Update German translation
[pulseview.git] / pv / data / analogsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cmath>
24 #include <cstdlib>
25 #include <cstring>
26 #include <memory>
27
28 #include <algorithm>
29
30 #include "analog.hpp"
31 #include "analogsegment.hpp"
32
33 using std::lock_guard;
34 using std::recursive_mutex;
35 using std::make_pair;
36 using std::max;
37 using std::max_element;
38 using std::min;
39 using std::min_element;
40 using std::pair;
41 using std::unique_ptr;
42
43 namespace pv {
44 namespace data {
45
46 const int AnalogSegment::EnvelopeScalePower = 4;
47 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
48 const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
49 const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024;     // bytes
50
51 AnalogSegment::AnalogSegment(Analog& owner, uint32_t segment_id, uint64_t samplerate) :
52         Segment(segment_id, samplerate, sizeof(float)),
53         owner_(owner),
54         min_value_(0),
55         max_value_(0)
56 {
57         lock_guard<recursive_mutex> lock(mutex_);
58         memset(envelope_levels_, 0, sizeof(envelope_levels_));
59 }
60
61 AnalogSegment::~AnalogSegment()
62 {
63         lock_guard<recursive_mutex> lock(mutex_);
64         for (Envelope &e : envelope_levels_)
65                 free(e.samples);
66 }
67
68 void AnalogSegment::append_interleaved_samples(const float *data,
69         size_t sample_count, size_t stride)
70 {
71         assert(unit_size_ == sizeof(float));
72
73         lock_guard<recursive_mutex> lock(mutex_);
74
75         uint64_t prev_sample_count = sample_count_;
76
77         // Deinterleave the samples and add them
78         unique_ptr<float[]> deint_data(new float[sample_count]);
79         float *deint_data_ptr = deint_data.get();
80         for (uint32_t i = 0; i < sample_count; i++) {
81                 *deint_data_ptr = (float)(*data);
82                 deint_data_ptr++;
83                 data += stride;
84         }
85
86         append_samples(deint_data.get(), sample_count);
87
88         // Generate the first mip-map from the data
89         append_payload_to_envelope_levels();
90
91         if (sample_count > 1)
92                 owner_.notify_samples_added(shared_ptr<Segment>(shared_from_this()),
93                         prev_sample_count + 1, prev_sample_count + 1 + sample_count);
94         else
95                 owner_.notify_samples_added(shared_ptr<Segment>(shared_from_this()),
96                         prev_sample_count + 1, prev_sample_count + 1);
97 }
98
99 void AnalogSegment::get_samples(int64_t start_sample, int64_t end_sample,
100         float* dest) const
101 {
102         assert(start_sample >= 0);
103         assert(start_sample < (int64_t)sample_count_);
104         assert(end_sample >= 0);
105         assert(end_sample <= (int64_t)sample_count_);
106         assert(start_sample <= end_sample);
107         assert(dest != nullptr);
108
109         lock_guard<recursive_mutex> lock(mutex_);
110
111         get_raw_samples(start_sample, (end_sample - start_sample), (uint8_t*)dest);
112 }
113
114 const pair<float, float> AnalogSegment::get_min_max() const
115 {
116         return make_pair(min_value_, max_value_);
117 }
118
119 float* AnalogSegment::get_iterator_value_ptr(SegmentDataIterator* it)
120 {
121         assert(it->sample_index <= (sample_count_ - 1));
122
123         return (float*)(it->chunk + it->chunk_offs);
124 }
125
126 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
127         uint64_t start, uint64_t end, float min_length) const
128 {
129         assert(end <= get_sample_count());
130         assert(start <= end);
131         assert(min_length > 0);
132
133         lock_guard<recursive_mutex> lock(mutex_);
134
135         const unsigned int min_level = max((int)floorf(logf(min_length) /
136                 LogEnvelopeScaleFactor) - 1, 0);
137         const unsigned int scale_power = (min_level + 1) *
138                 EnvelopeScalePower;
139         start >>= scale_power;
140         end >>= scale_power;
141
142         s.start = start << scale_power;
143         s.scale = 1 << scale_power;
144         s.length = end - start;
145         s.samples = new EnvelopeSample[s.length];
146         memcpy(s.samples, envelope_levels_[min_level].samples + start,
147                 s.length * sizeof(EnvelopeSample));
148 }
149
150 void AnalogSegment::reallocate_envelope(Envelope &e)
151 {
152         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
153                 EnvelopeDataUnit) * EnvelopeDataUnit;
154         if (new_data_length > e.data_length) {
