]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
aee09bd70b1808df035b3f4cf49099e8caa1ceb5
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <assert.h>
23 #include <string.h>
24 #include <stdlib.h>
25 #include <cmath>
26
27 #include "logicsegment.hpp"
28
29 #include <libsigrokcxx/libsigrokcxx.hpp>
30
31 using std::lock_guard;
32 using std::recursive_mutex;
33 using std::max;
34 using std::min;
35 using std::pair;
36 using std::shared_ptr;
37
38 using sigrok::Logic;
39
40 namespace pv {
41 namespace data {
42
43 const int LogicSegment::MipMapScalePower = 4;
44 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
45 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
46 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
47
48 LogicSegment::LogicSegment(shared_ptr<Logic> logic, uint64_t samplerate,
49                                 const uint64_t expected_num_samples) :
50         Segment(samplerate, logic->unit_size()),
51         last_append_sample_(0)
52 {
53         set_capacity(expected_num_samples);
54
55         lock_guard<recursive_mutex> lock(mutex_);
56         memset(mip_map_, 0, sizeof(mip_map_));
57         append_payload(logic);
58 }
59
60 LogicSegment::~LogicSegment()
61 {
62         lock_guard<recursive_mutex> lock(mutex_);
63         for (MipMapLevel &l : mip_map_)
64                 free(l.data);
65 }
66
67 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
68 {
69 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
70         return *(uint64_t*)ptr;
71 #else
72         uint64_t value = 0;
73         switch (unit_size_) {
74         default:
75                 value |= ((uint64_t)ptr[7]) << 56;
76                 /* FALLTHRU */
77         case 7:
78                 value |= ((uint64_t)ptr[6]) << 48;
79                 /* FALLTHRU */
80         case 6:
81                 value |= ((uint64_t)ptr[5]) << 40;
82                 /* FALLTHRU */
83         case 5:
84                 value |= ((uint64_t)ptr[4]) << 32;
85                 /* FALLTHRU */
86         case 4:
87                 value |= ((uint32_t)ptr[3]) << 24;
88                 /* FALLTHRU */
89         case 3:
90                 value |= ((uint32_t)ptr[2]) << 16;
91                 /* FALLTHRU */
92         case 2:
93                 value |= ptr[1] << 8;
94                 /* FALLTHRU */
95         case 1:
96                 value |= ptr[0];
97                 /* FALLTHRU */
98         case 0:
99                 break;
100         }
101         return value;
102 #endif
103 }
104
105 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
106 {
107 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
108         *(uint64_t*)ptr = value;
109 #else
110         switch (unit_size_) {
111         default:
112                 ptr[7] = value >> 56;
113                 /* FALLTHRU */
114         case 7:
115                 ptr[6] = value >> 48;
116                 /* FALLTHRU */
117         case 6:
118                 ptr[5] = value >> 40;
119                 /* FALLTHRU */
120         case 5:
121                 ptr[4] = value >> 32;
122                 /* FALLTHRU */
123         case 4:
124                 ptr[3] = value >> 24;
125                 /* FALLTHRU */
126         case 3:
127                 ptr[2] = value >> 16;
128                 /* FALLTHRU */
129         case 2:
130                 ptr[1] = value >> 8;
131                 /* FALLTHRU */
132         case 1:
133                 ptr[0] = value;
134                 /* FALLTHRU */
135         case 0:
136                 break;
137         }
138 #endif
139 }
140
141 void LogicSegment::append_payload(shared_ptr<Logic> logic)
142 {
143         assert(unit_size_ == logic->unit_size());
144         assert((logic->data_length() % unit_size_) == 0);
145
146         lock_guard<recursive_mutex> lock(mutex_);
147
148         append_data(logic->data_pointer(),
149                 logic->data_length() / unit_size_);
150
151         // Generate the first mip-map from the data
152         append_payload_to_mipmap();
153 }
154
155 void LogicSegment::get_samples(uint8_t *const data,
156         int64_t start_sample, int64_t end_sample) const
157 {
158         assert(data);
159         assert(start_sample >= 0);
160         assert(start_sample <= (int64_t)sample_count_);
161         assert(end_sample >= 0);
162         assert(end_sample <= (int64_t)sample_count_);
163         assert(start_sample <= end_sample);
164
165         lock_guard<recursive_mutex> lock(mutex_);
166
167         const size_t size = (end_sample - start_sample) * unit_size_;
168         memcpy(data, (const uint8_t*)data_.data() + start_sample * unit_size_, size);
169 }
170
171 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
172 {
173         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
174                 MipMapDataUnit) * MipMapDataUnit;
175         if (new_data_length > m.data_length) {
176                 m.data_length = new_data_length;
177
