From: Uwe Hermann Date: Wed, 7 Dec 2011 01:03:25 +0000 (+0100) Subject: srd: Add initial UART decoder. X-Git-Tag: libsigrokdecode-0.1.0~244 X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=commitdiff_plain;h=f44d2db2a027857bdfbfc18e40b9900cad1b0e1d srd: Add initial UART decoder. Works with any baudrate, number of bits, parity types, number of stop bits and so on, in theory. Not all options are fully implemented or tested though. Various TODOs remain. --- diff --git a/decoders/Makefile.am b/decoders/Makefile.am index 7b1c9a1..0aa1a7d 100644 --- a/decoders/Makefile.am +++ b/decoders/Makefile.am @@ -20,7 +20,14 @@ pkgdatadir = $(DECODERS_DIR) -dist_pkgdata_DATA = i2c.py nunchuk.py transitioncounter.py spi.py srd_usb.py +# Please keep this list in alphabetical order. +dist_pkgdata_DATA = \ + i2c.py \ + nunchuk.py \ + spi.py \ + srd_usb.py \ + transitioncounter.py \ + uart.py CLEANFILES = *.pyc diff --git a/decoders/uart.py b/decoders/uart.py new file mode 100644 index 0000000..ee39697 --- /dev/null +++ b/decoders/uart.py @@ -0,0 +1,367 @@ +## +## This file is part of the sigrok project. +## +## Copyright (C) 2011 Uwe Hermann +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, write to the Free Software +## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## + +# +# UART protocol decoder +# + +import sigrok + +# States +WAIT_FOR_START_BIT = 0 +GET_START_BIT = 1 +GET_DATA_BITS = 2 +GET_PARITY_BIT = 3 +GET_STOP_BITS = 4 + +# Parity options +PARITY_NONE = 0 +PARITY_ODD = 1 +PARITY_EVEN = 2 +PARITY_ZERO = 3 +PARITY_ONE = 4 + +# Stop bit options +STOP_BITS_0_5 = 0 +STOP_BITS_1 = 1 +STOP_BITS_1_5 = 2 +STOP_BITS_2 = 3 + +# Bit order options +LSB_FIRST = 0 +MSB_FIRST = 1 + +# Output data formats +DATA_FORMAT_ASCII = 0 +DATA_FORMAT_HEX = 1 + +# TODO: Remove me later. +quick_hack = 1 + +class Sample(): + def __init__(self, data): + self.data = data + def probe(self, probe): + s = ord(self.data[probe / 8]) & (1 << (probe % 8)) + return True if s else False + +def sampleiter(data, unitsize): + for i in range(0, len(data), unitsize): + yield(Sample(data[i:i+unitsize])) + +# Given a parity type to check (odd, even, zero, one), the value of the +# parity bit, the value of the data, and the length of the data (5-9 bits, +# usually 8 bits) return True if the parity is correct, False otherwise. +# PARITY_NONE is _not_ allowed as value for 'parity_type'. +def parity_ok(parity_type, parity_bit, data, num_data_bits): + + # Handle easy cases first (parity bit is always 1 or 0). + if parity_type == PARITY_ZERO: + return parity_bit == 0 + elif parity_type == PARITY_ONE: + return parity_bit == 1 + + # Count number of 1 (high) bits in the data (and the parity bit itself!). + parity = bin(data).count('1') + parity_bit + + # Check for odd/even parity. + if parity_type == PARITY_ODD: + return (parity % 2) == 1 + elif parity_type == PARITY_EVEN: + return (parity % 2) == 0 + else: + raise Exception('Invalid parity type: %d' % parity_type) + +class Decoder(sigrok.Decoder): + id = 'uart' + name = 'UART' + longname = 'Universal Asynchronous Receiver/Transmitter (UART)' + desc = 'Universal Asynchronous Receiver/Transmitter (UART)' + longdesc = 'TODO.' + author = 'Uwe Hermann' + email = 'uwe@hermann-uwe.de' + license = 'gplv2+' + inputs = ['logic'] + outputs = ['uart'] + probes = { + # Allow specifying only one of the signals, e.g. if only one data + # direction exists (or is relevant). + ## 'rx': {'ch': 0, 'name': 'RX', 'desc': 'UART receive line'}, + ## 'tx': {'ch': 1, 'name': 'TX', 'desc': 'UART transmit line'}, + 'rx': 0, + 'tx': 1, + } + options = { + 