X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=blobdiff_plain;f=decoders%2Fuart%2Fpd.py;h=67f4c7e702760e3d76f92695c58de08bf3719564;hp=6bba65306c6e022b2162e5b4480c96424d43108b;hb=c69e72bc8d3524140959157fb605b7dd53b40af4;hpb=98b8913915e8649cca83f543e84fbf128707b5fb diff --git a/decoders/uart/pd.py b/decoders/uart/pd.py index 6bba653..67f4c7e 100644 --- a/decoders/uart/pd.py +++ b/decoders/uart/pd.py @@ -14,11 +14,11 @@ ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## along with this program; if not, see . ## import sigrokdecode as srd +from common.srdhelper import bitpack from math import floor, ceil ''' @@ -39,7 +39,11 @@ This is the list of s and their respective values: - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1). - 'PARITY ERROR': The data is a tuple with two entries. The first one is the expected parity value, the second is the actual parity value. - - TODO: Frame error? + - 'BREAK': The data is always 0. + - 'FRAME': The data is always a tuple containing two items: The (integer) + value of the UART data, and a boolean which reflects the validity of the + UART frame. + - 'IDLE': The data is always 0. The field is 0 for RX packets, 1 for TX packets. ''' @@ -52,7 +56,10 @@ TX = 1 # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # 'none' is _not_ allowed as value for 'parity_type'. -def parity_ok(parity_type, parity_bit, data, num_data_bits): +def parity_ok(parity_type, parity_bit, data, data_bits): + + if parity_type == 'ignore': + return True # Handle easy cases first (parity bit is always 1 or 0). if parity_type == 'zero': @@ -75,8 +82,14 @@ class SamplerateError(Exception): class ChannelError(Exception): pass +class Ann: + RX_DATA, TX_DATA, RX_START, TX_START, RX_PARITY_OK, TX_PARITY_OK, \ + RX_PARITY_ERR, TX_PARITY_ERR, RX_STOP, TX_STOP, RX_WARN, TX_WARN, \ + RX_DATA_BIT, TX_DATA_BIT, RX_BREAK, TX_BREAK, RX_PACKET, TX_PACKET = \ + range(18) + class Decoder(srd.Decoder): - api_version = 2 + api_version = 3 id = 'uart' name = 'UART' longname = 'Universal Asynchronous Receiver/Transmitter' @@ -84,6 +97,7 @@ class Decoder(srd.Decoder): license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] + tags = ['Embedded/industrial'] optional_channels = ( # Allow specifying only one of the signals, e.g. if only one data # direction exists (or is relevant). @@ -92,22 +106,27 @@ class Decoder(srd.Decoder): ) options = ( {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200}, - {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8, + {'id': 'data_bits', 'desc': 'Data bits', 'default': 8, 'values': (5, 6, 7, 8, 9)}, - {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none', - 'values': ('none', 'odd', 'even', 'zero', 'one')}, - {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes', - 'values': ('yes', 'no')}, - {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0, + {'id': 'parity', 'desc': 'Parity', 'default': 'none', + 'values': ('none', 'odd', 'even', 'zero', 'one', 'ignore')}, + {'id': 'stop_bits', 'desc': 'Stop bits', 'default': 1.0, 'values': (0.0, 0.5, 1.0, 1.5)}, {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first', 'values': ('lsb-first', 'msb-first')}, - {'id': 'format', 'desc': 'Data format', 'default': 'ascii', + {'id': 'format', 'desc': 'Data format', 'default': 'hex', 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')}, - {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no', + {'id': 'invert_rx', 'desc': 'Invert RX', 'default': 'no', 'values': ('yes', 'no')}, - {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no', + {'id': 'invert_tx', 'desc': 'Invert TX', 'default': 'no', 'values': ('yes', 'no')}, + {'id': 'sample_point', 'desc': 'Sample point (%)', 'default': 50}, + {'id': 'rx_packet_delim', 