]> sigrok.org Git - libsigrokdecode.git/commitdiff
sle44xx: extend decoder's feature set, outgoing data, processing
authorGerhard Sittig <redacted>
Sat, 29 Aug 2020 11:00:04 +0000 (13:00 +0200)
committerGerhard Sittig <redacted>
Sun, 30 Aug 2020 05:23:58 +0000 (07:23 +0200)
Rephrase how the decoder's progress during data interpretation gets
tracked. Extend the set of .wait() conditions in the main loop, and
determine START/STOP conditions and BIT validity there already, which
reduces redundancy with called handlers.

Increase the decoder's coverage of the memory card's feature set and
constraints. Handle the optional CLK during RST, to tell interrupted
memory access from card reset. Interpret known command codes, to present
their meaning and arguments to users, and to tell "outgoing data" (the
card's memory content) from "internal processing" (providing clock until
the card signals completion of a write access). Get initial statistics
on internal processing (clock count, and terminal I/O level, no duration
in units of wall clock time yet).

Unfortunately there is no reliable condition to detect the end of a
memory read when it executes to the end of the memory card's capacity.
That's why START detection is more greedy than specified, to reliably
re-sync to subsequent commands and their byte sequences.

Arrange for an improved set of annotation rows with symbols (bit level),
fields (data bytes), and operations details (summary of memory access
including protection).

Rename the binary output. It carries "any bytes" which were seen, the
command bytes as well as response data bytes.

decoders/sle44xx/pd.py

index 866ebd56c168d54bb74e32e88970d83fbcd34467..559bbc8ab0614c01efd9d9edf8f428731c4f53fc 100644 (file)
@@ -24,27 +24,13 @@ class Pin:
     RST, CLK, IO, = range(3)
 
 class Ann:
-    BIT, ATR, CMD, DATA, RESET, = range(5)
+    RESET_SYM, INTR_SYM, START_SYM, STOP_SYM, BIT_SYM, \
+    ATR_BYTE, CMD_BYTE, OUT_BYTE, PROC_BYTE, \
+    ATR_DATA, CMD_DATA, OUT_DATA, PROC_DATA, \
+    = range(13)
 
 class Bin:
-    SEND_DATA, = range(1)
-
-# CMD: [annotation class index, annotation texts for zoom levels]
-proto = {
-    'BIT':   [Ann.BIT,   '{bit}',],
-    'ATR':   [Ann.ATR,   'Answer To Reset: {data:02x}', 'ATR: {data:02x}', '{data:02x}',],
-    'CMD':   [Ann.CMD,   'Command: {data:02x}', 'Cmd: {data:02x}', '{data:02x}',],
-    'DATA':  [Ann.DATA,  'Data: {data:02x}', '{data:02x}',],
-    'RESET': [Ann.RESET, 'Reset', 'R',],
-}
-
-def lookup_proto_ann_txt(cmd, variables):
-    ann = proto.get(cmd, None)
-    if ann is None:
-        return None, []
-    cls, texts = ann[0], ann[1:]
-    texts = [t.format(**variables) for t in texts]
-    return cls, texts
+    BYTES, = range(1)
 
 class Decoder(srd.Decoder):
     api_version = 3
@@ -62,19 +48,30 @@ class Decoder(srd.Decoder):
         {'id': 'io', 'name': 'I/O', 'desc': 'I/O data line'},
     )
     annotations = (
-        ('bit', 'Bit'),
-        ('atr', 'ATR'),
-        ('cmd', 'Command'),
-        ('data', 'Data exchange'),
-        ('reset', 'Reset'),
+        ('reset_sym', 'Reset Symbol'),
+        ('intr_sym', 'Interrupt Symbol'),
+        ('start_sym', 'Start Symbol'),
+        ('stop_sym', 'Stop Symbol'),
+        ('bit_sym', 'Bit Symbol'),
+        ('atr_byte', 'ATR Byte'),
+        ('cmd_byte', 'Command Byte'),
+        ('out_byte', 'Outgoing Byte'),
+        ('proc_byte', 'Processing Byte'),
+        ('atr_data', 'ATR data'),
+        ('cmd_data', 'Command data'),
+        ('out_data', 'Outgoing data'),
+        ('proc_data', 'Processing data'),
     )
     annotation_rows = (
-        ('bits', 'Bits', (Ann.BIT,)),
-        ('fields', 'Fields', (Ann.ATR, Ann.CMD, Ann.DATA)),
-        ('interrupts', 'Interrupts', (Ann.RESET,)),
+        ('symbols', 'Symbols', (Ann.RESET_SYM, Ann.INTR_SYM,
+            Ann.START_SYM, Ann.STOP_SYM, Ann.BIT_SYM,)),
+        ('fields', 'Fields', (Ann.ATR_BYTE,
+            Ann.CMD_BYTE, Ann.OUT_BYTE, Ann.PROC_BYTE,)),
+        ('operations', 'Operations', (Ann.ATR_DATA,
+            Ann.CMD_DATA, Ann.OUT_DATA, Ann.PROC_DATA,)),
     )
     binary = (
-        ('send-data', 'Send data'),
+        ('bytes', 'Bytes'),
     )
 
