mip-map block
362                         // for this level of detail
363                         const int min_level_scale_power =
364                                 (level + 1) * MipMapScalePower;
365                         index = pow2_ceil(index, min_level_scale_power);
366                         if (index >= end)
367                                 break;
368
369                         // We can fast forward only if there was no change
370                         const bool sample =
371                                 (get_unpacked_sample(index) & sig_mask) != 0;
372                         if (last_sample != sample)
373                                 fast_forward = false;
374                 }
375
376                 if (fast_forward) {
377
378                         // Fast forward: This involves zooming out to higher
379                         // levels of the mip map searching for changes, then
380                         // zooming in on them to find the point where the edge
381                         // begins.
382
383                         // Slide right and zoom out at the beginnings of mip-map
384                         // blocks until we encounter a change
385                         while (true) {
386                                 const int level_scale_power =
387                                         (level + 1) * MipMapScalePower;
388                                 const uint64_t offset =
389                                         index >> level_scale_power;
390
391                                 // Check if we reached the last block at this
392                                 // level, or if there was a change in this block
393                                 if (offset >= mip_map_[level].length ||
394                                         (get_subsample(level, offset) &
395                                                 sig_mask))
396                                         break;
397
398                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
399                                         // If we are now at the beginning of a
400                                         // higher level mip-map block ascend one
401                                         // level
402                                         if (level + 1 >= ScaleStepCount ||
403                                                 !mip_map_[level + 1].data)
404                                                 break;
405
406                                         level++;
407                                 } else {
408                                         // Slide right to the beginning of the
409                                         // next mip map block
410                                         index = pow2_ceil(index + 1,
411                                                 level_scale_power);
412                                 }
413                         }
414
415                         // Zoom in, and slide right until we encounter a change,
416                         // and repeat until we reach min_level
417                         while (true) {
418                                 assert(mip_map_[level].data);
419
420                                 const int level_scale_power =
421                                         (level + 1) * MipMapScalePower;
422                                 const uint64_t offset =
423                                         index >> level_scale_power;
424
425                                 // Check if we reached the last block at this
426                                 // level, or if there was a change in this block
427                                 if (offset >= mip_map_[level].length ||
428                                                 (get_subsample(level, offset) &
429                                                 sig_mask)) {
430                                         // Zoom in unless we reached the minimum
431                                         // zoom
432                                         if (level == min_level)
433                                                 break;
434
435                                         level--;
436                                 } else {
437                                         // Slide right to the beginning of the
438                                         // next mip map block
439                                         index = pow2_ceil(index + 1,
440                                                 level_scale_power);
441                                 }
442                         }
443
444                         // If individual samples within the limit of resolution,
445                         // do a linear search for the next transition within the
446                         // block
447                         if (min_length < MipMapScaleFactor) {
448                                 for (; index < end; index++) {
449                                         const bool sample = (get_unpacked_sample(index) &
450                                                 sig_mask) != 0;
451                                         if (sample != last_sample)
452                                                 break;
453                                 }
454                         }
455                 }
456
457                 //----- Store the edge -----//
458
459                 // Take the last sample of the quanization block
460                 const int64_t final_index = index + block_length;
461                 if (index + block_length > end)
462                         break;
463
464                 // Store the final state
465                 const bool final_sample =
466                         (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
467                 edges.emplace_back(index, final_sample);
468
469                 index = final_index;
470                 last_sample = final_sample;
471         }
472
473         // Add the final state
474         const bool end_sample = get_unpacked_sample(end) & sig_mask;
475         if (last_sample != end_sample)
476                 edges.emplace_back(end, end_sample);
477         edges.emplace_back(end + 1, end_sample);
478 }
479
480 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
481 {
482         assert(level >= 0);
483         assert(mip_map_[level].data);
484         return unpack_sample((uint8_t*)mip_map_[level].data +
485                 unit_size_ * offset);
486 }
487
488 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
489 {
490         const uint64_t p = 1 << power;
491         return (x + p - 1) / p * p;
492 }
493
494 } // namespace data
495 } // namespace pv