]> sigrok.org Git - pulseview.git/blob - pv/data/analogsegment.cpp
b1aa56434be2c38b4b8166cf977396c37110333f
[pulseview.git] / pv / data / analogsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <assert.h>
23 #include <string.h>
24 #include <stdlib.h>
25 #include <cmath>
26
27 #include <algorithm>
28
29 #include "analogsegment.hpp"
30
31 using std::lock_guard;
32 using std::recursive_mutex;
33 using std::max;
34 using std::max_element;
35 using std::min;
36 using std::min_element;
37
38 namespace pv {
39 namespace data {
40
41 const int AnalogSegment::EnvelopeScalePower = 4;
42 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
43 const float AnalogSegment::LogEnvelopeScaleFactor =
44         logf(EnvelopeScaleFactor);
45 const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024;       // bytes
46
47 AnalogSegment::AnalogSegment(
48         uint64_t samplerate, const uint64_t expected_num_samples) :
49         Segment(samplerate, sizeof(float))
50 {
51         set_capacity(expected_num_samples);
52
53         lock_guard<recursive_mutex> lock(mutex_);
54         memset(envelope_levels_, 0, sizeof(envelope_levels_));
55 }
56
57 AnalogSegment::~AnalogSegment()
58 {
59         lock_guard<recursive_mutex> lock(mutex_);
60         for (Envelope &e : envelope_levels_)
61                 free(e.samples);
62 }
63
64 void AnalogSegment::append_interleaved_samples(const float *data,
65         size_t sample_count, size_t stride)
66 {
67         assert(unit_size_ == sizeof(float));
68
69         lock_guard<recursive_mutex> lock(mutex_);
70
71         // If we're out of memory, this will throw std::bad_alloc
72         data_.resize((sample_count_ + sample_count) * sizeof(float));
73
74         float *dst = (float*)data_.data() + sample_count_;
75         const float *dst_end = dst + sample_count;
76         while (dst != dst_end) {
77                 *dst++ = *data;
78                 data += stride;
79         }
80
81         sample_count_ += sample_count;
82
83         // Generate the first mip-map from the data
84         append_payload_to_envelope_levels();
85 }
86
87 const float* AnalogSegment::get_samples(
88         int64_t start_sample, int64_t end_sample) const
89 {
90         assert(start_sample >= 0);
91         assert(start_sample < (int64_t)sample_count_);
92         assert(end_sample >= 0);
93         assert(end_sample < (int64_t)sample_count_);
94         assert(start_sample <= end_sample);
95
96         lock_guard<recursive_mutex> lock(mutex_);
97
98         float *const data = new float[end_sample - start_sample];
99         memcpy(data, (float*)data_.data() + start_sample, sizeof(float) *
100                 (end_sample - start_sample));
101         return data;
102 }
103
104 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
105         uint64_t start, uint64_t end, float min_length) const
106 {
107         assert(end <= get_sample_count());
108         assert(start <= end);
109         assert(min_length > 0);
110
111         lock_guard<recursive_mutex> lock(mutex_);
112
113         const unsigned int min_level = max((int)floorf(logf(min_length) /
114                 LogEnvelopeScaleFactor) - 1, 0);
115         const unsigned int scale_power = (min_level + 1) *
116                 EnvelopeScalePower;
117         start >>= scale_power;
118         end >>= scale_power;
119
120         s.start = start << scale_power;
121         s.scale = 1 << scale_power;
122         s.length = end - start;
123         s.samples = new EnvelopeSample[s.length];
124         memcpy(s.samples, envelope_levels_[min_level].samples + start,
125                 s.length * sizeof(EnvelopeSample));
126 }
127
128 void AnalogSegment::reallocate_envelope(Envelope &e)
129 {
130         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
131                 EnvelopeDataUnit) * EnvelopeDataUnit;
132         if (new_data_length > e.data_length) {
133                 e.data_length = new_data_length;
134                 e.samples = (EnvelopeSample*)realloc(e.samples,
135                         new_data_length * sizeof(EnvelopeSample));
136         }
137 }
138
139 void AnalogSegment::append_payload_to_envelope_levels()
140 {
141         Envelope &e0 = envelope_levels_[0];
142         uint64_t prev_length;
143         EnvelopeSample *dest_ptr;
144
145         // Expand the data buffer to fit the new samples
146         prev_length = e0.length;
147         e0.length = sample_count_ / EnvelopeScaleFactor;
148
149         // Break off if there are no new samples to compute
150         if (e0.length == prev_length)
151                 return;
152
153         reallocate_envelope(e0);
154
155         dest_ptr = e0.samples + prev_length;
156
157         // Iterate through the samples to populate the first level mipmap
158         const float *const end_src_ptr = (float*)data_.data() +
159                 e0.length * EnvelopeScaleFactor;
160         for (const float *src_ptr = (float*)data_.data() +
161                         prev_length * EnvelopeScaleFactor;
162                         src_ptr < end_src_ptr; src_ptr += EnvelopeScaleFactor) {
163                 const EnvelopeSample sub_sample = {
164                         *min_element(src_ptr, src_ptr + EnvelopeScaleFactor),
165                         *max_element(src_ptr, src_ptr + EnvelopeScaleFactor),
166                 };
167
168                 *dest_ptr++ = sub_sample;
169         }
170
171         // Compute higher level mipmaps
172         for (unsigned int level = 1; level < ScaleStepCount; level++) {
173                 Envelope &e = envelope_levels_[level];
174                 const Envelope &el = envelope_levels_[level-1];
175
176                 // Expand the data buffer to fit the new samples
177                 prev_length = e.length;
178                 e.length = el.length / EnvelopeScaleFactor;
179
180                 // Break off if there are no more samples to computed
181                 if (e.length == prev_length)
182                         break;
183
184                 reallocate_envelope(e);
185
186                 // Subsample the level lower level
187                 const EnvelopeSample *src_ptr =
188                         el.samples + prev_length * EnvelopeScaleFactor;
189                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
190                 for (dest_ptr = e.samples + prev_length;
191                                 dest_ptr < end_dest_ptr; dest_ptr++) {
192                         const EnvelopeSample *const end_src_ptr =
193                                 src_ptr + EnvelopeScaleFactor;
194
195                         EnvelopeSample sub_sample = *src_ptr++;
196                         while (src_ptr < end_src_ptr) {
197                                 sub_sample.min = min(sub_sample.min, src_ptr->min);
198                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
199                                 src_ptr++;
200                         }
201
202                         *dest_ptr = sub_sample;
203                 }
204         }
205 }
206
207 } // namespace data
208 } // namespace pv