     def __init__(self):
@@ -82,7 +79,13 @@ class Decoder(srd.Decoder):
 
     def reset(self):
         self.bits = []
-        self.cmd = None
+        self.atr_bytes = []
+        self.cmd_bytes = []
+        self.cmd_proc = None
+        self.out_len = None
+        self.out_bytes = []
+        self.proc_state = None
+        self.state = None
 
     def metadata(self, key, value):
         if key == srd.SRD_CONF_SAMPLERATE:
@@ -98,84 +101,436 @@ class Decoder(srd.Decoder):
     def putb(self, ss, es, cls , data):
         self.put(ss, es, self.out_binary, [cls, data,])
 
-    def handle_reset(self, pins):
-        self.cmd = 'RESET'
-        cls, texts = lookup_proto_ann_txt(self.cmd, {})
-        self.putx(self.samplenum, self.samplenum, cls, texts)
+    def lookup_proto_ann_txt(self, key, variables):
+        ann = {
+            'RESET_SYM': [Ann.RESET_SYM, 'Reset', 'R',],
+            'INTR_SYM': [Ann.INTR_SYM, 'Interrupt', 'Intr', 'I',],
+            'START_SYM': [Ann.START_SYM, 'Start', 'ST', 'S',],
+            'STOP_SYM': [Ann.STOP_SYM, 'Stop', 'SP', 'P',],
+            'BIT_SYM': [Ann.BIT_SYM, '{bit}',],
+            'ATR_BYTE': [Ann.ATR_BYTE,
+                'Answer To Reset: {data:02x}',
+                'ATR: {data:02x}',
+                '{data:02x}',
+            ],
+            'CMD_BYTE': [Ann.CMD_BYTE,
+                'Command: {data:02x}',
+                'Cmd: {data:02x}',
+                '{data:02x}',
+            ],
+            'OUT_BYTE': [Ann.OUT_BYTE,
+                'Outgoing data: {data:02x}',
+                'Data: {data:02x}',
+                '{data:02x}',
+            ],
+            'PROC_BYTE': [Ann.PROC_BYTE,
+                'Internal processing: {data:02x}',
+                'Proc: {data:02x}',
+                '{data:02x}',
+            ],
+            'ATR_DATA': [Ann.ATR_DATA,
+                'Answer To Reset: {data}',
+                'ATR: {data}',
+                '{data}',
+            ],
+            'CMD_DATA': [Ann.CMD_DATA,
+                'Command: {data}',
+                'Cmd: {data}',
+                '{data}',
+            ],
+            'OUT_DATA': [Ann.OUT_DATA,
+                'Outgoing: {data}',
+                'Out: {data}',
+                '{data}',
+            ],
+            'PROC_DATA': [Ann.PROC_DATA,
+                'Processing: {data}',
+                'Proc: {data}',
+                '{data}',
+            ],
+        }.get(key, None)
+        if ann is None:
+            return None, []
+        cls, texts = ann[0], ann[1:]
+        texts = [t.format(**variables) for t in texts]
+        return cls, texts
+
+    def text_for_accu_bytes(self, accu):
+        if not accu:
+            return None, None, None, None
+        ss, es = accu[0][1], accu[-1][2]
+        data = [a[0] for a in accu]
+        text = " ".join(['{:02x}'.format(a) for a in data])
+        return ss, es, data, text
+
+    def flush_queued(self):