'desc': 'RX packet delimiter (decimal)', + 'default': -1}, + {'id': 'tx_packet_delim', 'desc': 'TX packet delimiter (decimal)', + 'default': -1}, + {'id': 'rx_packet_len', 'desc': 'RX packet length', 'default': -1}, + {'id': 'tx_packet_len', 'desc': 'TX packet length', 'default': -1}, ) annotations = ( ('rx-data', 'RX data'), @@ -124,14 +143,22 @@ class Decoder(srd.Decoder): ('tx-warnings', 'TX warnings'), ('rx-data-bits', 'RX data bits'), ('tx-data-bits', 'TX data bits'), + ('rx-break', 'RX break'), + ('tx-break', 'TX break'), + ('rx-packet', 'RX packet'), + ('tx-packet', 'TX packet'), ) annotation_rows = ( - ('rx-data', 'RX', (0, 2, 4, 6, 8)), - ('rx-data-bits', 'RX bits', (12,)), - ('rx-warnings', 'RX warnings', (10,)), - ('tx-data', 'TX', (1, 3, 5, 7, 9)), - ('tx-data-bits', 'TX bits', (13,)), - ('tx-warnings', 'TX warnings', (11,)), + ('rx-data-bits', 'RX bits', (Ann.RX_DATA_BIT,)), + ('rx-data', 'RX', (Ann.RX_DATA, Ann.RX_START, Ann.RX_PARITY_OK, Ann.RX_PARITY_ERR, Ann.RX_STOP)), + ('rx-warnings', 'RX warnings', (Ann.RX_WARN,)), + ('rx-break', 'RX break', (Ann.RX_BREAK,)), + ('rx-packets', 'RX packets', (Ann.RX_PACKET,)), + ('tx-data-bits', 'TX bits', (Ann.TX_DATA_BIT,)), + ('tx-data', 'TX', (Ann.TX_DATA, Ann.TX_START, Ann.TX_PARITY_OK, Ann.TX_PARITY_ERR, Ann.TX_STOP)), + ('tx-warnings', 'TX warnings', (Ann.TX_WARN,)), + ('tx-break', 'TX break', (Ann.TX_BREAK,)), + ('tx-packets', 'TX packets', (Ann.TX_PACKET,)), ) binary = ( ('rx', 'RX dump'), @@ -144,6 +171,10 @@ class Decoder(srd.Decoder): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data) + def putx_packet(self, rxtx, data): + s, halfbit = self.ss_packet[rxtx], self.bit_width / 2.0 + self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data) + def putpx(self, rxtx, data): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data) @@ -156,14 +187,23 @@ class Decoder(srd.Decoder): s, halfbit = self.samplenum, self.bit_width / 2.0 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data) + def putgse(self, ss, es, data): + self.put(ss, es, self.out_ann, data) + + def putpse(self, ss, es, data): + self.put(ss, es, self.out_python, data) + def putbin(self, rxtx, data): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data) def __init__(self): + self.reset() + + def reset(self): self.samplerate = None - self.samplenum = 0 self.frame_start = [-1, -1] + self.frame_valid = [None, None] self.startbit = [-1, -1] self.cur_data_bit = [0, 0] self.datavalue = [0, 0] @@ -171,15 +211,17 @@ class Decoder(srd.Decoder): self.stopbit1 = [-1, -1] self.startsample = [-1, -1] self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT'] - self.oldbit = [1, 1] - self.oldpins = [-1, -1] self.databits = [[], []] + self.break_start = [None, None] + self.packet_cache = [[], []] + self.ss_packet, self.es_packet = [None, None], [None, None] + self.idle_start = [None, None] def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_ann = self.register(srd.OUTPUT_ANN) - self.bw = (self.options['num_data_bits'] + 7) // 8 + self.bw = (self.options['data_bits'] + 7) // 8 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: @@ -187,48 +229,40 @@ class Decoder(srd.Decoder): # The width of one UART bit in number of samples. self.bit_width = float(self.samplerate) / float(self.options['baudrate']) - # Return true if we reached the middle of the desired bit, false otherwise. - def reached_bit(self, rxtx, bitnum): - # bitpos is the samplenumber which is in the middle of the - # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit - # (if used) or the first stop bit, and so on). - # The samples within bit are 0, 1, ..., (bit_width - 1), therefore - # index of the middle sample within bit window is (bit_width - 1) / 2. - bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0 + def get_sample_point(self, rxtx, bitnum): + # Determine absolute sample number of a bit slot's sample point. + # Counts for UART bits start from 0 (0 = start bit, 1..x = data, + # x+1 = parity bit (if used) or the first stop bit, and so on). + # Accept a position in the range of 1-99% of the full bit width. + # Assume 50% for invalid input specs for backwards compatibility. + perc = self.options['sample_point'] or 50 + if not perc or perc not in range(1, 100): + perc = 50 + perc /= 100.0 + bitpos = (self.bit_width - 1) * perc + bitpos += self.frame_start[rxtx] bitpos += bitnum * self.bit_width - if self.samplenum >= bitpos: - return True - return False - - def reached_bit_last(self, rxtx, bitnum): - bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) - if self.samplenum >= bitpos: - return True - return False - - def wait_for_start_bit(self, rxtx, old_signal, signal): - # The start bit is always 0 (low). As the idle UART (and the stop bit) - # level is 1 (high), the beginning of a start bit is a falling edge. - if not (old_signal == 1 and signal == 0): - return + return bitpos + def wait_for_start_bit(self, rxtx, signal): # Save the sample number where the start bit begins. self.frame_start[rxtx] = self.samplenum + self.frame_valid[rxtx] = True self.state[rxtx] = 'GET START BIT' def get_start_bit(self, rxtx, signal): - # Skip samples until we're in the middle of the start bit. - if not self.reached_bit(rxtx, 0): - return - self.startbit[rxtx] = signal # The startbit must be 0. If not, we report an error and wait # for the next start bit (assuming this one was spurious). if self.startbit[rxtx] != 0: self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]]) - self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']]) + self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']]) + self.frame_valid[rxtx] = False + es = self.samplenum + ceil(self.bit_width / 2.0) + self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx, + (self.datavalue[rxtx], self.frame_valid[rxtx])]) self.state[rxtx] = 'WAIT FOR START BIT' return @@ -236,42 +270,56 @@ class Decoder(srd.Decoder): self.datavalue[rxtx] = 0 self.startsample[rxtx] = -1 - self.state[rxtx] = 'GET DATA BITS' - self.putp(['STARTBIT', rxtx, self.startbit[rxtx]]) - self.putg([rxtx + 2, ['Start bit', 'Start', 'S']]) + self.putg([Ann.RX_START + rxtx, ['Start bit', 'Start', 'S']]) - def get_data_bits(self, rxtx, signal): - # Skip samples until we're in the middle of the desired data bit. - if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): + self.state[rxtx] = 'GET DATA BITS' + + def handle_packet(self, rxtx): + d = 'rx' if (rxtx == RX) else 'tx' + delim = self.options[d + '_packet_delim'] + plen = self.options[d + '_packet_len'] + if delim == -1 and plen == -1: return + # Cache data values until we see the delimiter and/or the specified + # packet length has been reached (whichever happens first). + if len(self.packet_cache[rxtx]) == 0: + self.ss_packet[rxtx] = self.startsample[rxtx] + self.packet_cache[rxtx].append(self.datavalue[rxtx]) + if self.datavalue[rxtx] == delim or len(self.packet_cache[rxtx]) == plen: + self.es_packet[rxtx] = self.samplenum + s = '' + for b in self.packet_cache[rxtx]: + s += self.format_value(b) + if self.options['format'] != 'ascii': + s += ' ' + if self.options['format'] != 'ascii' and s[-1] == ' ': + s = s[:-1] # Drop trailing space. + self.putx_packet(rxtx, [Ann.RX_PACKET + rxtx, [s]]) + self.packet_cache[rxtx] = [] + + def get_data_bits(self, rxtx, signal): # Save the sample number of the middle of the first data bit. if self.startsample[rxtx] == -1: self.startsample[rxtx] = self.samplenum - # Get the next data bit in