]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
Don't use std:: in the code directly (where possible).
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cstring>
24 #include <cstdlib>
25 #include <cmath>
26
27 #include "logic.hpp"
28 #include "logicsegment.hpp"
29
30 #include <libsigrokcxx/libsigrokcxx.hpp>
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::max;
35 using std::min;
36 using std::pair;
37 using std::shared_ptr;
38 using std::vector;
39
40 using sigrok::Logic;
41
42 namespace pv {
43 namespace data {
44
45 const int LogicSegment::MipMapScalePower = 4;
46 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
47 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
48 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
49
50 LogicSegment::LogicSegment(pv::data::Logic& owner, shared_ptr<sigrok::Logic> data,
51         uint64_t samplerate) :
52         Segment(samplerate, data->unit_size()),
53         owner_(owner),
54         last_append_sample_(0)
55 {
56         lock_guard<recursive_mutex> lock(mutex_);
57         memset(mip_map_, 0, sizeof(mip_map_));
58         append_payload(data);
59 }
60
61 LogicSegment::~LogicSegment()
62 {
63         lock_guard<recursive_mutex> lock(mutex_);
64         for (MipMapLevel &l : mip_map_)
65                 free(l.data);
66 }
67
68 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
69 {
70 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
71         return *(uint64_t*)ptr;
72 #else
73         uint64_t value = 0;
74         switch (unit_size_) {
75         default:
76                 value |= ((uint64_t)ptr[7]) << 56;
77                 /* FALLTHRU */
78         case 7:
79                 value |= ((uint64_t)ptr[6]) << 48;
80                 /* FALLTHRU */
81         case 6:
82                 value |= ((uint64_t)ptr[5]) << 40;
83                 /* FALLTHRU */
84         case 5:
85                 value |= ((uint64_t)ptr[4]) << 32;
86                 /* FALLTHRU */
87         case 4:
88                 value |= ((uint32_t)ptr[3]) << 24;
89                 /* FALLTHRU */
90         case 3:
91                 value |= ((uint32_t)ptr[2]) << 16;
92                 /* FALLTHRU */
93         case 2:
94                 value |= ptr[1] << 8;
95                 /* FALLTHRU */
96         case 1:
97                 value |= ptr[0];
98                 /* FALLTHRU */
99         case 0:
100                 break;
101         }
102         return value;
103 #endif
104 }
105
106 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
107 {
108 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
109         *(uint64_t*)ptr = value;
110 #else
111         switch (unit_size_) {
112         default:
113                 ptr[7] = value >> 56;
114                 /* FALLTHRU */
115         case 7:
116                 ptr[6] = value >> 48;
117                 /* FALLTHRU */
118         case 6:
119                 ptr[5] = value >> 40;
120                 /* FALLTHRU */
121         case 5:
122                 ptr[4] = value >> 32;
123                 /* FALLTHRU */
124         case 4:
125                 ptr[3] = value >> 24;
126                 /* FALLTHRU */
127         case 3:
128                 ptr[2] = value >> 16;
129                 /* FALLTHRU */
130         case 2:
131                 ptr[1] = value >> 8;
132                 /* FALLTHRU */
133         case 1:
134                 ptr[0] = value;
135                 /* FALLTHRU */
136         case 0:
137                 break;
138         }
139 #endif
140 }
141
142 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
143 {
144         assert(unit_size_ == logic->unit_size());
145         assert((logic->data_length() % unit_size_) == 0);
146
147         lock_guard<recursive_mutex> lock(mutex_);
148
149         uint64_t prev_sample_count = sample_count_;
150         uint64_t sample_count = logic->data_length() / unit_size_;
151
152         append_samples(logic->data_pointer(), sample_count);
153
154         // Generate the first mip-map from the data
155         append_payload_to_mipmap();
156
157         if (sample_count > 1)
158                 owner_.notify_samples_added(this, prev_sample_count + 1,
159                         prev_sample_count + 1 + sample_count);
160         else
161                 owner_.notify_samples_added(this, prev_sample_count + 1,
162                         prev_sample_count + 1);
163 }
164
165 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
166         int64_t end_sample) const
167 {
168         assert(start_sample >= 0);
169         assert(start_sample <= (int64_t)sample_count_);
170         assert(end_sample >= 0);
171         assert(end_sample <= (int64_t)sample_count_);
172         assert(start_sample <= end_sample);
173
174         lock_guard<recursive_mutex> lock(mutex_);
175
176         return get_raw_samples(start_sample, (end_sample-start_sample));
177 }
178
179 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
180 {
181         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
182 }
183
184 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
185 {
186         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
187 }
188
189 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
190 {
191         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
192 }
193
194 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
195 {
196         lock_guard<recursive_mutex> lock(mutex_);
