]> sigrok.org Git - pulseview.git/blob - pv/data/analogsegment.cpp
LogicSegment: Make constructor and append_payload() more generic
[pulseview.git] / pv / data / analogsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cstring>
24 #include <cstdlib>
25 #include <cmath>
26
27 #include <algorithm>
28
29 #include "analog.hpp"
30 #include "analogsegment.hpp"
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::make_pair;
35 using std::max;
36 using std::max_element;
37 using std::min;
38 using std::min_element;
39 using std::pair;
40
41 namespace pv {
42 namespace data {
43
44 const int AnalogSegment::EnvelopeScalePower = 4;
45 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
46 const float AnalogSegment::LogEnvelopeScaleFactor =
47         logf(EnvelopeScaleFactor);
48 const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024;       // bytes
49
50 AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) :
51         Segment(samplerate, sizeof(float)),
52         owner_(owner),
53         min_value_(0),
54         max_value_(0)
55 {
56         lock_guard<recursive_mutex> lock(mutex_);
57         memset(envelope_levels_, 0, sizeof(envelope_levels_));
58 }
59
60 AnalogSegment::~AnalogSegment()
61 {
62         lock_guard<recursive_mutex> lock(mutex_);
63         for (Envelope &e : envelope_levels_)
64                 free(e.samples);
65 }
66
67 void AnalogSegment::append_interleaved_samples(const float *data,
68         size_t sample_count, size_t stride)
69 {
70         assert(unit_size_ == sizeof(float));
71
72         lock_guard<recursive_mutex> lock(mutex_);
73
74         uint64_t prev_sample_count = sample_count_;
75
76         for (uint32_t i=0; i < sample_count; i++) {
77                 append_single_sample((void*)data);
78                 data += stride;
79         }
80
81         // Generate the first mip-map from the data
82         append_payload_to_envelope_levels();
83
84         if (sample_count > 1)
85                 owner_.notify_samples_added(this, prev_sample_count + 1,
86                         prev_sample_count + 1 + sample_count);
87         else
88                 owner_.notify_samples_added(this, prev_sample_count + 1,
89                         prev_sample_count + 1);
90 }
91
92 const float* AnalogSegment::get_samples(
93         int64_t start_sample, int64_t end_sample) const
94 {
95         assert(start_sample >= 0);
96         assert(start_sample < (int64_t)sample_count_);
97         assert(end_sample >= 0);
98         assert(end_sample < (int64_t)sample_count_);
99         assert(start_sample <= end_sample);
100
101         lock_guard<recursive_mutex> lock(mutex_);
102
103         return (float*)get_raw_samples(start_sample, (end_sample - start_sample));
104 }
105
106 const pair<float, float> AnalogSegment::get_min_max() const
107 {
108         return make_pair(min_value_, max_value_);
109 }
110
111 SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start)
112 {
113         return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start);
114 }
115
116 void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase)
117 {
118         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
119 }
120
121 void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it)
122 {
123         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
124 }
125
126 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
127         uint64_t start, uint64_t end, float min_length) const
128 {
129         assert(end <= get_sample_count());
130         assert(start <= end);
131         assert(min_length > 0);
132
133         lock_guard<recursive_mutex> lock(mutex_);
134
135         const unsigned int min_level = max((int)floorf(logf(min_length) /
136                 LogEnvelopeScaleFactor) - 1, 0);
137         const unsigned int scale_power = (min_level + 1) *
138                 EnvelopeScalePower;
139         start >>= scale_power;
140         end >>= scale_power;
141
142         s.start = start << scale_power;
143         s.scale = 1 << scale_power;
144         s.length = end - start;
145         s.samples = new EnvelopeSample[s.length];
146         memcpy(s.samples, envelope_levels_[min_level].samples + start,
147                 s.length * sizeof(EnvelopeSample));
148 }
149
150 void AnalogSegment::reallocate_envelope(Envelope &e)
151 {
152         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
153                 EnvelopeDataUnit) * EnvelopeDataUnit;
154         if (new_data_length > e.data_length) {
155                 e.data_length = new_data_length;
156                 e.samples = (EnvelopeSample*)realloc(e.samples,
157                         new_data_length * sizeof(EnvelopeSample));
158         }
159 }
160
161 void AnalogSegment::append_payload_to_envelope_levels()
162 {
163         Envelope &e0 = envelope_levels_[0];
164         uint64_t prev_length;
165         EnvelopeSample *dest_ptr;
166         SegmentRawDataIterator* it;
167
168         // Expand the data buffer to fit the new samples
169         prev_length = e0.length;
170         e0.length = sample_count_ / EnvelopeScaleFactor;
171
172         // Calculate min/max values in case we have too few samples for an envelope
173         if (sample_count_ < EnvelopeScaleFactor) {
174                 it = begin_raw_sample_iteration(0);
175                 for (uint64_t i = 0; i < sample_count_; i++) {
176                         const float sample = *((float*)it->value);
177                         if (sample < min_value_) min_value_ = sample;
178                         if (sample > max_value_) max_value_ = sample;
179                         continue_raw_sample_iteration(it, 1);
180                 }
181                 end_raw_sample_iteration(it);
182         }
183
184         // Break off if there are no new samples to compute
185         if (e0.length == prev_length)
186                 return;
187
188         reallocate_envelope(e0);
189
190         dest_ptr = e0.samples + prev_length;
191
192         // Iterate through the samples to populate the first level mipmap
193         uint64_t start_sample = prev_length * EnvelopeScaleFactor;
194         uint64_t end_sample   = e0.length * EnvelopeScaleFactor;
195
196         it = begin_raw_sample_iteration(start_sample);
197         for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
198                 const float* samples = (float*)it->value;
199
200                 const EnvelopeSample sub_sample = {
201                         *min_element(samples, samples + EnvelopeScaleFactor),
202                         *max_element(samples, samples + EnvelopeScaleFactor),
203                 };
204
205                 if (sub_sample.min < min_value_) min_value_ = sub_sample.min;
206                 if (sub_sample.max > max_value_) max_value_ = sub_sample.max;
207
208                 continue_raw_sample_iteration(it, EnvelopeScaleFactor);
209                 *dest_ptr++ = sub_sample;
210         }
211         end_raw_sample_iteration(it);
212
213         // Compute higher level mipmaps
214         for (unsigned int level = 1; level < ScaleStepCount; level++) {
215                 Envelope &e = envelope_levels_[level];
216                 const Envelope &el = envelope_levels_[level-1];
217
218                 // Expand the data buffer to fit the new samples
219                 prev_length = e.length;
220                 e.length = el.length / EnvelopeScaleFactor;
221
222                 // Break off if there are no more samples to be computed
223                 if (e.length == prev_length)
224                         break;
225
226                 reallocate_envelope(e);
227
228                 // Subsample the lower level
229                 const EnvelopeSample *src_ptr =
230                         el.samples + prev_length * EnvelopeScaleFactor;
231                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
232
233                 for (dest_ptr = e.samples + prev_length;
234                                 dest_ptr < end_dest_ptr; dest_ptr++) {
235                         const EnvelopeSample *const end_src_ptr =
236                                 src_ptr + EnvelopeScaleFactor;
237
238                         EnvelopeSample sub_sample = *src_ptr++;
239                         while (src_ptr < end_src_ptr) {
240                                 sub_sample.min = min(sub_sample.min, src_ptr->min);;
241                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
242                                 src_ptr++;
243                         }
244
245                         *dest_ptr = sub_sample;
246                 }
247         }
248 }
249
250 } // namespace data
251 } // namespace pv