LSB-first or MSB-first fashion. - if self.options['bit_order'] == 'lsb-first': - self.datavalue[rxtx] >>= 1 - self.datavalue[rxtx] |= \ - (signal << (self.options['num_data_bits'] - 1)) - else: - self.datavalue[rxtx] <<= 1 - self.datavalue[rxtx] |= (signal << 0) - - self.putg([rxtx + 12, ['%d' % signal]]) + self.putg([Ann.RX_DATA_BIT + rxtx, ['%d' % signal]]) # Store individual data bits and their start/end samplenumbers. s, halfbit = self.samplenum, int(self.bit_width / 2) self.databits[rxtx].append([signal, s - halfbit, s + halfbit]) # Return here, unless we already received all data bits. - if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1: - self.cur_data_bit[rxtx] += 1 + self.cur_data_bit[rxtx] += 1 + if self.cur_data_bit[rxtx] < self.options['data_bits']: return - self.state[rxtx] = 'GET PARITY BIT' - + # Convert accumulated data bits to a data value. + bits = [b[0] for b in self.databits[rxtx]] + if self.options['bit_order'] == 'msb-first': + bits.reverse() + self.datavalue[rxtx] = bitpack(bits) self.putpx(rxtx, ['DATA', rxtx, (self.datavalue[rxtx], self.databits[rxtx])]) @@ -284,14 +332,22 @@ class Decoder(srd.Decoder): self.putbin(rxtx, [rxtx, bdata]) self.putbin(rxtx, [2, bdata]) + self.handle_packet(rxtx) + self.databits[rxtx] = [] + # Advance to either reception of the parity bit, or reception of + # the STOP bits if parity is not applicable. + self.state[rxtx] = 'GET PARITY BIT' + if self.options['parity'] == 'none': + self.state[rxtx] = 'GET STOP BITS' + def format_value(self, v): # Format value 'v' according to configured options. # Reflects the user selected kind of representation, as well as # the number of data bits in the UART frames. - fmt, bits = self.options['format'], self.options['num_data_bits'] + fmt, bits = self.options['format'], self.options['data_bits'] # Assume "is printable" for values from 32 to including 126, # below 32 is "control" and thus not printable, above 127 is @@ -329,90 +385,188 @@ class Decoder(srd.Decoder): return None def get_parity_bit(self, rxtx, signal): - # If no parity is used/configured, skip to the next state immediately. - if self.options['parity_type'] == 'none': - self.state[rxtx] = 'GET STOP BITS' - return - - # Skip samples until we're in the middle of the parity bit. - if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1): - return - self.paritybit[rxtx] = signal - self.state[rxtx] = 'GET STOP BITS' - - if parity_ok(self.options['parity_type'], self.paritybit[rxtx], - self.datavalue[rxtx], self.options['num_data_bits']): + if parity_ok(self.options['parity'], self.paritybit[rxtx], + self.datavalue[rxtx], self.options['data_bits']): self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]]) - self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']]) + self.putg([Ann.RX_PARITY_OK + rxtx, ['Parity bit', 'Parity', 'P']]) else: # TODO: Return expected/actual parity values. self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple... - self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']]) + self.putg([Ann.RX_PARITY_ERR + rxtx, ['Parity error', 'Parity err', 'PE']]) + self.frame_valid[rxtx] = False + + self.state[rxtx] = 'GET STOP BITS' # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, rxtx, signal): - # Skip samples until we're in the middle of the stop bit(s). - skip_parity = 0 if self.options['parity_type'] == 'none' else 1 - b = self.options['num_data_bits'] + 1 + skip_parity - if not self.reached_bit(rxtx, b): - return - self.stopbit1[rxtx] = signal # Stop bits must be 1. If not, we report an error. if self.stopbit1[rxtx] != 1: self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]]) - self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']]) - # TODO: Abort? Ignore the