+        '''Flush previously accumulated operations details.'''
+
+        # Can be called when either the completion of an operation got
+        # detected (reliably), or when some kind of reset condition was
+        # met while a potential previously observed operation has not
+        # been postprocessed yet (best effort). Should not harm when the
+        # routine gets invoked while no data was collected yet, or was
+        # flushed already.
+        # BEWARE! Will void internal state. Should really only get called
+        # "between operations", NOT between fields of an operation.
+
+        if self.atr_bytes:
+            key = 'ATR_DATA'
+            ss, es, _, text = self.text_for_accu_bytes(self.atr_bytes)
+            cls, texts = self.lookup_proto_ann_txt(key, {'data': text})
+            self.putx(ss, es, cls, texts)
+
+        if self.cmd_bytes:
+            key = 'CMD_DATA'
+            ss, es, _, text = self.text_for_accu_bytes(self.cmd_bytes)
+            cls, texts = self.lookup_proto_ann_txt(key, {'data': text})
+            self.putx(ss, es, cls, texts)
+
+        if self.out_bytes:
+            key = 'OUT_DATA'
+            ss, es, _, text = self.text_for_accu_bytes(self.out_bytes)
+            cls, texts = self.lookup_proto_ann_txt(key, {'data': text})
+            self.putx(ss, es, cls, texts)
+
+        if self.proc_state:
+            key = 'PROC_DATA'
+            ss = self.proc_state['ss']
+            es = self.proc_state['es']
+            clk = self.proc_state['clk']
+            high = self.proc_state['io1']
+            text = '{clk} clocks, I/O {high}'.format(clk = clk, high = int(high))
+            cls, texts = self.lookup_proto_ann_txt(key, {'data': text})
+            self.putx(ss, es, cls, texts)
+
+        self.atr_bytes = None
+        self.cmd_bytes = None
+        self.cmd_proc = None
+        self.out_len = None
+        self.out_bytes = None
+        self.proc_state = None
+        self.state = None
+
+    def handle_reset(self, ss, es, has_clk):
+        self.flush_queued()
+        key = '{}_SYM'.format('RESET' if has_clk else 'INTR')
+        cls, texts = self.lookup_proto_ann_txt(key, {})
+        self.putx(ss, es, cls, texts)
         self.bits = []
-        # Next data bytes will be Answer To Reset.
-        self.cmd = 'ATR'
-
-    def handle_command(self, pins):
-        rst, clk, io = pins
-        # XXX Is the comment inverted?
-        # If I/O is rising -> command START
-        # if I/O is falling -> command STOP and response data incoming
-        self.cmd = 'CMD' if io == 0 else 'DATA'
+        self.state = 'ATR' if has_clk else None
+
+    def handle_command(self, ss, is_start):
+        if is_start:
+            self.flush_queued()
+        key = '{}_SYM'.format('START' if is_start else 'STOP')
+        cls, texts = self.lookup_proto_ann_txt(key, {})
+        self.putx(ss, ss, cls, texts)
         self.bits = []
+        self.state = 'CMD' if is_start else 'DATA'
 