178                 // Padding is added to allow for the uint64_t write word
179                 m.data = realloc(m.data, new_data_length * unit_size_ +
180                         sizeof(uint64_t));
181         }
182 }
183
184 void LogicSegment::append_payload_to_mipmap()
185 {
186         MipMapLevel &m0 = mip_map_[0];
187         uint64_t prev_length;
188         const uint8_t *src_ptr;
189         uint8_t *dest_ptr;
190         uint64_t accumulator;
191         unsigned int diff_counter;
192
193         // Expand the data buffer to fit the new samples
194         prev_length = m0.length;
195         m0.length = sample_count_ / MipMapScaleFactor;
196
197         // Break off if there are no new samples to compute
198         if (m0.length == prev_length)
199                 return;
200
201         reallocate_mipmap_level(m0);
202
203         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
204
205         // Iterate through the samples to populate the first level mipmap
206         const uint8_t *const end_src_ptr = (uint8_t*)data_.data() +
207                 m0.length * unit_size_ * MipMapScaleFactor;
208         for (src_ptr = (uint8_t*)data_.data() +
209                         prev_length * unit_size_ * MipMapScaleFactor;
210                         src_ptr < end_src_ptr;) {
211                 // Accumulate transitions which have occurred in this sample
212                 accumulator = 0;
213                 diff_counter = MipMapScaleFactor;
214                 while (diff_counter-- > 0) {
215                         const uint64_t sample = unpack_sample(src_ptr);
216                         accumulator |= last_append_sample_ ^ sample;
217                         last_append_sample_ = sample;
218                         src_ptr += unit_size_;
219                 }
220
221                 pack_sample(dest_ptr, accumulator);
222                 dest_ptr += unit_size_;
223         }
224
225         // Compute higher level mipmaps
226         for (unsigned int level = 1; level < ScaleStepCount; level++) {
227                 MipMapLevel &m = mip_map_[level];
228                 const MipMapLevel &ml = mip_map_[level-1];
229
230                 // Expand the data buffer to fit the new samples
231                 prev_length = m.length;
232                 m.length = ml.length / MipMapScaleFactor;
233
234                 // Break off if there are no more samples to computed
235                 if (m.length == prev_length)
236                         break;
237
238                 reallocate_mipmap_level(m);
239
240                 // Subsample the level lower level
241                 src_ptr = (uint8_t*)ml.data +
242                         unit_size_ * prev_length * MipMapScaleFactor;
243                 const uint8_t *const end_dest_ptr =
244                         (uint8_t*)m.data + unit_size_ * m.length;
245                 for (dest_ptr = (uint8_t*)m.data +
246                                 unit_size_ * prev_length;
247                                 dest_ptr < end_dest_ptr;
248                                 dest_ptr += unit_size_) {
249                         accumulator = 0;
250                         diff_counter = MipMapScaleFactor;
251                         while (diff_counter-- > 0) {
252                                 accumulator |= unpack_sample(src_ptr);
253                                 src_ptr += unit_size_;
254                         }
255
256                         pack_sample(dest_ptr, accumulator);
257                 }
258         }
259 }
260
261 uint64_t LogicSegment::get_sample(uint64_t index) const
262 {
263         assert(index < sample_count_);
264
265         return unpack_sample((uint8_t*)data_.data() + index * unit_size_);
266 }
267
268 void LogicSegment::get_subsampled_edges(
269         std::vector<EdgePair> &edges,
270         uint64_t start, uint64_t end,
271         float min_length, int sig_index)
272 {
273         uint64_t index = start;
274         unsigned int level;
275         bool last_sample;
276         bool fast_forward;
277
278         assert(end <= get_sample_count());
279         assert(start <= end);
280         assert(min_length > 0);
281         assert(sig_index >= 0);
282         assert(sig_index < 64);
283
284         lock_guard<recursive_mutex> lock(mutex_);
285
286         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
287         const unsigned int min_level = max((int)floorf(logf(min_length) /
288                 LogMipMapScaleFactor) - 1, 0);
289         const uint64_t sig_mask = 1ULL << sig_index;
290
291         // Store the initial state
292         last_sample = (get_sample(start) & sig_mask) != 0;
293         edges.push_back(pair<int64_t, bool>(index++, last_sample));
294
295         while (index + block_length <= end) {
296                 //----- Continue to search -----//
297                 level = min_level;
298
299                 // We cannot fast-forward if there is no mip-map data at
300                 // at the minimum level.
