]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
a62d9e2f4dae7bca74e79d5f6ca04a3a6a7f87b0
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <assert.h>
23 #include <string.h>
24 #include <stdlib.h>
25 #include <cmath>
26
27 #include "logicsegment.hpp"
28
29 #include <libsigrokcxx/libsigrokcxx.hpp>
30
31 using std::lock_guard;
32 using std::recursive_mutex;
33 using std::max;
34 using std::min;
35 using std::pair;
36 using std::shared_ptr;
37
38 using sigrok::Logic;
39
40 namespace pv {
41 namespace data {
42
43 const int LogicSegment::MipMapScalePower = 4;
44 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
45 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
46 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
47
48 LogicSegment::LogicSegment(shared_ptr<Logic> logic, uint64_t samplerate) :
49         Segment(samplerate, logic->unit_size()),
50         last_append_sample_(0)
51 {
52         lock_guard<recursive_mutex> lock(mutex_);
53         memset(mip_map_, 0, sizeof(mip_map_));
54         append_payload(logic);
55 }
56
57 LogicSegment::~LogicSegment()
58 {
59         lock_guard<recursive_mutex> lock(mutex_);
60         for (MipMapLevel &l : mip_map_)
61                 free(l.data);
62 }
63
64 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
65 {
66 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
67         return *(uint64_t*)ptr;
68 #else
69         uint64_t value = 0;
70         switch (unit_size_) {
71         default:
72                 value |= ((uint64_t)ptr[7]) << 56;
73                 /* FALLTHRU */
74         case 7:
75                 value |= ((uint64_t)ptr[6]) << 48;
76                 /* FALLTHRU */
77         case 6:
78                 value |= ((uint64_t)ptr[5]) << 40;
79                 /* FALLTHRU */
80         case 5:
81                 value |= ((uint64_t)ptr[4]) << 32;
82                 /* FALLTHRU */
83         case 4:
84                 value |= ((uint32_t)ptr[3]) << 24;
85                 /* FALLTHRU */
86         case 3:
87                 value |= ((uint32_t)ptr[2]) << 16;
88                 /* FALLTHRU */
89         case 2:
90                 value |= ptr[1] << 8;
91                 /* FALLTHRU */
92         case 1:
93                 value |= ptr[0];
94                 /* FALLTHRU */
95         case 0:
96                 break;
97         }
98         return value;
99 #endif
100 }
101
102 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
103 {
104 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
105         *(uint64_t*)ptr = value;
106 #else
107         switch (unit_size_) {
108         default:
109                 ptr[7] = value >> 56;
110                 /* FALLTHRU */
111         case 7:
112                 ptr[6] = value >> 48;
113                 /* FALLTHRU */
114         case 6:
115                 ptr[5] = value >> 40;
116                 /* FALLTHRU */
117         case 5:
118                 ptr[4] = value >> 32;
119                 /* FALLTHRU */
120         case 4:
121                 ptr[3] = value >> 24;
122                 /* FALLTHRU */
123         case 3:
124                 ptr[2] = value >> 16;
125                 /* FALLTHRU */
126         case 2:
127                 ptr[1] = value >> 8;
128                 /* FALLTHRU */
129         case 1:
130                 ptr[0] = value;
131                 /* FALLTHRU */
132         case 0:
133                 break;
134         }
135 #endif
136 }
137
138 void LogicSegment::append_payload(shared_ptr<Logic> logic)
139 {
140         assert(unit_size_ == logic->unit_size());
141         assert((logic->data_length() % unit_size_) == 0);
142
143         lock_guard<recursive_mutex> lock(mutex_);
144
145         append_samples(logic->data_pointer(),
146                 logic->data_length() / unit_size_);
147
148         // Generate the first mip-map from the data
149         append_payload_to_mipmap();
150 }
151
152 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
153         int64_t end_sample) const
154 {
155         assert(start_sample >= 0);
156         assert(start_sample <= (int64_t)sample_count_);
157         assert(end_sample >= 0);
158         assert(end_sample <= (int64_t)sample_count_);
159         assert(start_sample <= end_sample);
160
161         lock_guard<recursive_mutex> lock(mutex_);
162
163         return get_raw_samples(start_sample, (end_sample-start_sample));
164 }
165
166 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start) const
167 {
168         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
169 }
170
171 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase) const
172 {
173         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
174 }
175
176 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it) const
177 {
178         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
179 }
180
181 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
182 {
183         lock_guard<recursive_mutex> lock(mutex_);
184
185         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
186                 MipMapDataUnit) * MipMapDataUnit;
187
188         if (new_data_length > m.data_length) {
189                 m.data_length = new_data_length;
