]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
LogicSegment: Make constructor and append_payload() more generic
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cstring>
24 #include <cstdlib>
25 #include <cmath>
26
27 #include "logic.hpp"
28 #include "logicsegment.hpp"
29
30 #include <libsigrokcxx/libsigrokcxx.hpp>
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::max;
35 using std::min;
36 using std::pair;
37 using std::shared_ptr;
38 using std::vector;
39
40 using sigrok::Logic;
41
42 namespace pv {
43 namespace data {
44
45 const int LogicSegment::MipMapScalePower = 4;
46 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
47 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
48 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
49
50 LogicSegment::LogicSegment(pv::data::Logic& owner, shared_ptr<sigrok::Logic> data,
51         uint64_t samplerate) :
52         Segment(samplerate, data->unit_size()),
53         owner_(owner),
54         last_append_sample_(0)
55 {
56         lock_guard<recursive_mutex> lock(mutex_);
57         memset(mip_map_, 0, sizeof(mip_map_));
58         append_payload(data);
59 }
60
61 LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
62         uint64_t samplerate) :
63         Segment(samplerate, unit_size),
64         owner_(owner),
65         last_append_sample_(0)
66 {
67         memset(mip_map_, 0, sizeof(mip_map_));
68 }
69
70 LogicSegment::~LogicSegment()
71 {
72         lock_guard<recursive_mutex> lock(mutex_);
73         for (MipMapLevel &l : mip_map_)
74                 free(l.data);
75 }
76
77 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
78 {
79 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
80         return *(uint64_t*)ptr;
81 #else
82         uint64_t value = 0;
83         switch (unit_size_) {
84         default:
85                 value |= ((uint64_t)ptr[7]) << 56;
86                 /* FALLTHRU */
87         case 7:
88                 value |= ((uint64_t)ptr[6]) << 48;
89                 /* FALLTHRU */
90         case 6:
91                 value |= ((uint64_t)ptr[5]) << 40;
92                 /* FALLTHRU */
93         case 5:
94                 value |= ((uint64_t)ptr[4]) << 32;
95                 /* FALLTHRU */
96         case 4:
97                 value |= ((uint32_t)ptr[3]) << 24;
98                 /* FALLTHRU */
99         case 3:
100                 value |= ((uint32_t)ptr[2]) << 16;
101                 /* FALLTHRU */
102         case 2:
103                 value |= ptr[1] << 8;
104                 /* FALLTHRU */
105         case 1:
106                 value |= ptr[0];
107                 /* FALLTHRU */
108         case 0:
109                 break;
110         }
111         return value;
112 #endif
113 }
114
115 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
116 {
117 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
118         *(uint64_t*)ptr = value;
119 #else
120         switch (unit_size_) {
121         default:
122                 ptr[7] = value >> 56;
123                 /* FALLTHRU */
124         case 7:
125                 ptr[6] = value >> 48;
126                 /* FALLTHRU */
127         case 6:
128                 ptr[5] = value >> 40;
129                 /* FALLTHRU */
130         case 5:
131                 ptr[4] = value >> 32;
132                 /* FALLTHRU */
133         case 4:
134                 ptr[3] = value >> 24;
135                 /* FALLTHRU */
136         case 3:
137                 ptr[2] = value >> 16;
138                 /* FALLTHRU */
139         case 2:
140                 ptr[1] = value >> 8;
141                 /* FALLTHRU */
142         case 1:
143                 ptr[0] = value;
144                 /* FALLTHRU */
145         case 0:
146                 break;
147         }
148 #endif
149 }
150
151 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
152 {
153         assert(unit_size_ == logic->unit_size());
154         assert((logic->data_length() % unit_size_) == 0);
155
156         append_payload(logic->data_pointer(), logic->data_length());
157 }
158
159 void LogicSegment::append_payload(void *data, uint64_t data_size)
160 {
161         assert((data_size % unit_size_) == 0);
162
163         lock_guard<recursive_mutex> lock(mutex_);
164
165         uint64_t prev_sample_count = sample_count_;
166         uint64_t sample_count = data_size / unit_size_;
167
168         append_samples(data, sample_count);
169
170         // Generate the first mip-map from the data
171         append_payload_to_mipmap();
172
173         if (sample_count > 1)
174                 owner_.notify_samples_added(this, prev_sample_count + 1,
175                         prev_sample_count + 1 + sample_count);
176         else
177                 owner_.notify_samples_added(this, prev_sample_count + 1,
178                         prev_sample_count + 1);
179 }
180
181 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
182         int64_t end_sample) const
183 {
184         assert(start_sample >= 0);
185         assert(start_sample <= (int64_t)sample_count_);
186         assert(end_sample >= 0);
187         assert(end_sample <= (int64_t)sample_count_);
188         assert(start_sample <= end_sample);
189
190         lock_guard<recursive_mutex> lock(mutex_);
191
192         return get_raw_samples(start_sample, (end_sample-start_sample));
193 }
194
195 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
196 {
197         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
198 }
199
200 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
201 {
202         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
203 }
204
