From f8cc803b1fa51036be16115bff809cdacecaffd5 Mon Sep 17 00:00:00 2001 From: Mike Jagdis Date: Wed, 8 Aug 2018 09:58:02 +0100 Subject: [PATCH] Decoder for STM8 series MCUs SWIM protocol. Signed-off-by: Mike Jagdis (github: mjagdis) --- decoders/swim/__init__.py | 29 ++++ decoders/swim/pd.py | 306 ++++++++++++++++++++++++++++++++++++++ 2 files changed, 335 insertions(+) create mode 100644 decoders/swim/__init__.py create mode 100644 decoders/swim/pd.py diff --git a/decoders/swim/__init__.py b/decoders/swim/__init__.py new file mode 100644 index 0000000..cd18b85 --- /dev/null +++ b/decoders/swim/__init__.py @@ -0,0 +1,29 @@ +## +## This file is part of the libsigrokdecode project. +## +## Copyright (C) 2018 Mike Jagdis +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, write to the Free Software +## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## + +''' +SWIM is a single wire interface for STM8 series 8-bit microcontrollers +that allows non-intrusive read/wite access to be performed on-the-fly +to the memory and registers of the MCU for debug and flashing purposes. + +See the STMicroelectronics document UM0470 for details. +''' + +from .pd import Decoder diff --git a/decoders/swim/pd.py b/decoders/swim/pd.py new file mode 100644 index 0000000..462779b --- /dev/null +++ b/decoders/swim/pd.py @@ -0,0 +1,306 @@ +## +## This file is part of the libsigrokdecode project. +## +## Copyright (C) 2018 Mike Jagdis +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, write to the Free Software +## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## + +import math +import sigrokdecode as srd + +class SamplerateError(Exception): + pass + +class Decoder(srd.Decoder): + api_version = 3 + id = 'swim' + name = 'SWIM' + longname = 'STM8 SWIM bus' + desc = 'STM8 Single Wire Interface Module (SWIM) protocol.' + license = 'gplv2+' + inputs = ['logic'] + outputs = [] + options = ( + {'id': 'debug', 'desc': 'Debug', 'default': 'no', 'values': ('yes', 'no') }, + ) + channels = ( + {'id': 'swim', 'name': 'SWIM', 'desc': 'SWIM data line'}, + ) + annotations = ( + ('bit', 'Bit'), + ('enterseq', 'SWIM enter sequence'), + ('start-host', 'Start bit (host)'), + ('start-target', 'Start bit (target)'), + ('parity', 'Parity bit'), + ('ack', 'Acknowledgement'), + ('nack', 'Negative acknowledgement'), + ('byte-write', 'Byte write'), + ('byte-read', 'Byte read'), + ('cmd-unknown', 'Unknown SWIM command'), + ('cmd', 'SWIM command'), + ('bytes', 'Byte count'), + ('address', 'Address'), + ('data-write', 'Data write'), + ('data-read', 'Data read'), + ('debug', 'Debug'), + ) + annotation_rows = ( + ('bits', 'Bits', (0,)), + ('framing', 'Framing', (2, 3, 4, 5, 6, 7, 8)), + ('protocol', 'Protocol', (1, 9, 10, 11, 12, 13, 14)), + ('debug', 'Debug', (15,)), + ) + binary = ( + ('tx', 'Dump of data written to target'), + ('rx', 'Dump of data read from target'), + ) + + def __init__(self): + # SWIM clock for the target is normally HSI/2 where HSI is 8MHz +- 5% + # although the divisor can be removed by setting the SWIMCLK bit in + # the CLK_SWIMCCR register. There is no standard for the host so we + # will be generous and assume it is using an 8MHz +- 10% oscillator. + # We do not need to be accurate. We just need to avoid treating enter + # sequence pulses as bits. A synchronization frame will cause this + # to be adjusted. + self.HSI = 8000000 + self.HSI_min = self.HSI * 0.9 + self.HSI_max = self.HSI * 1.1 + self.swim_clock = self.HSI_min / 2 + + self.eseq_edge = [[-1, None], [-1, None]] + self.eseq_pairnum = 0 + self.eseq_pairstart = None + + self.reset() + + def reset(self): + self.bit_edge = [[-1, None], [-1, None]] + self.bit_maxlen = -1 + self.bitseq_len = 0 + self.bitseq_end = None + self.proto_state = 'CMD' + + def metadata(self, key, value): + if key == srd.SRD_CONF_SAMPLERATE: + self.samplerate = value + + def adjust_timings(self): + # A low-speed bit is 22 SWIM clocks long. + # There are options to shorten bits to 10 clocks or use HSI rather + # than HSI/2 as the SWIM clock but the longest valid bit should be no + # more than this many samples. This does not need to be accurate. + # It exists simply to prevent bits extending