190
191                 // Padding is added to allow for the uint64_t write word
192                 m.data = realloc(m.data, new_data_length * unit_size_ +
193                         sizeof(uint64_t));
194         }
195 }
196
197 void LogicSegment::append_payload_to_mipmap()
198 {
199         MipMapLevel &m0 = mip_map_[0];
200         uint64_t prev_length;
201         uint8_t *dest_ptr;
202         SegmentRawDataIterator* it;
203         uint64_t accumulator;
204         unsigned int diff_counter;
205
206         // Expand the data buffer to fit the new samples
207         prev_length = m0.length;
208         m0.length = sample_count_ / MipMapScaleFactor;
209
210         // Break off if there are no new samples to compute
211         if (m0.length == prev_length)
212                 return;
213
214         reallocate_mipmap_level(m0);
215
216         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
217
218         // Iterate through the samples to populate the first level mipmap
219         uint64_t start_sample = prev_length * MipMapScaleFactor;
220         uint64_t end_sample = m0.length * MipMapScaleFactor;
221
222         it = begin_raw_sample_iteration(start_sample);
223         for (uint64_t i = start_sample; i < end_sample;) {
224                 // Accumulate transitions which have occurred in this sample
225                 accumulator = 0;
226                 diff_counter = MipMapScaleFactor;
227                 while (diff_counter-- > 0) {
228                         const uint64_t sample = unpack_sample(it->value);
229                         accumulator |= last_append_sample_ ^ sample;
230                         last_append_sample_ = sample;
231                         continue_raw_sample_iteration(it, 1);
232                         i++;
233                 }
234
235                 pack_sample(dest_ptr, accumulator);
236                 dest_ptr += unit_size_;
237         }
238         end_raw_sample_iteration(it);
239
240         // Compute higher level mipmaps
241         for (unsigned int level = 1; level < ScaleStepCount; level++) {
242                 MipMapLevel &m = mip_map_[level];
243                 const MipMapLevel &ml = mip_map_[level-1];
244
245                 // Expand the data buffer to fit the new samples
246                 prev_length = m.length;
247                 m.length = ml.length / MipMapScaleFactor;
248
249                 // Break off if there are no more samples to be computed
250                 if (m.length == prev_length)
251                         break;
252
253                 reallocate_mipmap_level(m);
254
255                 // Subsample the lower level
256                 const uint8_t* src_ptr = (uint8_t*)ml.data +
257                         unit_size_ * prev_length * MipMapScaleFactor;
258                 const uint8_t *const end_dest_ptr =
259                         (uint8_t*)m.data + unit_size_ * m.length;
260
261                 for (dest_ptr = (uint8_t*)m.data +
262                                 unit_size_ * prev_length;
263                                 dest_ptr < end_dest_ptr;
264                                 dest_ptr += unit_size_) {
265                         accumulator = 0;
266                         diff_counter = MipMapScaleFactor;
267                         while (diff_counter-- > 0) {
268                                 accumulator |= unpack_sample(src_ptr);
269                                 src_ptr += unit_size_;
270                         }
271
272                         pack_sample(dest_ptr, accumulator);
273                 }
274         }
275 }
276
277 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
278 {
279         assert(index < sample_count_);
280
281         const uint8_t* data = get_raw_samples(index, 1);
282         uint64_t sample = unpack_sample(data);
283         delete[] data;
284
285         return sample;
286 }
287
288 void LogicSegment::get_subsampled_edges(
289         std::vector<EdgePair> &edges,
290         uint64_t start, uint64_t end,
291         float min_length, int sig_index)
292 {
293         uint64_t index = start;
294         unsigned int level;
295         bool last_sample;
296         bool fast_forward;
297
298         assert(end <= get_sample_count());
299         assert(start <= end);
300         assert(min_length > 0);
301         assert(sig_index >= 0);
302         assert(sig_index < 64);
303
304         lock_guard<recursive_mutex> lock(mutex_);
305
306         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
307         const unsigned int min_level = max((int)floorf(logf(min_length) /
308                 LogMipMapScaleFactor) - 1, 0);
309         const uint64_t sig_mask = 1ULL << sig_index;
310
311         // Store the initial state
312         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
313         edges.push_back(pair<int64_t, bool>(index++, last_sample));
314
315         while (index + block_length <= end) {
316                 //----- Continue to search -----//
317                 level = min_level;
318
319                 // We cannot fast-forward if there is no mip-map data at
320                 // at the minimum level.