205 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
206 {
207         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
208 }
209
210 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
211 {
212         lock_guard<recursive_mutex> lock(mutex_);
213
214         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
215                 MipMapDataUnit) * MipMapDataUnit;
216
217         if (new_data_length > m.data_length) {
218                 m.data_length = new_data_length;
219
220                 // Padding is added to allow for the uint64_t write word
221                 m.data = realloc(m.data, new_data_length * unit_size_ +
222                         sizeof(uint64_t));
223         }
224 }
225
226 void LogicSegment::append_payload_to_mipmap()
227 {
228         MipMapLevel &m0 = mip_map_[0];
229         uint64_t prev_length;
230         uint8_t *dest_ptr;
231         SegmentRawDataIterator* it;
232         uint64_t accumulator;
233         unsigned int diff_counter;
234
235         // Expand the data buffer to fit the new samples
236         prev_length = m0.length;
237         m0.length = sample_count_ / MipMapScaleFactor;
238
239         // Break off if there are no new samples to compute
240         if (m0.length == prev_length)
241                 return;
242
243         reallocate_mipmap_level(m0);
244
245         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
246
247         // Iterate through the samples to populate the first level mipmap
248         uint64_t start_sample = prev_length * MipMapScaleFactor;
249         uint64_t end_sample = m0.length * MipMapScaleFactor;
250
251         it = begin_raw_sample_iteration(start_sample);
252         for (uint64_t i = start_sample; i < end_sample;) {
253                 // Accumulate transitions which have occurred in this sample
254                 accumulator = 0;
255                 diff_counter = MipMapScaleFactor;
256                 while (diff_counter-- > 0) {
257                         const uint64_t sample = unpack_sample(it->value);
258                         accumulator |= last_append_sample_ ^ sample;
259                         last_append_sample_ = sample;
260                         continue_raw_sample_iteration(it, 1);
261                         i++;
262                 }
263
264                 pack_sample(dest_ptr, accumulator);
265                 dest_ptr += unit_size_;
266         }
267         end_raw_sample_iteration(it);
268
269         // Compute higher level mipmaps
270         for (unsigned int level = 1; level < ScaleStepCount; level++) {
271                 MipMapLevel &m = mip_map_[level];
272                 const MipMapLevel &ml = mip_map_[level-1];
273
274                 // Expand the data buffer to fit the new samples
275                 prev_length = m.length;
276                 m.length = ml.length / MipMapScaleFactor;
277
278                 // Break off if there are no more samples to be computed
279                 if (m.length == prev_length)
280                         break;
281
282                 reallocate_mipmap_level(m);
283
284                 // Subsample the lower level
285                 const uint8_t* src_ptr = (uint8_t*)ml.data +
286                         unit_size_ * prev_length * MipMapScaleFactor;
287                 const uint8_t *const end_dest_ptr =
288                         (uint8_t*)m.data + unit_size_ * m.length;
289
290                 for (dest_ptr = (uint8_t*)m.data +
291                                 unit_size_ * prev_length;
292                                 dest_ptr < end_dest_ptr;
293                                 dest_ptr += unit_size_) {
294                         accumulator = 0;
295                         diff_counter = MipMapScaleFactor;
296                         while (diff_counter-- > 0) {
297                                 accumulator |= unpack_sample(src_ptr);
298                                 src_ptr += unit_size_;
299                         }
300
301                         pack_sample(dest_ptr, accumulator);
302                 }
303         }
304 }
305
306 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
307 {
308         assert(index < sample_count_);
309
310         const uint8_t* data = get_raw_samples(index, 1);
311         uint64_t sample = unpack_sample(data);
312         delete[] data;
313
314         return sample;
315 }
316
317 void LogicSegment::get_subsampled_edges(
318         vector<EdgePair> &edges,
319         uint64_t start, uint64_t end,
320         float min_length, int sig_index)
321 {
322         uint64_t index = start;
323         unsigned int level;
324         bool last_sample;
325         bool fast_forward;
326
327         assert(end <= get_sample_count());
328         assert(start <= end);
329         assert(min_length > 0);
330         assert(sig_index >= 0);
331         assert(sig_index < 64);
332
333         lock_guard<recursive_mutex> lock(mutex_);
334
335         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
336         const unsigned int min_level = max((int)floorf(logf(min_length) /
337                 LogMipMapScaleFactor) - 1, 0);
338         const uint64_t sig_mask = 1ULL << sig_index;
339
340         // Store the initial state
341         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
342         edges.emplace_back(index++, last_sample);
343
344         while (index + block_length <= end) {
345                 //----- Continue to search -----//
346                 level = min_level;
347
348                 // We cannot fast-forward if there is no mip-map data at
349                 // at the minimum level.