197
198         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
199                 MipMapDataUnit) * MipMapDataUnit;
200
201         if (new_data_length > m.data_length) {
202                 m.data_length = new_data_length;
203
204                 // Padding is added to allow for the uint64_t write word
205                 m.data = realloc(m.data, new_data_length * unit_size_ +
206                         sizeof(uint64_t));
207         }
208 }
209
210 void LogicSegment::append_payload_to_mipmap()
211 {
212         MipMapLevel &m0 = mip_map_[0];
213         uint64_t prev_length;
214         uint8_t *dest_ptr;
215         SegmentRawDataIterator* it;
216         uint64_t accumulator;
217         unsigned int diff_counter;
218
219         // Expand the data buffer to fit the new samples
220         prev_length = m0.length;
221         m0.length = sample_count_ / MipMapScaleFactor;
222
223         // Break off if there are no new samples to compute
224         if (m0.length == prev_length)
225                 return;
226
227         reallocate_mipmap_level(m0);
228
229         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
230
231         // Iterate through the samples to populate the first level mipmap
232         uint64_t start_sample = prev_length * MipMapScaleFactor;
233         uint64_t end_sample = m0.length * MipMapScaleFactor;
234
235         it = begin_raw_sample_iteration(start_sample);
236         for (uint64_t i = start_sample; i < end_sample;) {
237                 // Accumulate transitions which have occurred in this sample
238                 accumulator = 0;
239                 diff_counter = MipMapScaleFactor;
240                 while (diff_counter-- > 0) {
241                         const uint64_t sample = unpack_sample(it->value);
242                         accumulator |= last_append_sample_ ^ sample;
243                         last_append_sample_ = sample;
244                         continue_raw_sample_iteration(it, 1);
245                         i++;
246                 }
247
248                 pack_sample(dest_ptr, accumulator);
249                 dest_ptr += unit_size_;
250         }
251         end_raw_sample_iteration(it);
252
253         // Compute higher level mipmaps
254         for (unsigned int level = 1; level < ScaleStepCount; level++) {
255                 MipMapLevel &m = mip_map_[level];
256                 const MipMapLevel &ml = mip_map_[level-1];
257
258                 // Expand the data buffer to fit the new samples
259                 prev_length = m.length;
260                 m.length = ml.length / MipMapScaleFactor;
261
262                 // Break off if there are no more samples to be computed
263                 if (m.length == prev_length)
264                         break;
265
266                 reallocate_mipmap_level(m);
267
268                 // Subsample the lower level
269                 const uint8_t* src_ptr = (uint8_t*)ml.data +
270                         unit_size_ * prev_length * MipMapScaleFactor;
271                 const uint8_t *const end_dest_ptr =
272                         (uint8_t*)m.data + unit_size_ * m.length;
273
274                 for (dest_ptr = (uint8_t*)m.data +
275                                 unit_size_ * prev_length;
276                                 dest_ptr < end_dest_ptr;
277                                 dest_ptr += unit_size_) {
278                         accumulator = 0;
279                         diff_counter = MipMapScaleFactor;
280                         while (diff_counter-- > 0) {
281                                 accumulator |= unpack_sample(src_ptr);
282                                 src_ptr += unit_size_;
283                         }
284
285                         pack_sample(dest_ptr, accumulator);
286                 }
287         }
288 }
289
290 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
291 {
292         assert(index < sample_count_);
293
294         const uint8_t* data = get_raw_samples(index, 1);
295         uint64_t sample = unpack_sample(data);
296         delete[] data;
297
298         return sample;
299 }
300
301 void LogicSegment::get_subsampled_edges(
302         vector<EdgePair> &edges,
303         uint64_t start, uint64_t end,
304         float min_length, int sig_index)
305 {
306         uint64_t index = start;
307         unsigned int level;
308         bool last_sample;
309         bool fast_forward;
310
311         assert(end <= get_sample_count());
312         assert(start <= end);
313         assert(min_length > 0);
314         assert(sig_index >= 0);
315         assert(sig_index < 64);
316
317         lock_guard<recursive_mutex> lock(mutex_);
318
319         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
320         const unsigned int min_level = max((int)floorf(logf(min_length) /
321                 LogMipMapScaleFactor) - 1, 0);
322         const uint64_t sig_mask = 1ULL << sig_index;
323
324         // Store the initial state
325         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
326         edges.emplace_back(index++, last_sample);
327
328         while (index + block_length <= end) {
329                 //----- Continue to search -----//
330                 level = min_level;
331
332                 // We cannot fast-forward if there is no mip-map data at
333                 // at the minimum level.