301                 fast_forward = (mip_map_[level].data != nullptr);
302
303                 if (min_length < MipMapScaleFactor) {
304                         // Search individual samples up to the beginning of
305                         // the next first level mip map block
306                         const uint64_t final_index = min(end,
307                                 pow2_ceil(index, MipMapScalePower));
308
309                         for (; index < final_index &&
310                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
311                                         index++) {
312                                 const bool sample =
313                                         (get_sample(index) & sig_mask) != 0;
314
315                                 // If there was a change we cannot fast forward
316                                 if (sample != last_sample) {
317                                         fast_forward = false;
318                                         break;
319                                 }
320                         }
321                 } else {
322                         // If resolution is less than a mip map block,
323                         // round up to the beginning of the mip-map block
324                         // for this level of detail
325                         const int min_level_scale_power =
326                                 (level + 1) * MipMapScalePower;
327                         index = pow2_ceil(index, min_level_scale_power);
328                         if (index >= end)
329                                 break;
330
331                         // We can fast forward only if there was no change
332                         const bool sample =
333                                 (get_sample(index) & sig_mask) != 0;
334                         if (last_sample != sample)
335                                 fast_forward = false;
336                 }
337
338                 if (fast_forward) {
339
340                         // Fast forward: This involves zooming out to higher
341                         // levels of the mip map searching for changes, then
342                         // zooming in on them to find the point where the edge
343                         // begins.
344
345                         // Slide right and zoom out at the beginnings of mip-map
346                         // blocks until we encounter a change
347                         while (1) {
348                                 const int level_scale_power =
349                                         (level + 1) * MipMapScalePower;
350                                 const uint64_t offset =
351                                         index >> level_scale_power;
352
353                                 // Check if we reached the last block at this
354                                 // level, or if there was a change in this block
355                                 if (offset >= mip_map_[level].length ||
356                                         (get_subsample(level, offset) &
357                                                 sig_mask))
358                                         break;
359
360                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
361                                         // If we are now at the beginning of a
362                                         // higher level mip-map block ascend one
363                                         // level
364                                         if (level + 1 >= ScaleStepCount ||
365                                                 !mip_map_[level + 1].data)
366                                                 break;
367
368                                         level++;
369                                 } else {
370                                         // Slide right to the beginning of the
371                                         // next mip map block
372                                         index = pow2_ceil(index + 1,
373                                                 level_scale_power);
374                                 }
375                         }
376
377                         // Zoom in, and slide right until we encounter a change,
378                         // and repeat until we reach min_level
379                         while (1) {
380                                 assert(mip_map_[level].data);
381
382                                 const int level_scale_power =
383                                         (level + 1) * MipMapScalePower;
384                                 const uint64_t offset =
385                                         index >> level_scale_power;
386
387                                 // Check if we reached the last block at this
388                                 // level, or if there was a change in this block
389                                 if (offset >= mip_map_[level].length ||
390                                                 (get_subsample(level, offset) &
391                                                 sig_mask)) {
392                                         // Zoom in unless we reached the minimum
393                                         // zoom
394                                         if (level == min_level)
395                                                 break;
396
397                                         level--;
398                                 } else {
399                                         // Slide right to the beginning of the
400                                         // next mip map block
401                                         index = pow2_ceil(index + 1,
402                                                 level_scale_power);
403                                 }
404                         }
405
406                         // If individual samples within the limit of resolution,
407                         // do a linear search for the next transition within the
408                         // block
409                         if (min_length < MipMapScaleFactor) {
410                                 for (; index < end; index++) {
411                                         const bool sample = (get_sample(index) &
412                                                 sig_mask) != 0;
413                                         if (sample != last_sample)
414                                                 break;
415                                 }
416                         }
417                 }
418
419                 //----- Store the edge -----//
420
421                 // Take the last sample of the quanization block
422                 const int64_t final_index = index + block_length;
423                 if (index + block_length > end)
424                         break;
425
426                 // Store the final state
427                 const bool final_sample =
428                         (get_sample(final_index - 1) & sig_mask) != 0;
429                 edges.push_back(pair<int64_t, bool>(index, final_sample));
430
431                 index = final_index;
432                 last_sample = final_sample;
433         }
434
435         // Add the final state
436         const bool end_sample = get_sample(end) & sig_mask;
437         if (last_sample != end_sample)
438                 edges.push_back(pair<int64_t, bool>(end, end_sample));
439         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
440 }
441
442 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
443 {
444         assert(level >= 0);
445         assert(mip_map_[level].data);
446         return unpack_sample((uint8_t*)mip_map_[level].data +
447                 unit_size_ * offset);
448 }
449
450 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
451 {
452         const uint64_t p = 1 << power;
453         return (x + p - 1) / p * p;
454 }
455
456 } // namespace data
457 } // namespace pv