]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
Fix #831 by saving/restoring the PD channel mapping
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cmath>
24 #include <cstdlib>
25 #include <cstring>
26
27 #include "logic.hpp"
28 #include "logicsegment.hpp"
29
30 #include <libsigrokcxx/libsigrokcxx.hpp>
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::max;
35 using std::min;
36 using std::shared_ptr;
37 using std::vector;
38
39 using sigrok::Logic;
40
41 namespace pv {
42 namespace data {
43
44 const int LogicSegment::MipMapScalePower = 4;
45 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
46 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
47 const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
48
49 LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
50         uint64_t samplerate) :
51         Segment(samplerate, unit_size),
52         owner_(owner),
53         last_append_sample_(0)
54 {
55         memset(mip_map_, 0, sizeof(mip_map_));
56 }
57
58 LogicSegment::~LogicSegment()
59 {
60         lock_guard<recursive_mutex> lock(mutex_);
61         for (MipMapLevel &l : mip_map_)
62                 free(l.data);
63 }
64
65 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
66 {
67 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
68         return *(uint64_t*)ptr;
69 #else
70         uint64_t value = 0;
71         switch (unit_size_) {
72         default:
73                 value |= ((uint64_t)ptr[7]) << 56;
74                 /* FALLTHRU */
75         case 7:
76                 value |= ((uint64_t)ptr[6]) << 48;
77                 /* FALLTHRU */
78         case 6:
79                 value |= ((uint64_t)ptr[5]) << 40;
80                 /* FALLTHRU */
81         case 5:
82                 value |= ((uint64_t)ptr[4]) << 32;
83                 /* FALLTHRU */
84         case 4:
85                 value |= ((uint32_t)ptr[3]) << 24;
86                 /* FALLTHRU */
87         case 3:
88                 value |= ((uint32_t)ptr[2]) << 16;
89                 /* FALLTHRU */
90         case 2:
91                 value |= ptr[1] << 8;
92                 /* FALLTHRU */
93         case 1:
94                 value |= ptr[0];
95                 /* FALLTHRU */
96         case 0:
97                 break;
98         }
99         return value;
100 #endif
101 }
102
103 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
104 {
105 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
106         *(uint64_t*)ptr = value;
107 #else
108         switch (unit_size_) {
109         default:
110                 ptr[7] = value >> 56;
111                 /* FALLTHRU */
112         case 7:
113                 ptr[6] = value >> 48;
114                 /* FALLTHRU */
115         case 6:
116                 ptr[5] = value >> 40;
117                 /* FALLTHRU */
118         case 5:
119                 ptr[4] = value >> 32;
120                 /* FALLTHRU */
121         case 4:
122                 ptr[3] = value >> 24;
123                 /* FALLTHRU */
124         case 3:
125                 ptr[2] = value >> 16;
126                 /* FALLTHRU */
127         case 2:
128                 ptr[1] = value >> 8;
129                 /* FALLTHRU */
130         case 1:
131                 ptr[0] = value;
132                 /* FALLTHRU */
133         case 0:
134                 break;
135         }
136 #endif
137 }
138
139 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
140 {
141         assert(unit_size_ == logic->unit_size());
142         assert((logic->data_length() % unit_size_) == 0);
143
144         append_payload(logic->data_pointer(), logic->data_length());
145 }
146
147 void LogicSegment::append_payload(void *data, uint64_t data_size)
148 {
149         assert((data_size % unit_size_) == 0);
150
151         lock_guard<recursive_mutex> lock(mutex_);
152
153         uint64_t prev_sample_count = sample_count_;
154         uint64_t sample_count = data_size / unit_size_;
155
156         append_samples(data, sample_count);
157
158         // Generate the first mip-map from the data
159         append_payload_to_mipmap();
160
161         if (sample_count > 1)
162                 owner_.notify_samples_added(this, prev_sample_count + 1,
163                         prev_sample_count + 1 + sample_count);
164         else
165                 owner_.notify_samples_added(this, prev_sample_count + 1,
166                         prev_sample_count + 1);
167 }
168
169 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
170         int64_t end_sample) const
171 {
172         assert(start_sample >= 0);
173         assert(start_sample <= (int64_t)sample_count_);
174         assert(end_sample >= 0);
175         assert(end_sample <= (int64_t)sample_count_);
176         assert(start_sample <= end_sample);
177
178         lock_guard<recursive_mutex> lock(mutex_);
179
180         return get_raw_samples(start_sample, (end_sample - start_sample));
181 }
182
183 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
184 {
185         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
186 }
187
188 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
189 {
190         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
191 }
192
193 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
194 {
195         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
196 }
197
198 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
199 {