334                 fast_forward = (mip_map_[level].data != nullptr);
335
336                 if (min_length < MipMapScaleFactor) {
337                         // Search individual samples up to the beginning of
338                         // the next first level mip map block
339                         const uint64_t final_index = min(end,
340                                 pow2_ceil(index, MipMapScalePower));
341
342                         for (; index < final_index &&
343                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
344                                         index++) {
345                                 const bool sample =
346                                         (get_unpacked_sample(index) & sig_mask) != 0;
347
348                                 // If there was a change we cannot fast forward
349                                 if (sample != last_sample) {
350                                         fast_forward = false;
351                                         break;
352                                 }
353                         }
354                 } else {
355                         // If resolution is less than a mip map block,
356                         // round up to the beginning of the mip-map block
357                         // for this level of detail
358                         const int min_level_scale_power =
359                                 (level + 1) * MipMapScalePower;
360                         index = pow2_ceil(index, min_level_scale_power);
361                         if (index >= end)
362                                 break;
363
364                         // We can fast forward only if there was no change
365                         const bool sample =
366                                 (get_unpacked_sample(index) & sig_mask) != 0;
367                         if (last_sample != sample)
368                                 fast_forward = false;
369                 }
370
371                 if (fast_forward) {
372
373                         // Fast forward: This involves zooming out to higher
374                         // levels of the mip map searching for changes, then
375                         // zooming in on them to find the point where the edge
376                         // begins.
377
378                         // Slide right and zoom out at the beginnings of mip-map
379                         // blocks until we encounter a change
380                         while (true) {
381                                 const int level_scale_power =
382                                         (level + 1) * MipMapScalePower;
383                                 const uint64_t offset =
384                                         index >> level_scale_power;
385
386                                 // Check if we reached the last block at this
387                                 // level, or if there was a change in this block
388                                 if (offset >= mip_map_[level].length ||
389                                         (get_subsample(level, offset) &
390                                                 sig_mask))
391                                         break;
392
393                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
394                                         // If we are now at the beginning of a
395                                         // higher level mip-map block ascend one
396                                         // level
397                                         if (level + 1 >= ScaleStepCount ||
398                                                 !mip_map_[level + 1].data)
399                                                 break;
400
401                                         level++;
402                                 } else {
403                                         // Slide right to the beginning of the
404                                         // next mip map block
405                                         index = pow2_ceil(index + 1,
406                                                 level_scale_power);
407                                 }
408                         }
409
410                         // Zoom in, and slide right until we encounter a change,
411                         // and repeat until we reach min_level
412                         while (true) {
413                                 assert(mip_map_[level].data);
414
415                                 const int level_scale_power =
416                                         (level + 1) * MipMapScalePower;
417                                 const uint64_t offset =
418                                         index >> level_scale_power;
419
420                                 // Check if we reached the last block at this
421                                 // level, or if there was a change in this block
422                                 if (offset >= mip_map_[level].length ||
423                                                 (get_subsample(level, offset) &
424                                                 sig_mask)) {
425                                         // Zoom in unless we reached the minimum
426                                         // zoom
427                                         if (level == min_level)
428                                                 break;
429
430                                         level--;
431                                 } else {
432                                         // Slide right to the beginning of the
433                                         // next mip map block
434                                         index = pow2_ceil(index + 1,
435                                                 level_scale_power);
436                                 }
437                         }
438
439                         // If individual samples within the limit of resolution,
440                         // do a linear search for the next transition within the
441                         // block
442                         if (min_length < MipMapScaleFactor) {
443                                 for (; index < end; index++) {
444                                         const bool sample = (get_unpacked_sample(index) &
445                                                 sig_mask) != 0;
446                                         if (sample != last_sample)
447                                                 break;
448                                 }
449                         }
450                 }
451
452                 //----- Store the edge -----//
453
454                 // Take the last sample of the quanization block
455                 const int64_t final_index = index + block_length;
456                 if (index + block_length > end)
457                         break;
458
459                 // Store the final state
460                 const bool final_sample =
461                         (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
462                 edges.emplace_back(index, final_sample);
463
464                 index = final_index;
465                 last_sample = final_sample;
466         }
467
468         // Add the final state
469         const bool end_sample = get_unpacked_sample(end) & sig_mask;
470         if (last_sample != end_sample)
471                 edges.emplace_back(end, end_sample);
472         edges.emplace_back(end + 1, end_sample);
473 }
474
475 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
476 {
477         assert(level >= 0);
478         assert(mip_map_[level].data);
479         return unpack_sample((uint8_t*)mip_map_[level].data +
480                 unit_size_ * offset);
481 }
482
483 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
484 {
485         const uint64_t p = 1 << power;
486         return (x + p - 1) / p * p;
487 }
488
489 } // namespace data
490 } // namespace pv