321                 fast_forward = (mip_map_[level].data != nullptr);
322
323                 if (min_length < MipMapScaleFactor) {
324                         // Search individual samples up to the beginning of
325                         // the next first level mip map block
326                         const uint64_t final_index = min(end,
327                                 pow2_ceil(index, MipMapScalePower));
328
329                         for (; index < final_index &&
330                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
331                                         index++) {
332                                 const bool sample =
333                                         (get_unpacked_sample(index) & sig_mask) != 0;
334
335                                 // If there was a change we cannot fast forward
336                                 if (sample != last_sample) {
337                                         fast_forward = false;
338                                         break;
339                                 }
340                         }
341                 } else {
342                         // If resolution is less than a mip map block,
343                         // round up to the beginning of the mip-map block
344                         // for this level of detail
345                         const int min_level_scale_power =
346                                 (level + 1) * MipMapScalePower;
347                         index = pow2_ceil(index, min_level_scale_power);
348                         if (index >= end)
349                                 break;
350
351                         // We can fast forward only if there was no change
352                         const bool sample =
353                                 (get_unpacked_sample(index) & sig_mask) != 0;
354                         if (last_sample != sample)
355                                 fast_forward = false;
356                 }
357
358                 if (fast_forward) {
359
360                         // Fast forward: This involves zooming out to higher
361                         // levels of the mip map searching for changes, then
362                         // zooming in on them to find the point where the edge
363                         // begins.
364
365                         // Slide right and zoom out at the beginnings of mip-map
366                         // blocks until we encounter a change
367                         while (1) {
368                                 const int level_scale_power =
369                                         (level + 1) * MipMapScalePower;
370                                 const uint64_t offset =
371                                         index >> level_scale_power;
372
373                                 // Check if we reached the last block at this
374                                 // level, or if there was a change in this block
375                                 if (offset >= mip_map_[level].length ||
376                                         (get_subsample(level, offset) &
377                                                 sig_mask))
378                                         break;
379
380                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
381                                         // If we are now at the beginning of a
382                                         // higher level mip-map block ascend one
383                                         // level
384                                         if (level + 1 >= ScaleStepCount ||
385                                                 !mip_map_[level + 1].data)
386                                                 break;
387
388                                         level++;
389                                 } else {
390                                         // Slide right to the beginning of the
391                                         // next mip map block
392                                         index = pow2_ceil(index + 1,
393                                                 level_scale_power);
394                                 }
395                         }
396
397                         // Zoom in, and slide right until we encounter a change,
398                         // and repeat until we reach min_level
399                         while (1) {
400                                 assert(mip_map_[level].data);
401
402                                 const int level_scale_power =
403                                         (level + 1) * MipMapScalePower;
404                                 const uint64_t offset =
405                                         index >> level_scale_power;
406
407                                 // Check if we reached the last block at this
408                                 // level, or if there was a change in this block
409                                 if (offset >= mip_map_[level].length ||
410                                                 (get_subsample(level, offset) &
411                                                 sig_mask)) {
412                                         // Zoom in unless we reached the minimum
413                                         // zoom
414                                         if (level == min_level)
415                                                 break;
416
417                                         level--;
418                                 } else {
419                                         // Slide right to the beginning of the
420                                         // next mip map block
421                                         index = pow2_ceil(index + 1,
422                                                 level_scale_power);
423                                 }
424                         }
425
426                         // If individual samples within the limit of resolution,
427                         // do a linear search for the next transition within the
428                         // block
429                         if (min_length < MipMapScaleFactor) {
430                                 for (; index < end; index++) {
431                                         const bool sample = (get_unpacked_sample(index) &
432                                                 sig_mask) != 0;
433                                         if (sample != last_sample)
434                                                 break;
435                                 }
436                         }
437                 }
438
439                 //----- Store the edge -----//
440
441                 // Take the last sample of the quanization block
442                 const int64_t final_index = index + block_length;
443                 if (index + block_length > end)
444                         break;
445
446                 // Store the final state
447                 const bool final_sample =
448                         (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
449                 edges.push_back(pair<int64_t, bool>(index, final_sample));
450
451                 index = final_index;
452                 last_sample = final_sample;
453         }
454
455         // Add the final state
456         const bool end_sample = get_unpacked_sample(end) & sig_mask;
457         if (last_sample != end_sample)
458                 edges.push_back(pair<int64_t, bool>(end, end_sample));
459         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
460 }
461
462 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
463 {
464         assert(level >= 0);
465         assert(mip_map_[level].data);
466         return unpack_sample((uint8_t*)mip_map_[level].data +
467                 unit_size_ * offset);
468 }
469
470 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
471 {
472         const uint64_t p = 1 << power;
473         return (x + p - 1) / p * p;
474 }
475
476 } // namespace data
477 } // namespace pv