]> sigrok.org Git - pulseview.git/blob - pv/data/logicsegment.cpp
3896ff2151efc09989d34211b78399f017473c88
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
21
22 #include <extdef.h>
23
24 #include <cassert>
25 #include <cmath>
26 #include <cstdlib>
27 #include <cstring>
28
29 #include "logic.hpp"
30 #include "logicsegment.hpp"
31
32 #include <libsigrokcxx/libsigrokcxx.hpp>
33
34 using std::lock_guard;
35 using std::recursive_mutex;
36 using std::max;
37 using std::min;
38 using std::shared_ptr;
39 using std::vector;
40
41 using sigrok::Logic;
42
43 namespace pv {
44 namespace data {
45
46 const int LogicSegment::MipMapScalePower = 4;
47 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
48 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
49 const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
50
51 LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
52         unsigned int unit_size, uint64_t samplerate) :
53         Segment(segment_id, samplerate, unit_size),
54         owner_(owner),
55         last_append_sample_(0)
56 {
57         memset(mip_map_, 0, sizeof(mip_map_));
58 }
59
60 LogicSegment::~LogicSegment()
61 {
62         lock_guard<recursive_mutex> lock(mutex_);
63         for (MipMapLevel &l : mip_map_)
64                 free(l.data);
65 }
66
67 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
68 {
69 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
70         return *(uint64_t*)ptr;
71 #else
72         uint64_t value = 0;
73         switch (unit_size_) {
74         default:
75                 value |= ((uint64_t)ptr[7]) << 56;
76                 /* FALLTHRU */
77         case 7:
78                 value |= ((uint64_t)ptr[6]) << 48;
79                 /* FALLTHRU */
80         case 6:
81                 value |= ((uint64_t)ptr[5]) << 40;
82                 /* FALLTHRU */
83         case 5:
84                 value |= ((uint64_t)ptr[4]) << 32;
85                 /* FALLTHRU */
86         case 4:
87                 value |= ((uint32_t)ptr[3]) << 24;
88                 /* FALLTHRU */
89         case 3:
90                 value |= ((uint32_t)ptr[2]) << 16;
91                 /* FALLTHRU */
92         case 2:
93                 value |= ptr[1] << 8;
94                 /* FALLTHRU */
95         case 1:
96                 value |= ptr[0];
97                 /* FALLTHRU */
98         case 0:
99                 break;
100         }
101         return value;
102 #endif
103 }
104
105 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
106 {
107 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
108         *(uint64_t*)ptr = value;
109 #else
110         switch (unit_size_) {
111         default:
112                 ptr[7] = value >> 56;
113                 /* FALLTHRU */
114         case 7:
115                 ptr[6] = value >> 48;
116                 /* FALLTHRU */
117         case 6:
118                 ptr[5] = value >> 40;
119                 /* FALLTHRU */
120         case 5:
121                 ptr[4] = value >> 32;
122                 /* FALLTHRU */
123         case 4:
124                 ptr[3] = value >> 24;
125                 /* FALLTHRU */
126         case 3:
127                 ptr[2] = value >> 16;
128                 /* FALLTHRU */
129         case 2:
130                 ptr[1] = value >> 8;
131                 /* FALLTHRU */
132         case 1:
133                 ptr[0] = value;
134                 /* FALLTHRU */
135         case 0:
136                 break;
137         }
138 #endif
139 }
140
141 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
142 {
143         assert(unit_size_ == logic->unit_size());
144         assert((logic->data_length() % unit_size_) == 0);
145
146         append_payload(logic->data_pointer(), logic->data_length());
147 }
148
149 void LogicSegment::append_payload(void *data, uint64_t data_size)
150 {
151         assert((data_size % unit_size_) == 0);
152
153         lock_guard<recursive_mutex> lock(mutex_);
154
155         uint64_t prev_sample_count = sample_count_;
156         uint64_t sample_count = data_size / unit_size_;
157
158         append_samples(data, sample_count);
159
160         // Generate the first mip-map from the data
161         append_payload_to_mipmap();
162
163         if (sample_count > 1)
164                 owner_.notify_samples_added(this, prev_sample_count + 1,
165                         prev_sample_count + 1 + sample_count);
166         else
167                 owner_.notify_samples_added(this, prev_sample_count + 1,
168                         prev_sample_count + 1);
169 }
170
171 void LogicSegment::get_samples(int64_t start_sample,
172         int64_t end_sample,     uint8_t* dest) const
173 {
174         assert(start_sample >= 0);
175         assert(start_sample <= (int64_t)sample_count_);
176         assert(end_sample >= 0);
177         assert(end_sample <= (int64_t)sample_count_);
178         assert(start_sample <= end_sample);
179         assert(dest != nullptr);
180
181         lock_guard<recursive_mutex> lock(mutex_);
182
183         get_raw_samples(start_sample, (end_sample - start_sample), dest);
184 }
185
186 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
187 {
188         return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
189 }
190
191 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
192 {
193         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
194 }
195
196 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
197 {
198         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
199 }
200
201 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
202 {
