]> sigrok.org Git - pulseview.git/blob - pv/data/analogsegment.cpp
Remove DecodeStack dependency from decode binding wrapper
[pulseview.git] / pv / data / analogsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cmath>
24 #include <cstdlib>
25 #include <cstring>
26 #include <memory>
27
28 #include <algorithm>
29
30 #include "analog.hpp"
31 #include "analogsegment.hpp"
32
33 using std::lock_guard;
34 using std::recursive_mutex;
35 using std::make_pair;
36 using std::max;
37 using std::max_element;
38 using std::min;
39 using std::min_element;
40 using std::pair;
41 using std::unique_ptr;
42
43 namespace pv {
44 namespace data {
45
46 const int AnalogSegment::EnvelopeScalePower = 4;
47 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
48 const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
49 const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024;     // bytes
50
51 AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) :
52         Segment(samplerate, sizeof(float)),
53         owner_(owner),
54         min_value_(0),
55         max_value_(0)
56 {
57         lock_guard<recursive_mutex> lock(mutex_);
58         memset(envelope_levels_, 0, sizeof(envelope_levels_));
59 }
60
61 AnalogSegment::~AnalogSegment()
62 {
63         lock_guard<recursive_mutex> lock(mutex_);
64         for (Envelope &e : envelope_levels_)
65                 free(e.samples);
66 }
67
68 void AnalogSegment::append_interleaved_samples(const float *data,
69         size_t sample_count, size_t stride)
70 {
71         assert(unit_size_ == sizeof(float));
72
73         lock_guard<recursive_mutex> lock(mutex_);
74
75         uint64_t prev_sample_count = sample_count_;
76
77         // Deinterleave the samples and add them
78         unique_ptr<float> deint_data(new float[sample_count]);
79         float *deint_data_ptr = deint_data.get();
80         for (uint32_t i = 0; i < sample_count; i++) {
81                 *deint_data_ptr = (float)(*data);
82                 deint_data_ptr++;
83                 data += stride;
84         }
85
86         append_samples(deint_data.get(), sample_count);
87
88         // Generate the first mip-map from the data
89         append_payload_to_envelope_levels();
90
91         if (sample_count > 1)
92                 owner_.notify_samples_added(this, prev_sample_count + 1,
93                         prev_sample_count + 1 + sample_count);
94         else
95                 owner_.notify_samples_added(this, prev_sample_count + 1,
96                         prev_sample_count + 1);
97 }
98
99 const float* AnalogSegment::get_samples(
100         int64_t start_sample, int64_t end_sample) const
101 {
102         assert(start_sample >= 0);
103         assert(start_sample < (int64_t)sample_count_);
104         assert(end_sample >= 0);
105         assert(end_sample < (int64_t)sample_count_);
106         assert(start_sample <= end_sample);
107
108         lock_guard<recursive_mutex> lock(mutex_);
109
110         return (float*)get_raw_samples(start_sample, (end_sample - start_sample));
111 }
112
113 const pair<float, float> AnalogSegment::get_min_max() const
114 {
115         return make_pair(min_value_, max_value_);
116 }
117
118 SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start)
119 {
120         return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start);
121 }
122
123 void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase)
124 {
125         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
126 }
127
128 void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it)
129 {
130         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
131 }
132
133 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
134         uint64_t start, uint64_t end, float min_length) const
135 {
136         assert(end <= get_sample_count());
137         assert(start <= end);
138         assert(min_length > 0);
139
140         lock_guard<recursive_mutex> lock(mutex_);
141
142         const unsigned int min_level = max((int)floorf(logf(min_length) /
143                 LogEnvelopeScaleFactor) - 1, 0);
144         const unsigned int scale_power = (min_level + 1) *
145                 EnvelopeScalePower;
146         start >>= scale_power;
147         end >>= scale_power;
148
149         s.start = start << scale_power;
150         s.scale = 1 << scale_power;
151         s.length = end - start;
152         s.samples = new EnvelopeSample[s.length];
153         memcpy(s.samples, envelope_levels_[min_level].samples + start,
154                 s.length * sizeof(EnvelopeSample));