'baudrate': ['UART baud rate', 115200], + 'num_data_bits': ['Data bits', 8], # Valid: 5-9. + 'parity': ['Parity', PARITY_NONE], + 'parity_check': ['Check parity', True], + 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1], + 'bit_order': ['Bit order', LSB_FIRST], + 'data_format': ['Output data format', DATA_FORMAT_ASCII], + # TODO: Options to invert the signal(s). + # ... + } + + def __init__(self, **kwargs): + self.probes = Decoder.probes.copy() + + # Set defaults, can be overridden in 'start'. + self.baudrate = 115200 + self.num_data_bits = 8 + self.parity = PARITY_NONE + self.check_parity = True + self.num_stop_bits = 1 + self.bit_order = LSB_FIRST + self.data_format = DATA_FORMAT_ASCII + + self.samplenum = 0 + self.frame_start = -1 + self.startbit = -1 + self.cur_data_bit = 0 + self.databyte = 0 + self.stopbit1 = -1 + self.startsample = -1 + + # Initial state. + self.staterx = WAIT_FOR_START_BIT + + # Get the channel/probe number of the RX/TX signals. + ## self.rx_bit = self.probes['rx']['ch'] + ## self.tx_bit = self.probes['tx']['ch'] + self.rx_bit = self.probes['rx'] + self.tx_bit = self.probes['tx'] + + self.oldrx = None + self.oldtx = None + + def start(self, metadata): + self.unitsize = metadata['unitsize'] + self.samplerate = metadata['samplerate'] + + # TODO + ### self.baudrate = metadata['baudrate'] + ### self.num_data_bits = metadata['num_data_bits'] + ### self.parity = metadata['parity'] + ### self.parity_check = metadata['parity_check'] + ### self.num_stop_bits = metadata['num_stop_bits'] + ### self.bit_order = metadata['bit_order'] + ### self.data_format = metadata['data_format'] + + # The width of one UART bit in number of samples. + self.bit_width = float(self.samplerate) / float(self.baudrate) + + def report(self): + pass + + # Return true if we reached the middle of the desired bit, false otherwise. + def reached_bit(self, bitnum): + # bitpos is the samplenumber which is in the middle of the + # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit + # (if used) or the first stop bit, and so on). + bitpos = self.frame_start + (self.bit_width / 2.0) + bitpos += bitnum * self.bit_width + if self.samplenum >= bitpos: + return True + return False + + def reached_bit_last(self, bitnum): + bitpos = self.frame_start + ((bitnum + 1) * self.bit_width) + if self.samplenum >= bitpos: + return True + return False + + def wait_for_start_bit(self, old_signal, signal): + # The start bit is always 0 (low). As the idle UART (and the stop bit) + # level is 1 (high), the beginning of a start bit is a falling edge. + if not (old_signal == 1 and signal == 0): + return + + # Save the sample number where the start bit begins. + self.frame_start = self.samplenum + + self.staterx = GET_START_BIT + + def get_start_bit(self, signal): + # Skip samples until we're in the middle of the start bit. + if not self.reached_bit(0): + return [] + + self.startbit = signal + + if self.startbit != 0: + # TODO: Startbit must be 0. If not, we report an error. + pass + + self.cur_data_bit = 0 + self.databyte = 0 + self.startsample = -1 + + self.staterx = GET_DATA_BITS + + if quick_hack: # TODO + return [] + + o = [{'type': 'S', 'range': (self.frame_start, self.samplenum), + 'data': None, 'ann': 'Start bit'}] + return o + + def get_data_bits(self, signal): + # Skip samples until we're in the middle of the desired data bit. + if not self.reached_bit(self.cur_data_bit + 1): + return [] + + # Save the sample number where the data byte starts. + if self.startsample == -1: + self.startsample = self.samplenum + + # Get the next data bit in LSB-first or MSB-first