203         lock_guard<recursive_mutex> lock(mutex_);
204
205         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
206                 MipMapDataUnit) * MipMapDataUnit;
207
208         if (new_data_length > m.data_length) {
209                 m.data_length = new_data_length;
210
211                 // Padding is added to allow for the uint64_t write word
212                 m.data = realloc(m.data, new_data_length * unit_size_ +
213                         sizeof(uint64_t));
214         }
215 }
216
217 void LogicSegment::append_payload_to_mipmap()
218 {
219         MipMapLevel &m0 = mip_map_[0];
220         uint64_t prev_length;
221         uint8_t *dest_ptr;
222         SegmentRawDataIterator* it;
223         uint64_t accumulator;
224         unsigned int diff_counter;
225
226         // Expand the data buffer to fit the new samples
227         prev_length = m0.length;
228         m0.length = sample_count_ / MipMapScaleFactor;
229
230         // Break off if there are no new samples to compute
231         if (m0.length == prev_length)
232                 return;
233
234         reallocate_mipmap_level(m0);
235
236         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
237
238         // Iterate through the samples to populate the first level mipmap
239         uint64_t start_sample = prev_length * MipMapScaleFactor;
240         uint64_t end_sample = m0.length * MipMapScaleFactor;
241
242         it = begin_raw_sample_iteration(start_sample);
243         for (uint64_t i = start_sample; i < end_sample;) {
244                 // Accumulate transitions which have occurred in this sample
245                 accumulator = 0;
246                 diff_counter = MipMapScaleFactor;
247                 while (diff_counter-- > 0) {
248                         const uint64_t sample = unpack_sample(it->value);
249                         accumulator |= last_append_sample_ ^ sample;
250                         last_append_sample_ = sample;
251                         continue_raw_sample_iteration(it, 1);
252                         i++;
253                 }
254
255                 pack_sample(dest_ptr, accumulator);
256                 dest_ptr += unit_size_;
257         }
258         end_raw_sample_iteration(it);
259
260         // Compute higher level mipmaps
261         for (unsigned int level = 1; level < ScaleStepCount; level++) {
262                 MipMapLevel &m = mip_map_[level];
263                 const MipMapLevel &ml = mip_map_[level - 1];
264
265                 // Expand the data buffer to fit the new samples
266                 prev_length = m.length;
267                 m.length = ml.length / MipMapScaleFactor;
268
269                 // Break off if there are no more samples to be computed
270                 if (m.length == prev_length)
271                         break;
272
273                 reallocate_mipmap_level(m);
274
275                 // Subsample the lower level
276                 const uint8_t* src_ptr = (uint8_t*)ml.data +
277                         unit_size_ * prev_length * MipMapScaleFactor;
278                 const uint8_t *const end_dest_ptr =
279                         (uint8_t*)m.data + unit_size_ * m.length;
280
281                 for (dest_ptr = (uint8_t*)m.data +
282                                 unit_size_ * prev_length;
283                                 dest_ptr < end_dest_ptr;
284                                 dest_ptr += unit_size_) {
285                         accumulator = 0;
286                         diff_counter = MipMapScaleFactor;
287                         while (diff_counter-- > 0) {
288                                 accumulator |= unpack_sample(src_ptr);
289                                 src_ptr += unit_size_;
290                         }
291
292                         pack_sample(dest_ptr, accumulator);
293                 }
294         }
295 }
296
297 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
298 {
299         assert(index < sample_count_);
300
301         assert(unit_size_ <= 8);  // 8 * 8 = 64 channels
302         uint8_t data[8];
303
304         get_raw_samples(index, 1, data);
305         uint64_t sample = unpack_sample(data);
306
307         return sample;
308 }
309
310 void LogicSegment::get_subsampled_edges(
311         vector<EdgePair> &edges,
312         uint64_t start, uint64_t end,
313         float min_length, int sig_index)
314 {
315         uint64_t index = start;
316         unsigned int level;
317         bool last_sample;
318         bool fast_forward;
319
320         assert(start <= end);
321         assert(min_length > 0);
322         assert(sig_index >= 0);
323         assert(sig_index < 64);
324
325         lock_guard<recursive_mutex> lock(mutex_);
326
327         // Make sure we only process as many samples as we have
328         if (end > get_sample_count())
329                 end = get_sample_count();
330
331         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
332         const unsigned int min_level = max((int)floorf(logf(min_length) /
333                 LogMipMapScaleFactor) - 1, 0);
334         const uint64_t sig_mask = 1ULL << sig_index;
335
336         // Store the initial state
337         last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
338         edges.emplace_back(index++, last_sample);
339
340         while (index + block_length <= end) {
341                 //----- Continue to search -----//
342                 level = min_level;
343
344                 // We cannot fast-forward if there is no mip-map data at
345                 // the minimum level.
