]> sigrok.org Git - pulseview.git/blob - pv/data/analogsegment.cpp
SignalBase: Also emit data related signals
[pulseview.git] / pv / data / analogsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <cassert>
23 #include <cmath>
24 #include <cstdlib>
25 #include <cstring>
26
27 #include <algorithm>
28
29 #include "analog.hpp"
30 #include "analogsegment.hpp"
31
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::make_pair;
35 using std::max;
36 using std::max_element;
37 using std::min;
38 using std::min_element;
39 using std::pair;
40
41 namespace pv {
42 namespace data {
43
44 const int AnalogSegment::EnvelopeScalePower = 4;
45 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
46 const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
47 const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024;     // bytes
48
49 AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) :
50         Segment(samplerate, sizeof(float)),
51         owner_(owner),
52         min_value_(0),
53         max_value_(0)
54 {
55         lock_guard<recursive_mutex> lock(mutex_);
56         memset(envelope_levels_, 0, sizeof(envelope_levels_));
57 }
58
59 AnalogSegment::~AnalogSegment()
60 {
61         lock_guard<recursive_mutex> lock(mutex_);
62         for (Envelope &e : envelope_levels_)
63                 free(e.samples);
64 }
65
66 void AnalogSegment::append_interleaved_samples(const float *data,
67         size_t sample_count, size_t stride)
68 {
69         assert(unit_size_ == sizeof(float));
70
71         lock_guard<recursive_mutex> lock(mutex_);
72
73         uint64_t prev_sample_count = sample_count_;
74
75         for (uint32_t i = 0; i < sample_count; i++) {
76                 append_single_sample((void*)data);
77                 data += stride;
78         }
79
80         // Generate the first mip-map from the data
81         append_payload_to_envelope_levels();
82
83         if (sample_count > 1)
84                 owner_.notify_samples_added(this, prev_sample_count + 1,
85                         prev_sample_count + 1 + sample_count);
86         else
87                 owner_.notify_samples_added(this, prev_sample_count + 1,
88                         prev_sample_count + 1);
89 }
90
91 const float* AnalogSegment::get_samples(
92         int64_t start_sample, int64_t end_sample) const
93 {
94         assert(start_sample >= 0);
95         assert(start_sample < (int64_t)sample_count_);
96         assert(end_sample >= 0);
97         assert(end_sample < (int64_t)sample_count_);
98         assert(start_sample <= end_sample);
99
100         lock_guard<recursive_mutex> lock(mutex_);
101
102         return (float*)get_raw_samples(start_sample, (end_sample - start_sample));
103 }
104
105 const pair<float, float> AnalogSegment::get_min_max() const
106 {
107         return make_pair(min_value_, max_value_);
108 }
109
110 SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start)
111 {
112         return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start);
113 }
114
115 void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase)
116 {
117         Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
118 }
119
120 void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it)
121 {
122         Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
123 }
124
125 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
126         uint64_t start, uint64_t end, float min_length) const
127 {
128         assert(end <= get_sample_count());
129         assert(start <= end);
130         assert(min_length > 0);
131
132         lock_guard<recursive_mutex> lock(mutex_);
133
134         const unsigned int min_level = max((int)floorf(logf(min_length) /
135                 LogEnvelopeScaleFactor) - 1, 0);
136         const unsigned int scale_power = (min_level + 1) *
137                 EnvelopeScalePower;
138         start >>= scale_power;
139         end >>= scale_power;
140
141         s.start = start << scale_power;
142         s.scale = 1 << scale_power;
143         s.length = end - start;
144         s.samples = new EnvelopeSample[s.length];
145         memcpy(s.samples, envelope_levels_[min_level].samples + start,
146                 s.length * sizeof(EnvelopeSample));
147 }
148
149 void AnalogSegment::reallocate_envelope(Envelope &e)
150 {
151         const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
152                 EnvelopeDataUnit) * EnvelopeDataUnit;
153         if (new_data_length > e.data_length) {
154                 e.data_length = new_data_length;
155                 e.samples = (EnvelopeSample*)realloc(e.samples,
156                         new_data_length * sizeof(EnvelopeSample));
157         }
158 }
159
160 void AnalogSegment::append_payload_to_envelope_levels()
161 {
162         Envelope &e0 = envelope_levels_[0];
163         uint64_t prev_length;
164         EnvelopeSample *dest_ptr;
165         SegmentRawDataIterator* it;
166
167         // Expand the data buffer to fit the new samples
168         prev_length = e0.length;
169         e0.length = sample_count_ / EnvelopeScaleFactor;
170
171         // Calculate min/max values in case we have too few samples for an envelope
172         if (sample_count_ < EnvelopeScaleFactor) {
173                 it = begin_raw_sample_iteration(0);
174                 for (uint64_t i = 0; i < sample_count_; i++) {
175                         const float sample = *((float*)it->value);
176                         if (sample < min_value_)
177                                 min_value_ = sample;
178                         if (sample > max_value_)
179                                 max_value_ = sample;
180                         continue_raw_sample_iteration(it, 1);
181                 }
182                 end_raw_sample_iteration(it);
183         }
184
185         // Break off if there are no new samples to compute
186         if (e0.length == prev_length)
187                 return;
188
189         reallocate_envelope(e0);
190
191         dest_ptr = e0.samples + prev_length;
192
193         // Iterate through the samples to populate the first level mipmap
194         uint64_t start_sample = prev_length * EnvelopeScaleFactor;
195         uint64_t end_sample = e0.length * EnvelopeScaleFactor;
196
197         it = begin_raw_sample_iteration(start_sample);
198         for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
199                 const float* samples = (float*)it->value;
200
201                 const EnvelopeSample sub_sample = {
202                         *min_element(samples, samples + EnvelopeScaleFactor),
203                         *max_element(samples, samples + EnvelopeScaleFactor),
204                 };
205
206                 if (sub_sample.min < min_value_)
207                         min_value_ = sub_sample.min;
208                 if (sub_sample.max > max_value_)
209                         max_value_ = sub_sample.max;
210
211                 continue_raw_sample_iteration(it, EnvelopeScaleFactor);
212                 *dest_ptr++ = sub_sample;
213         }
214         end_raw_sample_iteration(it);
215
216         // Compute higher level mipmaps
217         for (unsigned int level = 1; level < ScaleStepCount; level++) {
218                 Envelope &e = envelope_levels_[level];
219                 const Envelope &el = envelope_levels_[level - 1];
220
221                 // Expand the data buffer to fit the new samples
222                 prev_length = e.length;
223                 e.length = el.length / EnvelopeScaleFactor;
224
225                 // Break off if there are no more samples to be computed
226                 if (e.length == prev_length)
227                         break;
228
229                 reallocate_envelope(e);
230
231                 // Subsample the lower level
232                 const EnvelopeSample *src_ptr =
233                         el.samples + prev_length * EnvelopeScaleFactor;
234                 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
235
236                 for (dest_ptr = e.samples + prev_length;
237                                 dest_ptr < end_dest_ptr; dest_ptr++) {
238                         const EnvelopeSample *const end_src_ptr =
239                                 src_ptr + EnvelopeScaleFactor;
240
241                         EnvelopeSample sub_sample = *src_ptr++;
242                         while (src_ptr < end_src_ptr) {
243                                 sub_sample.min = min(sub_sample.min, src_ptr->min);;
244                                 sub_sample.max = max(sub_sample.max, src_ptr->max);
245                                 src_ptr++;
246                         }
247
248                         *dest_ptr = sub_sample;
249                 }
250         }
251 }
252
253 } // namespace data
254 } // namespace pv