unecessarily far into + # trailing bus-idle periods. This will be adjusted every time we see + # a synchronization frame or start bit in order to show idle periods + # as accurately as possible. + self.bit_reflen = math.ceil(self.samplerate * 22 / self.swim_clock) + + def start(self): + self.out_ann = self.register(srd.OUTPUT_ANN) + self.out_binary = self.register(srd.OUTPUT_BINARY) + + if not self.samplerate: + raise SamplerateError('Cannot decode without samplerate.') + + # A synchronization frame is a low that lasts for more than 64 but no + # more than 128 SWIM clock periods based on the standard SWIM clock. + # Note: we also allow for the possibility that the SWIM clock divisor + # has been disabled here. + self.sync_reflen_min = math.floor(self.samplerate * 64 / self.HSI_max) + self.sync_reflen_max = math.ceil(self.samplerate * 128 / (self.HSI_min / 2)) + + if self.options['debug'] == 'yes': + self.debug = True + else: + self.debug = False + + # The SWIM entry sequence is 4 pulses at 2kHz followed by 4 at 1kHz. + self.eseq_reflen = math.ceil(self.samplerate / 2048) + + self.adjust_timings() + + def protocol(self): + if self.proto_state == 'CMD': + # Command + if self.bitseq_value == 0x00: + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['system reset', 'SRST', '!']]) + elif self.bitseq_value == 0x01: + self.proto_state = 'N' + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['read on-the-fly', 'ROTF', 'r']]) + elif self.bitseq_value == 0x02: + self.proto_state = 'N' + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['write on-the-fly', 'WOTF', 'w']]) + else: + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [9, ['unknown', 'UNK']]) + elif self.proto_state == 'N': + # Number of bytes + self.proto_byte_count = self.bitseq_value + self.proto_state = '@E' + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [11, ['byte count 0x%02x' % self.bitseq_value, 'bytes 0x%02x' % self.bitseq_value, '0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]]) + elif self.proto_state == '@E': + # Address byte 1 + self.proto_addr = self.bitseq_value + self.proto_addr_start = self.bitseq_start + self.proto_state = '@H' + elif self.proto_state == '@H': + # Address byte 2 + self.proto_addr = (self.proto_addr << 8) | self.bitseq_value + self.proto_state = '@L' + elif self.proto_state == '@L': + # Address byte 3 + self.proto_addr = (self.proto_addr << 8) | self.bitseq_value + self.proto_state = 'D' + self.put(self.proto_addr_start, self.bitseq_end, self.out_ann, [12, ['address 0x%06x' % self.proto_addr, 'addr 0x%06x' % self.proto_addr, '0x%06x' % self.proto_addr, '%06x' %self.proto_addr, '%x' % self.proto_addr]]) + else: + if self.proto_byte_count > 0: + self.proto_byte_count -= 1 + if self.proto_byte_count == 0: + self.proto_state = 'CMD' + + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [13 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]]) + self.put(self.bitseq_start, self.bitseq_end, self.out_binary, [0 + self.bitseq_dir, bytes([self.bitseq_value])]) + if self.debug: + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [15, ['%d more' % self.proto_byte_count, '%d' % self.proto_byte_count]]) + + def bitseq(self, bitstart, bitend, bit): + if self.bitseq_len == 0: + # Looking for start of a bit sequence (command or byte). + self.bit_reflen = bitend - bitstart + self.bitseq_value = 0 + self.bitseq_dir = bit + self.bitseq_len = 1 + self.put(bitstart, bitend, self.out_ann, [2 + self.bitseq_dir, ['start', 's']]) + elif (self.proto_state == 'CMD' and self.bitseq_len == 4) or (self.proto_state != 'CMD' and self.bitseq_len == 9): + # Parity bit + self.bitseq_end = bitstart + self.bitseq_len += 1 + + self.put(bitstart, bitend, self.out_ann, [4, ['parity', 'par', 'p']]) + + # The start bit is not data but was used for parity calculation. + self.bitseq_value &= 0xff + self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [7 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]]) + elif (self.proto_state == 'CMD' and self.bitseq_len == 5) or (self.proto_state != 'CMD' and self.bitseq_len == 10): + # ACK/NACK bit. + if bit: + self.put(bitstart, bitend, self.out_ann, [5, ['ack', 'a']]) + else: + self.put(bitstart, bitend, self.out_ann, [6, ['nack', 'n']]) + + # We only pass data that was ack'd up the stack. + if bit: + self.protocol() + + self.bitseq_len = 0 + else: + if self.bitseq_len == 1: + self.bitseq_start = bitstart + self.bitseq_value = (self.bitseq_value << 1) | bit + self.bitseq_len += 1 + + def bit(self, start, mid, end): + if mid - start >= end - mid: + self.put(start, end, self.out_ann, [0, ['0']]) + bit = 0 + else: + self.put(start, end, self.out_ann, [0, ['1']]) + bit = 1 + + self.bitseq(start, end, bit) + + def detect_synchronize_frame(self, start, end): + # Strictly speaking, synchronization frames are only recognised when + # SWIM is active. A falling edge on reset disables SWIM and an enter + # sequence is needed to re-enable it. However we do not want to be + # reliant on seeing the NRST pin just for that and we also want to be + # able to decode SWIM even if we just sample parts of the dialogue. + # For this reason we limit ourselves to only recognizing + # synchronization frames that have believable lengths based on our + # knowledge of the range of possible SWIM clocks. + if self.samplenum - self.eseq_edge[1][1] >= self.sync_reflen_min and self.samplenum - self.eseq_edge[1][1] <= self.sync_reflen_max: + self.put(self.eseq_edge[1][1], self.samplenum, self.out_ann, [1, ['synchronization frame', 'synchronization', 'sync', 's']]) + + # A low that lasts for more than 64 SWIM clock periods causes a + # reset of the SWIM communication state machine and will switch + # the SWIM to low-speed mode (SWIM_CSR.HS is cleared). + self.reset() + + # The low SHOULD last 128 SWIM clocks. This is used to + # resynchronize in order to allow for variation in the frequency + # of the internal RC oscillator. + self.swim_clock = 128 * (self.samplerate / (self.samplenum - self.eseq_edge[1][1])) + self.adjust_timings() + + def eseq_potential_start(self, start, end): + self.eseq_pairstart = start + self.eseq_reflen = end - start + self.eseq_pairnum = 1 + + def detect_enter_sequence(self, start, end): + # According to the spec the enter sequence is four pulses at 2kHz + # followed by four at 1kHz. We do not check the frequency but simply + # check the lengths of successive pulses against the first. This means + # we have no need to account for the accuracy (or lack of) of the + # host's oscillator. + if self.eseq_pairnum == 0 or abs(self.eseq_reflen - (end - start)) > 2: + self.eseq_potential_start(start, end) + + elif self.eseq_pairnum < 4: + # The next three pulses should be the same length as the first. + self.eseq_pairnum += 1 + + if self.eseq_pairnum == 4: + self.eseq_reflen /= 2 + else: + # The final four pulses should each be half the length of the + # initial pair. Again, a mismatch causes us to reset and use the + # current pulse as a new potential enter sequence start. + self.eseq_pairnum += 1 + if self.eseq_pairnum == 8: + # Four matching pulses followed by four more that match each + # other but are half the length of the first 4. SWIM is active! + self.put(self.eseq_pairstart, end, self.out_ann, [1, ['enter sequence', 'enter seq', 'enter', 'ent', 'e']]) + self.eseq_pairnum = 0 + + def decode(self): + while True: + if self.bit_maxlen >= 0: + (swim,) = self.wait() + self.bit_maxlen -= 1 + else: + (swim,) = self.wait({0: 'e'}) + + if swim != self.eseq_edge[1][0]: + if swim == 1 and self.eseq_edge[1][1] is not None: + self.detect_synchronize_frame(self.eseq_edge[1][1], self.samplenum) + if self.eseq_edge[0][1] is not None: + self.detect_enter_sequence(self.eseq_edge[0][1], self.samplenum) + self.eseq_edge.pop(0) + self.eseq_edge.append([swim, self.samplenum]) + + if (swim != self.bit_edge[1][0] and (swim != 1 or self.bit_edge[1][0] != -1)) or self.bit_maxlen == 0: + if self.bit_maxlen == 0 and self.bit_edge[1][0] == 1: + swim = -1 + + if self.bit_edge[1][0] != 0 and swim == 0: + self.bit_maxlen = self.bit_reflen + + if self.bit_edge[0][0] == 0 and self.bit_edge[1][0] == 1 and self.samplenum - self.bit_edge[0][1] <= self.bit_reflen + 2: + self.bit(self.bit_edge[0][1], self.bit_edge[1][1], self.samplenum) + + self.bit_edge.pop(0) + self.bit_edge.append([swim, self.samplenum]) -- 2.30.2