]> sigrok.org Git - pulseview.git/blob - pv/data/analogsnapshot.cpp
c052782ed6cc6842f5029c80b6de3223ee76d50c
[pulseview.git] / pv / data / analogsnapshot.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  */
20
21 #include <extdef.h>
22
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <math.h>
27
28 #include <algorithm>
29
30 #include <boost/foreach.hpp>
31
32 #include "analogsnapshot.h"
33
34 using namespace boost;
35 using namespace std;
36
37 namespace pv {
38 namespace data {
39
40 const int AnalogSnapshot::EnvelopeScalePower = 4;
41 const int AnalogSnapshot::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
42 const float AnalogSnapshot::LogEnvelopeScaleFactor =
43         logf(EnvelopeScaleFactor);
44 const uint64_t AnalogSnapshot::EnvelopeDataUnit = 64*1024;      // bytes
45
46 AnalogSnapshot::AnalogSnapshot(const sr_datafeed_analog &analog) :
47         Snapshot(sizeof(float))
48 {
49         lock_guard<recursive_mutex> lock(_mutex);
50         memset(_envelope_levels, 0, sizeof(_envelope_levels));
51         append_payload(analog);
52 }
53
54 AnalogSnapshot::~AnalogSnapshot()
55 {
56         lock_guard<recursive_mutex> lock(_mutex);
57         BOOST_FOREACH(Envelope &e, _envelope_levels)
58                 free(e.samples);
59 }
60
61 void AnalogSnapshot::append_payload(
62         const sr_datafeed_analog &analog)
63 {
64         lock_guard<recursive_mutex> lock(_mutex);
65         append_data(analog.data, analog.num_samples);
66
67         // Generate the first mip-map from the data
68         append_payload_to_envelope_levels();
69 }
70
71 const float* AnalogSnapshot::get_samples(
72         int64_t start_sample, int64_t end_sample) const
73 {
74         assert(start_sample >= 0);
75         assert(start_sample < (int64_t)_sample_count);
76         assert(end_sample >= 0);
77         assert(end_sample < (int64_t)_sample_count);
78         assert(start_sample <= end_sample);
79
80         lock_guard<recursive_mutex> lock(_mutex);
81
82         float *const data = new float[end_sample - start_sample];
83         memcpy(data, (float*)_data + start_sample, sizeof(float) *
84                 (end_sample - start_sample));
85         return data;
86 }
87
88 void AnalogSnapshot::reallocate_envelope(Envelope &e)
89 {
90         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
91                 EnvelopeDataUnit) * EnvelopeDataUnit;
92         if (new_data_length > e.data_length)
93         {
94                 e.data_length = new_data_length;
95                 e.samples = (EnvelopeSample*)realloc(e.samples,
96                         new_data_length * sizeof(EnvelopeSample));
97         }
98 }
99
100 void AnalogSnapshot::append_payload_to_envelope_levels()
101 {
102         Envelope &e0 = _envelope_levels[0];
103         uint64_t prev_length;
104         EnvelopeSample *dest_ptr;
105
106         // Expand the data buffer to fit the new samples
107         prev_length = e0.length;
108         e0.length = _sample_count / EnvelopeScaleFactor;
109
110         // Break off if there are no new samples to compute
111         if (e0.length == prev_length)
112                 return;
113
114         reallocate_envelope(e0);
115
116         dest_ptr = e0.samples + prev_length;
117
118         // Iterate through the samples to populate the first level mipmap
119         const float *const end_src_ptr = (float*)_data +
120                 e0.length * EnvelopeScaleFactor;
121         for (const float *src_ptr = (float*)_data +
122                 prev_length * EnvelopeScaleFactor;
123                 src_ptr < end_src_ptr; src_ptr += EnvelopeScaleFactor)
124         {
125                 const EnvelopeSample sub_sample = {
126                         *min_element(src_ptr, src_ptr + EnvelopeScaleFactor),
127                         *max_element(src_ptr, src_ptr + EnvelopeScaleFactor),
128                 };
129
130                 *dest_ptr++ = sub_sample;
131         }
132
133         // Compute higher level mipmaps
134         for (unsigned int level = 1; level < ScaleStepCount; level++)
135         {
136                 Envelope &e = _envelope_levels[level];
137                 const Envelope &el = _envelope_levels[level-1];
138
139                 // Expand the data buffer to fit the new samples
140                 prev_length = e.length;
141                 e.length = el.length / EnvelopeScaleFactor;
142
143                 // Break off if there are no more samples to computed
144                 if (e.length == prev_length)
145                         break;
146
147                 reallocate_envelope(e);
148
149                 // Subsample the level lower level
150                 const EnvelopeSample *src_ptr =
151                         el.samples + prev_length * EnvelopeScaleFactor;
152                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
153                 for (dest_ptr = e.samples + prev_length;
154                         dest_ptr < end_dest_ptr; dest_ptr++)
155                 {
156                         const EnvelopeSample *const end_src_ptr =
157                                 src_ptr + EnvelopeScaleFactor;
158
159                         EnvelopeSample sub_sample = *src_ptr++;
160                         while (src_ptr < end_src_ptr)
161                         {
162                                 sub_sample.min = min(sub_sample.min, src_ptr->min);
163                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
164                                 src_ptr++;
165                         }
166
167                         *dest_ptr = sub_sample;
168                 }
169         }
170 }
171
172 } // namespace data
173 } // namespace pv