346                 fast_forward = (mip_map_[level].data != nullptr);
347
348                 if (min_length < MipMapScaleFactor) {
349                         // Search individual samples up to the beginning of
350                         // the next first level mip map block
351                         const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
352
353                         for (; index < final_index &&
354                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
355                                         index++) {
356
357                                 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
358
359                                 // If there was a change we cannot fast forward
360                                 if (sample != last_sample) {
361                                         fast_forward = false;
362                                         break;
363                                 }
364                         }
365                 } else {
366                         // If resolution is less than a mip map block,
367                         // round up to the beginning of the mip-map block
368                         // for this level of detail
369                         const int min_level_scale_power = (level + 1) * MipMapScalePower;
370                         index = pow2_ceil(index, min_level_scale_power);
371                         if (index >= end)
372                                 break;
373
374                         // We can fast forward only if there was no change
375                         const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
376                         if (last_sample != sample)
377                                 fast_forward = false;
378                 }
379
380                 if (fast_forward) {
381
382                         // Fast forward: This involves zooming out to higher
383                         // levels of the mip map searching for changes, then
384                         // zooming in on them to find the point where the edge
385                         // begins.
386
387                         // Slide right and zoom out at the beginnings of mip-map
388                         // blocks until we encounter a change
389                         while (true) {
390                                 const int level_scale_power = (level + 1) * MipMapScalePower;
391                                 const uint64_t offset = index >> level_scale_power;
392
393                                 // Check if we reached the last block at this
394                                 // level, or if there was a change in this block
395                                 if (offset >= mip_map_[level].length ||
396                                         (get_subsample(level, offset) & sig_mask))
397                                         break;
398
399                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
400                                         // If we are now at the beginning of a
401                                         // higher level mip-map block ascend one
402                                         // level
403                                         if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
404                                                 break;
405
406                                         level++;
407                                 } else {
408                                         // Slide right to the beginning of the
409                                         // next mip map block
410                                         index = pow2_ceil(index + 1, level_scale_power);
411                                 }
412                         }
413
414                         // Zoom in, and slide right until we encounter a change,
415                         // and repeat until we reach min_level
416                         while (true) {
417                                 assert(mip_map_[level].data);
418
419                                 const int level_scale_power = (level + 1) * MipMapScalePower;
420                                 const uint64_t offset = index >> level_scale_power;
421
422                                 // Check if we reached the last block at this
423                                 // level, or if there was a change in this block
424                                 if (offset >= mip_map_[level].length ||
425                                                 (get_subsample(level, offset) & sig_mask)) {
426                                         // Zoom in unless we reached the minimum
427                                         // zoom
428                                         if (level == min_level)
429                                                 break;
430
431                                         level--;
432                                 } else {
433                                         // Slide right to the beginning of the
434                                         // next mip map block
435                                         index = pow2_ceil(index + 1, level_scale_power);
436                                 }
437                         }
438
439                         // If individual samples within the limit of resolution,
440                         // do a linear search for the next transition within the
441                         // block
442                         if (min_length < MipMapScaleFactor) {
443                                 for (; index < end; index++) {
444                                         const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
445                                         if (sample != last_sample)
446                                                 break;
447                                 }
448                         }
449                 }
450
451                 //----- Store the edge -----//
452
453                 // Take the last sample of the quanization block
454                 const int64_t final_index = index + block_length;
455                 if (index + block_length > end)
456                         break;
457
458                 // Store the final state
459                 const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
460                 edges.emplace_back(index, final_sample);
461
462                 index = final_index;
463                 last_sample = final_sample;
464         }
465
466         // Add the final state
467         const bool end_sample = get_unpacked_sample(end) & sig_mask;
468         if (last_sample != end_sample)
469                 edges.emplace_back(end, end_sample);
470         edges.emplace_back(end + 1, end_sample);
471 }
472
473 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
474 {
475         assert(level >= 0);
476         assert(mip_map_[level].data);
477         return unpack_sample((uint8_t*)mip_map_[level].data +
478                 unit_size_ * offset);
479 }
480
481 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
482 {
483         const uint64_t p = 1 << power;
484         return (x + p - 1) / p * p;
485 }
486
487 } // namespace data
488 } // namespace pv