-    # Gather 8 bits of data
-    def handle_data(self, pins):
-        rst, clk, io = pins
-
-        # Remember the start of the first data/address bit. Collect
-        # bits in LSB first order. "Estimate" the bit's width at first,
-        # update end times as better data becomes available.
-        # TODO This estimation logic is imprecise and fragile. A single
-        # slightly stretched clock period throws off the following bit
-        # annotation. Better look for more reliable conditions. Available
-        # documentation suggests bit values are valid during high CLK.
-        bit_val = io
-        bit_ss = self.samplenum
-        bit_es = bit_ss # self.bitwidth is not known yet.
-        if self.bits:
-            self.bits[-1][2] = bit_ss
-        self.bits.append([bit_val, bit_ss, bit_es])
-        if len(self.bits) < 8:
+    def command_check(self, ctrl, addr, data):
+        '''Interpret CTRL/ADDR/DATA command entry.'''
+
+        # See the Siemens Datasheet section 2.3 Commands. The abbreviated
+        # text variants are my guesses, terse for readability at coarser
+        # zoom levels.
+        codes_table = {
+            0x30: {
+                'fmt': [
+                    'read main memory, addr {addr:02x}',
+                    'RD-M @{addr:02x}',
+                ],
+            },
+            0x31: {
+                'fmt': [
+                    'read security memory',
+                    'RD-S',
+                ],
+                'len': 4,
+            },
+            0x33: {
+                'fmt': [
+                    'compare verification data, addr {addr:02x}, data {data:02x}',
+                    'CMP-V @{addr:02x} ={data:02x}',
+                ],
+                'proc': True,
+            },
+            0x34: {
+                'fmt': [
+                    'read protection memory, addr {addr:02x}',
+                    'RD-P @{addr:02x}',
+                ],
+                'len': 4,
+            },
+            0x38: {
+                'fmt': [
+                    'update main memory, addr {addr:02x}, data {data:02x}',
+                    'WR-M @{addr:02x} ={data:02x}',
+                ],
+                'proc': True,
+            },
+            0x39: {
+                'fmt': [
+                    'update security memory, addr {addr:02x}, data {data:02x}',
+                    'WR-S @{addr:02x} ={data:02x}',
+                ],
+                'proc': True,
+            },
+            0x3c: {
+                'fmt': [
+                    'write protection memory, addr {addr:02x}, data {data:02x}',
+                    'WR-P @{addr:02x} ={data:02x}',
+                ],
+                'proc': True,
+            },
+        }
+        code = codes_table.get(ctrl, {})
+        dflt_fmt = [
+            'unknown, ctrl {ctrl:02x}, addr {addr:02x}, data {data:02x}',
+            'UNK-{ctrl:02x} @{addr:02x}, ={data:02x}',
+        ]
+        fmt = code.get('fmt', dflt_fmt)
+        if not isinstance(fmt, (list, tuple,)):
+            fmt = [fmt,]
+        texts = [f.format(ctrl = ctrl, addr = addr, data = data) for f in fmt]
+        length = code.get('len', None)
+        is_proc = code.get('proc', False)
+        return texts, length, is_proc
+
+    def processing_start(self, ss, es, io_high):
+        self.proc_state = {
+            'ss': ss or es,
+            'es': es or ss,
+            'clk': 0,
+            'io1': bool(io_high),
+        }
+
+    def processing_update(self, es, clk_inc, io_high):
+        if es is not None and es > self.proc_state['es']:
+            self.proc_state['es'] = es
+        self.proc_state['clk'] += clk_inc
+        if io_high:
+            self.proc_state['io1'] = True
+
+    def handle_data_byte(self, ss, es, data, bits):
+        '''Accumulate CMD or OUT data bytes.'''
+
+        if self.state == 'ATR':
+            if not self.atr_bytes:
+                self.atr_bytes = []
+            self.atr_bytes.append([data, ss, es, bits,])
+            if len(self.atr_bytes) == 4:
+                self.flush_queued()
+            return
+
+        if self.state == 'CMD':
+            if not self.cmd_bytes:
+                self.cmd_bytes = []
+            self.cmd_bytes.append([data, ss, es, bits,])
+            if len(self.cmd_bytes) == 3:
+                ctrl, addr, data = [c[0] for c in self.cmd_bytes]
+                texts, length, proc = self.command_check(ctrl, addr, data)
+                # Immediately emit the annotation to not lose the text,
+                # and to support zoom levels for this specific case.
+                ss, es = self.cmd_bytes[0][1], self.cmd_bytes[-1][2]
+                cls = Ann.CMD_DATA
+                self.putx(ss, es, cls, texts)
+                self.cmd_bytes = []
+                # Prepare to continue either at OUT or PROC after CMD.
+                self.out_len = length
+                self.cmd_proc = bool(proc)
+                self.state = None
             return
-        bitwidth = self.bits[-1][1] - self.bits[-2][1]
-        self.bits[-1][2] += bitwidth
 