155 }
156
157 void AnalogSegment::reallocate_envelope(Envelope &e)
158 {
159         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
160                 EnvelopeDataUnit) * EnvelopeDataUnit;
161         if (new_data_length > e.data_length) {
162                 e.data_length = new_data_length;
163                 e.samples = (EnvelopeSample*)realloc(e.samples,
164                         new_data_length * sizeof(EnvelopeSample));
165         }
166 }
167
168 void AnalogSegment::append_payload_to_envelope_levels()
169 {
170         Envelope &e0 = envelope_levels_[0];
171         uint64_t prev_length;
172         EnvelopeSample *dest_ptr;
173         SegmentRawDataIterator* it;
174
175         // Expand the data buffer to fit the new samples
176         prev_length = e0.length;
177         e0.length = sample_count_ / EnvelopeScaleFactor;
178
179         // Calculate min/max values in case we have too few samples for an envelope
180         if (sample_count_ < EnvelopeScaleFactor) {
181                 it = begin_raw_sample_iteration(0);
182                 for (uint64_t i = 0; i < sample_count_; i++) {
183                         const float sample = *((float*)it->value);
184                         if (sample < min_value_)
185                                 min_value_ = sample;
186                         if (sample > max_value_)
187                                 max_value_ = sample;
188                         continue_raw_sample_iteration(it, 1);
189                 }
190                 end_raw_sample_iteration(it);
191         }
192
193         // Break off if there are no new samples to compute
194         if (e0.length == prev_length)
195                 return;
196
197         reallocate_envelope(e0);
198
199         dest_ptr = e0.samples + prev_length;
200
201         // Iterate through the samples to populate the first level mipmap
202         uint64_t start_sample = prev_length * EnvelopeScaleFactor;
203         uint64_t end_sample = e0.length * EnvelopeScaleFactor;
204
205         it = begin_raw_sample_iteration(start_sample);
206         for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
207                 const float* samples = (float*)it->value;
208
209                 const EnvelopeSample sub_sample = {
210                         *min_element(samples, samples + EnvelopeScaleFactor),
211                         *max_element(samples, samples + EnvelopeScaleFactor),
212                 };
213
214                 if (sub_sample.min < min_value_)
215                         min_value_ = sub_sample.min;
216                 if (sub_sample.max > max_value_)
217                         max_value_ = sub_sample.max;
218
219                 continue_raw_sample_iteration(it, EnvelopeScaleFactor);
220                 *dest_ptr++ = sub_sample;
221         }
222         end_raw_sample_iteration(it);
223
224         // Compute higher level mipmaps
225         for (unsigned int level = 1; level < ScaleStepCount; level++) {
226                 Envelope &e = envelope_levels_[level];
227                 const Envelope &el = envelope_levels_[level - 1];
228
229                 // Expand the data buffer to fit the new samples
230                 prev_length = e.length;
231                 e.length = el.length / EnvelopeScaleFactor;
232
233                 // Break off if there are no more samples to be computed
234                 if (e.length == prev_length)
235                         break;
236
237                 reallocate_envelope(e);
238
239                 // Subsample the lower level
240                 const EnvelopeSample *src_ptr =
241                         el.samples + prev_length * EnvelopeScaleFactor;
242                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
243
244                 for (dest_ptr = e.samples + prev_length;
245                                 dest_ptr < end_dest_ptr; dest_ptr++) {
246                         const EnvelopeSample *const end_src_ptr =
247                                 src_ptr + EnvelopeScaleFactor;
248
249                         EnvelopeSample sub_sample = *src_ptr++;
250                         while (src_ptr < end_src_ptr) {
251                                 sub_sample.min = min(sub_sample.min, src_ptr->min);;
252                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
253                                 src_ptr++;
254                         }
255
256                         *dest_ptr = sub_sample;
257                 }
258         }
259 }
260
261 } // namespace data
262 } // namespace pv