frame? Other? + self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']]) + self.frame_valid[rxtx] = False + + self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]]) + self.putg([Ann.RX_PARITY_OK + rxtx, ['Stop bit', 'Stop', 'T']]) + + # Pass the complete UART frame to upper layers. + es = self.samplenum + ceil(self.bit_width / 2.0) + self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx, + (self.datavalue[rxtx], self.frame_valid[rxtx])]) self.state[rxtx] = 'WAIT FOR START BIT' + self.idle_start[rxtx] = self.frame_start[rxtx] + self.frame_len_sample_count - self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]]) - self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']]) + def handle_break(self, rxtx): + self.putpse(self.frame_start[rxtx], self.samplenum, + ['BREAK', rxtx, 0]) + self.putgse(self.frame_start[rxtx], self.samplenum, + [Ann.RX_BREAK + rxtx, ['Break condition', 'Break', 'Brk', 'B']]) + self.state[rxtx] = 'WAIT FOR START BIT' - def decode(self, ss, es, data): + def get_wait_cond(self, rxtx, inv): + # Return condititions that are suitable for Decoder.wait(). Those + # conditions either match the falling edge of the START bit, or + # the sample point of the next bit time. + state = self.state[rxtx] + if state == 'WAIT FOR START BIT': + return {rxtx: 'r' if inv else 'f'} + if state == 'GET START BIT': + bitnum = 0 + elif state == 'GET DATA BITS': + bitnum = 1 + self.cur_data_bit[rxtx] + elif state == 'GET PARITY BIT': + bitnum = 1 + self.options['data_bits'] + elif state == 'GET STOP BITS': + bitnum = 1 + self.options['data_bits'] + bitnum += 0 if self.options['parity'] == 'none' else 1 + want_num = ceil(self.get_sample_point(rxtx, bitnum)) + return {'skip': want_num - self.samplenum} + + def get_idle_cond(self, rxtx, inv): + # Return a condition that corresponds to the (expected) end of + # the next frame, assuming that it will be an "idle frame" + # (constant high input level for the frame's length). + if self.idle_start[rxtx] is None: + return None + end_of_frame = self.idle_start[rxtx] + self.frame_len_sample_count + if end_of_frame < self.samplenum: + return None + return {'skip': end_of_frame - self.samplenum} + + def inspect_sample(self, rxtx, signal, inv): + # Inspect a sample returned by .wait() for the specified UART line. + if inv: + signal = not signal + + state = self.state[rxtx] + if state == 'WAIT FOR START BIT': + self.wait_for_start_bit(rxtx, signal) + elif state == 'GET START BIT': + self.get_start_bit(rxtx, signal) + elif state == 'GET DATA BITS': + self.get_data_bits(rxtx, signal) + elif state == 'GET PARITY BIT': + self.get_parity_bit(rxtx, signal) + elif state == 'GET STOP BITS': + self.get_stop_bits(rxtx, signal) + + def inspect_edge(self, rxtx, signal, inv): + # Inspect edges, independently from traffic, to detect break conditions. + if inv: + signal = not signal + if not signal: + # Signal went low. Start another interval. + self.break_start[rxtx] = self.samplenum + return + # Signal went high. Was there an extended period with low signal? + if self.break_start[rxtx] is None: + return + diff = self.samplenum - self.break_start[rxtx] + if diff >= self.break_min_sample_count: + self.handle_break(rxtx) + self.break_start[rxtx] = None + + def inspect_idle(self, rxtx, signal, inv): + # Check each edge and each period of stable input (either level). + # Can derive the "idle frame period has passed" condition. + if inv: + signal = not signal + if not signal: + # Low input, cease inspection. + self.idle_start[rxtx] = None + return + # High input, either just reached, or still stable. + if self.idle_start[rxtx] is None: + self.idle_start[rxtx] = self.samplenum + diff = self.samplenum - self.idle_start[rxtx] + if diff < self.frame_len_sample_count: + return + ss, es = self.idle_start[rxtx], self.samplenum + self.putpse(ss, es, ['IDLE', rxtx, 0]) + self.idle_start[rxtx] = self.samplenum + + def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') - for (self.samplenum, pins) in data: - - # We want to skip identical samples for performance reasons but, - # for now, we can only do that when we are in the idle state - # (meaning both channels are waiting for the start bit). - if self.state == self.idle_state and self.oldpins == pins: - continue - - self.oldpins, (rx, tx) = pins, pins - - if self.options['invert_rx'] == 'yes': - rx = not rx - if self.options['invert_tx'] == 'yes': - tx = not tx - - # Either RX or TX (but not both) can be omitted. - has_pin = [rx in (0, 1), tx in (0, 1)] - if has_pin == [False, False]: - raise ChannelError('Either TX or RX (or both) pins required.') - - # State machine. - for rxtx in (RX, TX): - # Don't try to handle RX (or TX) if not supplied. - if not has_pin[rxtx]: - continue - - signal = rx if (rxtx == RX) else tx - - if self.state[rxtx] == 'WAIT FOR START BIT': - self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) - elif self.state[rxtx] == 'GET START BIT': - self.get_start_bit(rxtx, signal) - elif self.state[rxtx] == 'GET DATA BITS': - self.get_data_bits(rxtx, signal) - elif self.state[rxtx] == 'GET PARITY BIT': - self.get_parity_bit(rxtx, signal) - elif self.state[rxtx] == 'GET STOP BITS': - self.get_stop_bits(rxtx, signal) - - # Save current RX/TX values for the next round. - self.oldbit[rxtx] = signal + + has_pin = [self.has_channel(ch) for ch in (RX, TX)] + if not True in has_pin: + raise ChannelError('Need at least one of TX or RX pins.') + + opt = self.options + inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes'] + cond_data_idx = [None] * len(has_pin) + + # Determine the number of samples for a complete frame's time span. + # A period of low signal (at least) that long is a break condition. + frame_samples = 1 # START + frame_samples += self.options['data_bits'] + frame_samples += 0 if self.options['parity'] == 'none' else 1 + frame_samples += self.options['stop_bits'] + frame_samples *= self.bit_width + self.frame_len_sample_count = ceil(frame_samples) + self.break_min_sample_count = self.frame_len_sample_count + cond_edge_idx = [None] * len(has_pin) + cond_idle_idx = [None] * len(has_pin) + + while True: + conds = [] + if has_pin[RX]: + cond_data_idx[RX] = len(conds) + conds.append(self.get_wait_cond(RX, inv[RX])) + cond_edge_idx[RX] = len(conds) + conds.append({RX: 'e'}) + cond_idle_idx[RX] = None + idle_cond = self.get_idle_cond(RX, inv[RX]) + if idle_cond: + cond_idle_idx[RX] = len(conds) + conds.append(idle_cond) + if has_pin[TX]: + cond_data_idx[TX] = len(conds) + conds.append(self.get_wait_cond(TX, inv[TX])) + cond_edge_idx[TX] = len(conds) + conds.append({TX: 'e'}) + cond_idle_idx[TX] = None + idle_cond = self.get_idle_cond(TX, inv[TX]) + if idle_cond: + cond_idle_idx[TX] = len(conds) + conds.append(idle_cond) + (rx, tx) = self.wait(conds) + if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]: + self.inspect_sample(RX, rx, inv[RX]) + if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]: + self.inspect_edge(RX, rx, inv[RX]) + self.inspect_idle(RX, rx, inv[RX]) + if cond_idle_idx[RX] is not None and self.matched[cond_idle_idx[RX]]: + self.inspect_idle(RX, rx, inv[RX]) + if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]: + self.inspect_sample(TX, tx, inv[TX]) + if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]: + self.inspect_edge(TX, tx, inv[TX]) + self.inspect_idle(TX, tx, inv[TX]) + if cond_idle_idx[TX] is not None and self.matched[cond_idle_idx[TX]]: + self.inspect_idle(TX, tx, inv[TX])