350                 fast_forward = (mip_map_[level].data != nullptr);
351
352                 if (min_length < MipMapScaleFactor) {
353                         // Search individual samples up to the beginning of
354                         // the next first level mip map block
355                         const uint64_t final_index = min(end,
356                                 pow2_ceil(index, MipMapScalePower));
357
358                         for (; index < final_index &&
359                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
360                                         index++) {
361                                 const bool sample =
362                                         (get_unpacked_sample(index) & sig_mask) != 0;
363
364                                 // If there was a change we cannot fast forward
365                                 if (sample != last_sample) {
366                                         fast_forward = false;
367                                         break;
368                                 }
369                         }
370                 } else {
371                         // If resolution is less than a mip map block,
372                         // round up to the beginning of the mip-map block
373                         // for this level of detail
374                         const int min_level_scale_power =
375                                 (level + 1) * MipMapScalePower;
376                         index = pow2_ceil(index, min_level_scale_power);
377                         if (index >= end)
378                                 break;
379
380                         // We can fast forward only if there was no change
381                         const bool sample =
382                                 (get_unpacked_sample(index) & sig_mask) != 0;
383                         if (last_sample != sample)
384                                 fast_forward = false;
385                 }
386
387                 if (fast_forward) {
388
389                         // Fast forward: This involves zooming out to higher
390                         // levels of the mip map searching for changes, then
391                         // zooming in on them to find the point where the edge
392                         // begins.
393
394                         // Slide right and zoom out at the beginnings of mip-map
395                         // blocks until we encounter a change
396                         while (true) {
397                                 const int level_scale_power =
398                                         (level + 1) * MipMapScalePower;
399                                 const uint64_t offset =
400                                         index >> level_scale_power;
401
402                                 // Check if we reached the last block at this
403                                 // level, or if there was a change in this block
404                                 if (offset >= mip_map_[level].length ||
405                                         (get_subsample(level, offset) &
406                                                 sig_mask))
407                                         break;
408
409                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
410                                         // If we are now at the beginning of a
411                                         // higher level mip-map block ascend one
412                                         // level
413                                         if (level + 1 >= ScaleStepCount ||
414                                                 !mip_map_[level + 1].data)
415                                                 break;
416
417                                         level++;
418                                 } else {
419                                         // Slide right to the beginning of the
420                                         // next mip map block
421                                         index = pow2_ceil(index + 1,
422                                                 level_scale_power);
423                                 }
424                         }
425
426                         // Zoom in, and slide right until we encounter a change,
427                         // and repeat until we reach min_level
428                         while (true) {
429                                 assert(mip_map_[level].data);
430
431                                 const int level_scale_power =
432                                         (level + 1) * MipMapScalePower;
433                                 const uint64_t offset =
434                                         index >> level_scale_power;
435
436                                 // Check if we reached the last block at this
437                                 // level, or if there was a change in this block
438                                 if (offset >= mip_map_[level].length ||
439                                                 (get_subsample(level, offset) &
440                                                 sig_mask)) {
441                                         // Zoom in unless we reached the minimum
442                                         // zoom
443                                         if (level == min_level)
444                                                 break;
445
446                                         level--;
447                                 } else {
448                                         // Slide right to the beginning of the
449                                         // next mip map block
450                                         index = pow2_ceil(index + 1,
451                                                 level_scale_power);
452                                 }
453                         }
454
455                         // If individual samples within the limit of resolution,
456                         // do a linear search for the next transition within the
457                         // block
458                         if (min_length < MipMapScaleFactor) {
459                                 for (; index < end; index++) {
460                                         const bool sample = (get_unpacked_sample(index) &
461                                                 sig_mask) != 0;
462                                         if (sample != last_sample)
463                                                 break;
464                                 }
465                         }
466                 }
467
468                 //----- Store the edge -----//
469
470                 // Take the last sample of the quanization block
471                 const int64_t final_index = index + block_length;
472                 if (index + block_length > end)
473                         break;
474
475                 // Store the final state
476                 const bool final_sample =
477                         (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
478                 edges.emplace_back(index, final_sample);
479
480                 index = final_index;
481                 last_sample = final_sample;
482         }
483
484         // Add the final state
485         const bool end_sample = get_unpacked_sample(end) & sig_mask;
486         if (last_sample != end_sample)
487                 edges.emplace_back(end, end_sample);
488         edges.emplace_back(end + 1, end_sample);
489 }
490
491 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
492 {
493         assert(level >= 0);
494         assert(mip_map_[level].data);
495         return unpack_sample((uint8_t*)mip_map_[level].data +
496                 unit_size_ * offset);
497 }
498
499 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
500 {
501         const uint64_t p = 1 << power;
502         return (x + p - 1) / p * p;
503 }
504
505 } // namespace data
506 } // namespace pv