-        # Get the data byte value, and byte's ss/es.
-        databyte = bitpack_lsb(self.bits, 0)
-        byte_ss = self.bits[0][1]
-        byte_es = self.bits[-1][2]
+        if self.state == 'OUT':
+            if not self.out_bytes:
+                self.out_bytes = []
+            self.out_bytes.append([data, ss, es, bits,])
+            if self.out_len is not None and len(self.out_bytes) == self.out_len:
+                self.flush_queued()
+            return
 
-        self.putb(byte_ss, byte_es, Bin.SEND_DATA, bytes([databyte]))
+    def handle_data_bit(self, ss, es, bit):
+        '''Gather 8 bits of data (or track processing progress).'''
 
-        # TODO Present bit values earlier. As soon as their es is known.
-        for bit_val, bit_ss, bit_es in self.bits:
-            cls, texts = lookup_proto_ann_txt('BIT', {'bit': bit_val})
-            self.putx(bit_ss, bit_es, cls, texts)
+        # Switch late from DATA to either OUT or PROC. We can tell the
+        # type and potentially fixed length at the end of CMD already,
+        # but a START/STOP condition may void this information. So we
+        # do the switch at the first data bit after CMD.
+        # In the OUT case data bytes get accumulated, until either the
+        # expected byte count is reached, or another CMD starts. In the
+        # PROC case a high I/O level terminates execution.
+        if self.state == 'DATA':
+            if self.out_len:
+                self.state = 'OUT'
+            elif self.cmd_proc:
+                self.state = 'PROC'
+                self.processing_start(ss or es, es or ss, bit == 1)
+            else:
+                # Implementor's note: Handle unknown situations like
+                # outgoing data bytes, for the user's convenience. This
+                # will show OUT bytes even if it's just processing CLK
+                # cycles with constant or irrelevant I/O bit patterns.
+                self.state = 'OUT'
+        if self.state == 'PROC':
+            high = bit == 1
+            if ss is not None:
+                self.processing_update(ss, 0, high)
+            if es is not None:
+                self.processing_update(es, 1, high)
+            if high:
+                self.flush_queued()
+            return
 
-        cls, texts = lookup_proto_ann_txt(self.cmd, {'data': databyte})
-        if cls:
-            self.putx(byte_ss, byte_es, cls, texts)
+        # This routine gets called two times per bit value. Track the
+        # bit's value and ss timestamp when the bit period starts. And
+        # update the es timestamp at the end of the bit's validity.
+        if ss is not None:
+            self.bits.append([bit, ss, es or ss])
+            return
+        if es is None:
+            # Unexpected invocation. Could be a glitch or invalid input
+            # data, or an interaction with RESET/START/STOP conditions.
+            self.bits = []
+            return
+        if not self.bits:
+            return
+        if bit is not None:
+            self.bits[-1][0] = bit
+            # TODO Check for consistent bit level at ss and es when
+            # the information was available? Is bit data sampled at
+            # different clock edges depending whether data is sent
+            # or received?
+        self.bits[-1][2] = es
+        # Emit the bit's annotation. See if a byte was received.
+        bit, ss, es = self.bits[-1]
+        cls, texts = self.lookup_proto_ann_txt('BIT_SYM', {'bit': bit})
+        self.putx(ss, es, cls, texts)
+        if len(self.bits) < 8:
+            return
 
-        # Done with this packet.
+        # Get the data byte value, and the byte's ss/es. Emit the byte's
+        # annotation and binary output. Pass the byte to upper layers.
+        # TODO Vary annotation classes with the byte's position within
+        # a field? To tell CTRL/ADDR/DATA of a CMD entry apart?
+        bits = self.bits
         self.bits = []
+        data = bitpack_lsb(bits, 0)
+        ss = bits[0][1]
+        es = bits[-1][2]
+
+        key = '{}_BYTE'.format(self.state)
+        cls, texts = self.lookup_proto_ann_txt(key, {'data': data})
+        if cls:
+            self.putx(ss, es, cls, texts)
+        self.putb(ss, es, Bin.BYTES, bytes([data]))
+
+        self.handle_data_byte(ss, es, data, bits)
 