200         lock_guard<recursive_mutex> lock(mutex_);
201
202         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
203                 MipMapDataUnit) * MipMapDataUnit;
204
205         if (new_data_length > m.data_length) {
206                 m.data_length = new_data_length;
207
208                 // Padding is added to allow for the uint64_t write word
209                 m.data = realloc(m.data, new_data_length * unit_size_ +
210                         sizeof(uint64_t));
211         }
212 }
213
214 void LogicSegment::append_payload_to_mipmap()
215 {
216         MipMapLevel &m0 = mip_map_[0];
217         uint64_t prev_length;
218         uint8_t *dest_ptr;
219         SegmentRawDataIterator* it;
220         uint64_t accumulator;
221         unsigned int diff_counter;
222
223         // Expand the data buffer to fit the new samples
224         prev_length = m0.length;
225         m0.length = sample_count_ / MipMapScaleFactor;
226
227         // Break off if there are no new samples to compute
228         if (m0.length == prev_length)
229                 return;
230
231         reallocate_mipmap_level(m0);
232
233         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
234
235         // Iterate through the samples to populate the first level mipmap
236         uint64_t start_sample = prev_length * MipMapScaleFactor;
237         uint64_t end_sample = m0.length * MipMapScaleFactor;
238
239         it = begin_raw_sample_iteration(start_sample);
240         for (uint64_t i = start_sample; i < end_sample;) {
241                 // Accumulate transitions which have occurred in this sample
242                 accumulator = 0;
243                 diff_counter = MipMapScaleFactor;
244                 while (diff_counter-- > 0) {
245                         const uint64_t sample = unpack_sample(it->value);
246                         accumulator |= last_append_sample_ ^ sample;
247                         last_append_sample_ = sample;
248                         continue_raw_sample_iteration(it, 1);
249                         i++;
250                 }
251
252                 pack_sample(dest_ptr, accumulator);
253                 dest_ptr += unit_size_;
254         }
255         end_raw_sample_iteration(it);
256
257         // Compute higher level mipmaps
258         for (unsigned int level = 1; level < ScaleStepCount; level++) {
259                 MipMapLevel &m = mip_map_[level];
260                 const MipMapLevel &ml = mip_map_[level - 1];
261
262                 // Expand the data buffer to fit the new samples
263                 prev_length = m.length;
264                 m.length = ml.length / MipMapScaleFactor;
265
266                 // Break off if there are no more samples to be computed
267                 if (m.length == prev_length)
268                         break;
269
270                 reallocate_mipmap_level(m);
271
272                 // Subsample the lower level
273                 const uint8_t* src_ptr = (uint8_t*)ml.data +
274                         unit_size_ * prev_length * MipMapScaleFactor;
275                 const uint8_t *const end_dest_ptr =
276                         (uint8_t*)m.data + unit_size_ * m.length;
277
278                 for (dest_ptr = (uint8_t*)m.data +
279                                 unit_size_ * prev_length;
280                                 dest_ptr < end_dest_ptr;
281                                 dest_ptr += unit_size_) {
282                         accumulator = 0;
283                         diff_counter = MipMapScaleFactor;
284                         while (diff_counter-- > 0) {
285                                 accumulator |= unpack_sample(src_ptr);
286                                 src_ptr += unit_size_;
287                         }
288
289                         pack_sample(dest_ptr, accumulator);
290                 }
291         }
292 }
293
294 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
295 {
296         assert(index < sample_count_);
297
298         const uint8_t* data = get_raw_samples(index, 1);
299         uint64_t sample = unpack_sample(data);
300         delete[] data;
301
302         return sample;
303 }
304
305 void LogicSegment::get_subsampled_edges(
306         vector<EdgePair> &edges,
307         uint64_t start, uint64_t end,
308         float min_length, int sig_index)
309 {
310         uint64_t index = start;
311         unsigned int level;
312         bool last_sample;
313         bool fast_forward;
314
315         assert(end <= get_sample_count());
316         assert(start <= end);
317         assert(min_length > 0);
318         assert(sig_index >= 0);
319         assert(sig_index < 64);
320
321         lock_guard<recursive_mutex> lock(mutex_);
322
323         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
324         const unsigned int min_level = max((int)floorf(logf(min_length) /
325                 LogMipMapScaleFactor) - 1, 0);
326         const uint64_t sig_mask = 1ULL << sig_index;
327
328         // Store the initial state
329         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
330         edges.emplace_back(index++, last_sample);
331
332         while (index + block_length <= end) {
333                 //----- Continue to search -----//
334                 level = min_level;
335
336                 // We cannot fast-forward if there is no mip-map data at
337                 // at the minimum level.