155                 e.data_length = new_data_length;
156                 e.samples = (EnvelopeSample*)realloc(e.samples,
157                         new_data_length * sizeof(EnvelopeSample));
158         }
159 }
160
161 void AnalogSegment::append_payload_to_envelope_levels()
162 {
163         Envelope &e0 = envelope_levels_[0];
164         uint64_t prev_length;
165         EnvelopeSample *dest_ptr;
166         SegmentDataIterator* it;
167
168         // Expand the data buffer to fit the new samples
169         prev_length = e0.length;
170         e0.length = sample_count_ / EnvelopeScaleFactor;
171
172         // Calculate min/max values in case we have too few samples for an envelope
173         const float old_min_value = min_value_, old_max_value = max_value_;
174         if (sample_count_ < EnvelopeScaleFactor) {
175                 it = begin_sample_iteration(0);
176                 for (uint64_t i = 0; i < sample_count_; i++) {
177                         const float sample = *get_iterator_value_ptr(it);
178                         if (sample < min_value_)
179                                 min_value_ = sample;
180                         if (sample > max_value_)
181                                 max_value_ = sample;
182                         continue_sample_iteration(it, 1);
183                 }
184                 end_sample_iteration(it);
185         }
186
187         // Break off if there are no new samples to compute
188         if (e0.length == prev_length)
189                 return;
190
191         reallocate_envelope(e0);
192
193         dest_ptr = e0.samples + prev_length;
194
195         // Iterate through the samples to populate the first level mipmap
196         uint64_t start_sample = prev_length * EnvelopeScaleFactor;
197         uint64_t end_sample = e0.length * EnvelopeScaleFactor;
198
199         it = begin_sample_iteration(start_sample);
200         for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
201                 const float* samples = get_iterator_value_ptr(it);
202
203                 const EnvelopeSample sub_sample = {
204                         *min_element(samples, samples + EnvelopeScaleFactor),
205                         *max_element(samples, samples + EnvelopeScaleFactor),
206                 };
207
208                 if (sub_sample.min < min_value_)
209                         min_value_ = sub_sample.min;
210                 if (sub_sample.max > max_value_)
211                         max_value_ = sub_sample.max;
212
213                 continue_sample_iteration(it, EnvelopeScaleFactor);
214                 *dest_ptr++ = sub_sample;
215         }
216         end_sample_iteration(it);
217
218         // Compute higher level mipmaps
219         for (unsigned int level = 1; level < ScaleStepCount; level++) {
220                 Envelope &e = envelope_levels_[level];
221                 const Envelope &el = envelope_levels_[level - 1];
222
223                 // Expand the data buffer to fit the new samples
224                 prev_length = e.length;
225                 e.length = el.length / EnvelopeScaleFactor;
226
227                 // Break off if there are no more samples to be computed
228                 if (e.length == prev_length)
229                         break;
230
231                 reallocate_envelope(e);
232
233                 // Subsample the lower level
234                 const EnvelopeSample *src_ptr =
235                         el.samples + prev_length * EnvelopeScaleFactor;
236                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
237
238                 for (dest_ptr = e.samples + prev_length;
239                                 dest_ptr < end_dest_ptr; dest_ptr++) {
240                         const EnvelopeSample *const end_src_ptr =
241                                 src_ptr + EnvelopeScaleFactor;
242
243                         EnvelopeSample sub_sample = *src_ptr++;
244                         while (src_ptr < end_src_ptr) {
245                                 sub_sample.min = min(sub_sample.min, src_ptr->min);;
246                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
247                                 src_ptr++;
248                         }
249
250                         *dest_ptr = sub_sample;
251                 }
252         }
253
254         // Notify if the min or max value changed
255         if ((old_min_value != min_value_) || (old_max_value != max_value_))
256                 owner_.min_max_changed(min_value_, max_value_);
257 }
258
259 } // namespace data
260 } // namespace pv