     def decode(self):
+        '''Decoder's main data interpretation loop.'''
+
+        # Signal conditions tracked by the protocol decoder:
+        # - Rising and falling RST edges, which span the width of a
+        #   high-active RESET pulse. RST has highest priority, no
+        #   other activity can take place in this period.
+        # - Rising and falling CLK edges when RST is active. The
+        #   CLK pulse when RST is asserted will reset the card's
+        #   address counter. RST alone can terminate memory reads.
+        # - Rising and falling CLK edges when RST is inactive. This
+        #   determines the period where BIT values are valid.
+        # - I/O edges during high CLK. These are START and STOP
+        #   conditions that tell COMMAND and DATA phases apart.
+        # - Rise of I/O during internal processing. This expression
+        #   is an unconditional part of the .wait() condition set. It
+        #   is assumed that skipping this match in many cases is more
+        #   efficient than the permanent re-construction of the .wait()
+        #   condition list in every loop iteration, and preferrable to
+        #   the maintainance cost of duplicating RST and CLK handling
+        #   when checking I/O during internal processing.
+        (
+            COND_RESET_START, COND_RESET_STOP,
+            COND_RSTCLK_START, COND_RSTCLK_STOP,
+            COND_DATA_START, COND_DATA_STOP,
+            COND_CMD_START, COND_CMD_STOP,
+            COND_PROC_IOH,
+        ) = range(9)
+        conditions = [
+            {Pin.RST: 'r'},
+            {Pin.RST: 'f'},
+            {Pin.RST: 'h', Pin.CLK: 'r'},
+            {Pin.RST: 'h', Pin.CLK: 'f'},
+            {Pin.RST: 'l', Pin.CLK: 'r'},
+            {Pin.RST: 'l', Pin.CLK: 'f'},
+            {Pin.CLK: 'h', Pin.IO: 'f'},
+            {Pin.CLK: 'h', Pin.IO: 'r'},
+            {Pin.RST: 'l', Pin.IO: 'r'},
+        ]
+
+        ss_reset = es_reset = ss_clk = es_clk = None
         while True:
-            # Signal conditions tracked by the protocol decoder:
-            # - RESET condition (R): RST = rising
-            # - Incoming data (D): RST = low, CLK = rising.
-            #   TODO Add "RST low, CLK fall" for "end of DATA" here?
-            # - Command mode START: CLK = high, I/O = falling.
-            # - Command mode STOP: CLK = high, I/O = rising.
-            (COND_RESET, COND_DATA, COND_CMD_START, COND_CMD_STOP,) = range(4)
-            conditions = [
-                {Pin.RST: 'r'},
-                {Pin.RST: 'l', Pin.CLK: 'r'},
-                {Pin.CLK: 'h', Pin.IO: 'f'},
-                {Pin.CLK: 'h', Pin.IO: 'r'},
-            ]
+
+            is_outgoing = self.state == 'OUT'
+            is_processing = self.state == 'PROC'
             pins = self.wait(conditions)
-            if self.matched[COND_RESET]:
-                self.handle_reset(pins)
-            elif self.matched[COND_DATA]:
-                self.handle_data(pins)
-            elif self.matched[COND_CMD_START]:
-                self.handle_command(pins)
-            elif self.matched[COND_CMD_STOP]:
-                self.handle_command(pins)
+            io = pins[Pin.IO]
+
+            # Handle RESET conditions, including an optional CLK pulse
+            # while RST is asserted.
+            if self.matched[COND_RESET_START]:
+                self.flush_queued()
+                ss_reset = self.samplenum
+                es_reset = ss_clk = es_clk = None
+                continue
+            if self.matched[COND_RESET_STOP]:
+                es_reset = self.samplenum
+                self.handle_reset(ss_reset or 0, es_reset, ss_clk and es_clk)
+                ss_reset = es_reset = ss_clk = es_clk = None
+                continue
+            if self.matched[COND_RSTCLK_START]:
+                ss_clk = self.samplenum
+                es_clk = None
+                continue
+            if self.matched[COND_RSTCLK_STOP]:
+                es_clk = self.samplenum
+                continue
+
+            # Handle data bits' validity boundaries. Also covers the
+            # periodic check for high I/O level and update of details
+            # during internal processing.
+            if self.matched[COND_DATA_START]:
+                self.handle_data_bit(self.samplenum, None, io)
+                continue
+            if self.matched[COND_DATA_STOP]:
+                self.handle_data_bit(None, self.samplenum, None)
+                continue
+
+            # Additional check for idle I/O during internal processing,
+            # independent of CLK edges this time. This assures that the
+            # decoder ends processing intervals as soon as possible, at
+            # the most precise timestamp.
+            if is_processing and self.matched[COND_PROC_IOH]:
+                self.handle_data_bit(self.samplenum, self.samplenum, io)
+                continue
+
+            # The START/STOP conditions are only applicable outside of
+            # "outgoing data" or "internal processing" periods. This is
+            # what the data sheet specifies.
+            # TODO There is the decoder's inability to reliably detect
+            # where memory reads are done because they reached the end
+            # of the chip's capacity. Which makes the decoder miss the
+            # next START symbol, and lose synchronization to the BIT
+            # stream (bit counts are off, which breaks the accumulation
+            # of bytes). That's why this decoder unconditionally keeps
+            # detecting the START condition although it should not.
+            if not is_outgoing and not is_processing:
+                if self.matched[COND_CMD_START]:
+                    self.handle_command(self.samplenum, True)
+                    continue
+                if self.matched[COND_CMD_STOP]:
+                    self.handle_command(self.samplenum, False)
+                    continue
+            if True: # HACK See the comment above.
+                if self.matched[COND_CMD_START]:
+                    self.handle_command(self.samplenum, True)
+                    continue