338                 fast_forward = (mip_map_[level].data != nullptr);
339
340                 if (min_length < MipMapScaleFactor) {
341                         // Search individual samples up to the beginning of
342                         // the next first level mip map block
343                         const uint64_t final_index = min(end,
344                                 pow2_ceil(index, MipMapScalePower));
345
346                         for (; index < final_index &&
347                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
348                                         index++) {
349                                 const bool sample =
350                                         (get_unpacked_sample(index) & sig_mask) != 0;
351
352                                 // If there was a change we cannot fast forward
353                                 if (sample != last_sample) {
354                                         fast_forward = false;
355                                         break;
356                                 }
357                         }
358                 } else {
359                         // If resolution is less than a mip map block,
360                         // round up to the beginning of the mip-map block
361                         // for this level of detail
362                         const int min_level_scale_power =
363                                 (level + 1) * MipMapScalePower;
364                         index = pow2_ceil(index, min_level_scale_power);
365                         if (index >= end)
366                                 break;
367
368                         // We can fast forward only if there was no change
369                         const bool sample =
370                                 (get_unpacked_sample(index) & sig_mask) != 0;
371                         if (last_sample != sample)
372                                 fast_forward = false;
373                 }
374
375                 if (fast_forward) {
376
377                         // Fast forward: This involves zooming out to higher
378                         // levels of the mip map searching for changes, then
379                         // zooming in on them to find the point where the edge
380                         // begins.
381
382                         // Slide right and zoom out at the beginnings of mip-map
383                         // blocks until we encounter a change
384                         while (true) {
385                                 const int level_scale_power =
386                                         (level + 1) * MipMapScalePower;
387                                 const uint64_t offset =
388                                         index >> level_scale_power;
389
390                                 // Check if we reached the last block at this
391                                 // level, or if there was a change in this block
392                                 if (offset >= mip_map_[level].length ||
393                                         (get_subsample(level, offset) &
394                                                 sig_mask))
395                                         break;
396
397                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
398                                         // If we are now at the beginning of a
399                                         // higher level mip-map block ascend one
400                                         // level
401                                         if (level + 1 >= ScaleStepCount ||
402                                                 !mip_map_[level + 1].data)
403                                                 break;
404
405                                         level++;
406                                 } else {
407                                         // Slide right to the beginning of the
408                                         // next mip map block
409                                         index = pow2_ceil(index + 1,
410                                                 level_scale_power);
411                                 }
412                         }
413
414                         // Zoom in, and slide right until we encounter a change,
415                         // and repeat until we reach min_level
416                         while (true) {
417                                 assert(mip_map_[level].data);
418
419                                 const int level_scale_power =
420                                         (level + 1) * MipMapScalePower;
421                                 const uint64_t offset =
422                                         index >> level_scale_power;
423
424                                 // Check if we reached the last block at this
425                                 // level, or if there was a change in this block
426                                 if (offset >= mip_map_[level].length ||
427                                                 (get_subsample(level, offset) &
428                                                 sig_mask)) {
429                                         // Zoom in unless we reached the minimum
430                                         // zoom
431                                         if (level == min_level)
432                                                 break;
433
434                                         level--;
435                                 } else {
436                                         // Slide right to the beginning of the
437                                         // next mip map block
438                                         index = pow2_ceil(index + 1,
439                                                 level_scale_power);
440                                 }
441                         }
442
443                         // If individual samples within the limit of resolution,
444                         // do a linear search for the next transition within the
445                         // block
446                         if (min_length < MipMapScaleFactor) {
447                                 for (; index < end; index++) {
448                                         const bool sample = (get_unpacked_sample(index) &
449                                                 sig_mask) != 0;
450                                         if (sample != last_sample)
451                                                 break;
452                                 }
453                         }
454                 }
455
456                 //----- Store the edge -----//
457
458                 // Take the last sample of the quanization block
459                 const int64_t final_index = index + block_length;
460                 if (index + block_length > end)
461                         break;
462
463                 // Store the final state
464                 const bool final_sample =
465                         (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
466                 edges.emplace_back(index, final_sample);
467
468                 index = final_index;
469                 last_sample = final_sample;
470         }
471
472         // Add the final state
473         const bool end_sample = get_unpacked_sample(end) & sig_mask;
474         if (last_sample != end_sample)
475                 edges.emplace_back(end, end_sample);
476         edges.emplace_back(end + 1, end_sample);
477 }
478
479 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
480 {
481         assert(level >= 0);
482         assert(mip_map_[level].data);
483         return unpack_sample((uint8_t*)mip_map_[level].data +
484                 unit_size_ * offset);
485 }
486
487 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
488 {
489         const uint64_t p = 1 << power;
490         return (x + p - 1) / p * p;
491 }
492
493 } // namespace data
494 } // namespace pv