fashion. + if self.bit_order == LSB_FIRST: + self.databyte >>= 1 + self.databyte |= (signal << (self.num_data_bits - 1)) + elif self.bit_order == MSB_FIRST: + self.databyte <<= 1 + self.databyte |= (signal << 0) + else: + raise Exception('Invalid bit order value: %d', self.bit_order) + + # Return here, unless we already received all data bits. + if self.cur_data_bit < self.num_data_bits - 1: # TODO? Off-by-one? + self.cur_data_bit += 1 + return [] + + # Convert the data byte into the configured format. + if self.data_format == DATA_FORMAT_ASCII: + d = chr(self.databyte) + elif self.data_format == DATA_FORMAT_HEX: + d = '0x%02x' % self.databyte + else: + raise Exception('Invalid data format value: %d', self.data_format) + + self.staterx = GET_PARITY_BIT + + if quick_hack: # TODO + return [d] + + o = [{'type': 'D', 'range': (self.startsample, self.samplenum - 1), + 'data': d, 'ann': None}] + + return o + + def get_parity_bit(self, signal): + # If no parity is used/configured, skip to the next state immediately. + if self.parity == PARITY_NONE: + self.staterx = GET_STOP_BITS + return [] + + # Skip samples until we're in the middle of the parity bit. + if not self.reached_bit(self.num_data_bits + 1): + return [] + + self.paritybit = signal + + self.staterx = GET_STOP_BITS + + if parity_ok(self.parity, self.paritybit, self.databyte, + self.num_data_bits): + if quick_hack: # TODO + # return ['P'] + return [] + # TODO: Fix range. + o = [{'type': 'P', 'range': (self.samplenum, self.samplenum), + 'data': self.paritybit, 'ann': 'Parity bit'}] + else: + if quick_hack: # TODO + return ['PE'] + o = [{'type': 'PE', 'range': (self.samplenum, self.samplenum), + 'data': self.paritybit, 'ann': 'Parity error'}] + + return o + + # TODO: Currently only supports 1 stop bit. + def get_stop_bits(self, signal): + # Skip samples until we're in the middle of the stop bit(s). + skip_parity = 0 + if self.parity != PARITY_NONE: + skip_parity = 1 + if not self.reached_bit(self.num_data_bits + 1 + skip_parity): + return [] + + self.stopbit1 = signal + + if self.stopbit1 != 1: + # TODO: Stop bits must be 1. If not, we report an error. + pass + + self.staterx = WAIT_FOR_START_BIT + + if quick_hack: # TODO + return [] + + # TODO: Fix range. + o = [{'type': 'P', 'range': (self.samplenum, self.samplenum), + 'data': None, 'ann': 'Stop bit'}] + return o + + def decode(self, data): + """UART protocol decoder""" + + out = [] + + for sample in sampleiter(data["data"], self.unitsize): + + # TODO: Eliminate the need for ord(). + s = ord(sample.data) + + # TODO: Start counting at 0 or 1? Increase before or after? + self.samplenum += 1 + + # First sample: Save RX/TX value. + if self.oldrx == None: + # Get RX/TX bit values (0/1 for low/high) of the first sample. + self.oldrx = (s & (1 << self.rx_bit)) >> self.rx_bit + # self.oldtx = (s & (1 << self.tx_bit)) >> self.tx_bit + continue + + # Get RX/TX bit values (0/1 for low/high). + rx = (s & (1 << self.rx_bit)) >> self.rx_bit + # tx = (s & (1 << self.tx_bit)) >> self.tx_bit + + # State machine. + if self.staterx == WAIT_FOR_START_BIT: + self.wait_for_start_bit(self.oldrx, rx) + elif self.staterx == GET_START_BIT: + out += self.get_start_bit(rx) + elif self.staterx == GET_DATA_BITS: + out += self.get_data_bits(rx) + elif self.staterx == GET_PARITY_BIT: + out += self.get_parity_bit(rx) + elif self.staterx == GET_STOP_BITS: + out += self.get_stop_bits(rx) + else: + raise Exception('Invalid state: %s' % self.staterx) + + # Save current RX/TX values for the next round. + self.oldrx = rx + # self.oldtx = tx + + if out != []: + self.put(out) +