X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=blobdiff_plain;f=decoders%2Fspiflash%2Fpd.py;h=a9eff9ee38fbb25229216d96d189875870ef063d;hp=17ebae305216f6ffe89c8f23ce8e7aece0f2c70b;hb=4539e9ca58966ce3c9cad4801b16c315e86ace01;hpb=5b0b88ced37e8fbe3031867255412f449245ca26 diff --git a/decoders/spiflash/pd.py b/decoders/spiflash/pd.py index 17ebae3..a9eff9e 100644 --- a/decoders/spiflash/pd.py +++ b/decoders/spiflash/pd.py @@ -1,7 +1,7 @@ ## ## This file is part of the libsigrokdecode project. ## -## Copyright (C) 2011-2015 Uwe Hermann +## Copyright (C) 2011-2016 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by @@ -14,16 +14,37 @@ ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## along with this program; if not, see . ## import sigrokdecode as srd from .lists import * +L = len(cmds) + +# Don't forget to keep this in sync with 'cmds' is lists.py. +class Ann: + WRSR, PP, READ, WRDI, RDSR, WREN, FAST_READ, SE, RDSCUR, WRSCUR, \ + RDSR2, CE, ESRY, DSRY, REMS, RDID, RDP_RES, CP, ENSO, DP, READ2X, \ + EXSO, CE2, BE, REMS2, \ + BIT, FIELD, WARN = range(L + 3) + def cmd_annotation_classes(): return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()]) +def decode_dual_bytes(sio0, sio1): + # Given a byte in SIO0 (MOSI) of even bits and a byte in + # SIO1 (MISO) of odd bits, return a tuple of two bytes. + def combine_byte(even, odd): + result = 0 + for bit in range(4): + if even & (1 << bit): + result |= 1 << (bit*2) + if odd & (1 << bit): + result |= 1 << ((bit*2) + 1) + return result + return (combine_byte(sio0 >> 4, sio1 >> 4), combine_byte(sio0, sio1)) + def decode_status_reg(data): # TODO: Additional per-bit(s) self.put() calls with correct start/end. @@ -59,21 +80,40 @@ class Decoder(srd.Decoder): inputs = ['spi'] outputs = ['spiflash'] annotations = cmd_annotation_classes() + ( - ('bits', 'Bits'), - ('bits2', 'Bits2'), - ('warnings', 'Warnings'), + ('bit', 'Bit'), + ('field', 'Field'), + ('warning', 'Warning'), ) annotation_rows = ( - ('bits', 'Bits', (24, 25)), - ('commands', 'Commands', tuple(range(23 + 1))), - ('warnings', 'Warnings', (26,)), + ('bits', 'Bits', (L + 0,)), + ('fields', 'Fields', (L + 1,)), + ('commands', 'Commands', tuple(range(len(cmds)))), + ('warnings', 'Warnings', (L + 2,)), ) options = ( {'id': 'chip', 'desc': 'Chip', 'default': tuple(chips.keys())[0], 'values': tuple(chips.keys())}, + {'id': 'format', 'desc': 'Data format', 'default': 'hex', + 'values': ('hex', 'ascii')}, ) def __init__(self): + self.device_id = -1 + self.on_end_transaction = None + self.end_current_transaction() + + # Build dict mapping command keys to handler functions. Each + # command in 'cmds' (defined in lists.py) has a matching + # handler self.handle_. + def get_handler(cmd): + s = 'handle_%s' % cmds[cmd][0].lower().replace('/', '_') + return getattr(self, s) + self.cmd_handlers = dict((cmd, get_handler(cmd)) for cmd in cmds.keys()) + + def end_current_transaction(self): + if self.on_end_transaction is not None: # Callback for CS# transition. + self.on_end_transaction() + self.on_end_transaction = None self.state = None self.cmdstate = 1 self.addr = 0 @@ -82,43 +122,78 @@ class Decoder(srd.Decoder): def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.chip = chips[self.options['chip']] + self.vendor = self.options['chip'].split('_')[0] def putx(self, data): # Simplification, most annotations span exactly one SPI byte/packet. self.put(self.ss, self.es, self.out_ann, data) - def putb(self, data): - self.put(self.ss_block, self.es_block, self.out_ann, data) + def putf(self, data): + self.put(self.ss_field, self.es_field, self.out_ann, data) + + def putc(self, data): + self.put(self.ss_cmd, self.es_cmd, self.out_ann, data) + + def device(self): + return device_name[self.vendor].get(self.device_id, 'Unknown') + + def vendor_device(self): + return '%s %s' % (self.chip['vendor'], self.device()) + + def cmd_ann_list(self): + x, s = cmds[self.state][0], cmds[self.state][1] + return ['Command: %s (%s)' % (s, x), 'Command: %s' % s, + 'Cmd: %s' % s, 'Cmd: %s' % x, x] + + def cmd_vendor_dev_list(self): + c, d = cmds[self.state], 'Device = %s' % self.vendor_device() + return ['%s (%s): %s' % (c[1], c[0], d), '%s: %s' % (c[1], d), + '%s: %s' % (c[0], d), d, self.vendor_device()] + + def emit_cmd_byte(self): + self.ss_cmd = self.ss + self.putx([Ann.FIELD, self.cmd_ann_list()]) + self.addr = 0 + + def emit_addr_bytes(self, mosi): + self.addr |= (mosi << ((4 - self.cmdstate) * 8)) + b = ((3 - (self.cmdstate - 2)) * 8) - 1 + self.putx([Ann.BIT, + ['Address bits %d..%d: 0x%02x' % (b, b - 7, mosi), + 'Addr bits %d..%d: 0x%02x' % (b, b - 7, mosi), + 'Addr bits %d..%d' % (b, b - 7), 'A%d..A%d' % (b, b - 7)]]) + if self.cmdstate == 2: + self.ss_field = self.ss + if self.cmdstate == 4: + self.es_field = self.es + self.putf([Ann.FIELD, ['Address: 0x%06x' % self.addr, + 'Addr: 0x%06x' % self.addr, '0x%06x' % self.addr]]) def handle_wren(self, mosi, miso): - self.putx([0, ['Command: %s' % cmds[self.state][1]]]) + self.putx([Ann.WREN, self.cmd_ann_list()]) self.state = None def handle_wrdi(self, mosi, miso): pass # TODO - # TODO: Check/display device ID / name def handle_rdid(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.ss_block = self.ss - self.putx([2, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate == 2: # Byte 2: Slave sends the JEDEC manufacturer ID. - self.putx([2, ['Manufacturer ID: 0x%02x' % miso]]) + self.putx([Ann.FIELD, ['Manufacturer ID: 0x%02x' % miso]]) elif self.cmdstate == 3: - # Byte 3: Slave sends the memory type (0x20 for this chip). - self.putx([2, ['Memory type: 0x%02x' % miso]]) + # Byte 3: Slave sends the memory type. + self.putx([Ann.FIELD, ['Memory type: 0x%02x' % miso]]) elif self.cmdstate == 4: # Byte 4: Slave sends the device ID. self.device_id = miso - self.putx([2, ['Device ID: 0x%02x' % miso]]) + self.putx([Ann.FIELD, ['Device ID: 0x%02x' % miso]]) if self.cmdstate == 4: - # TODO: Check self.device_id is valid & exists in device_names. - # TODO: Same device ID? Check! - d = 'Device: Macronix %s' % device_name[self.device_id] - self.put(self.ss_block, self.es, self.out_ann, [0, [d]]) + self.es_cmd = self.es + self.putc([Ann.RDID, self.cmd_vendor_dev_list()]) self.state = None else: self.cmdstate += 1 @@ -130,52 +205,69 @@ class Decoder(srd.Decoder): # When done, the master de-asserts CS# again. if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.putx([3, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate >= 2: # Bytes 2-x: Slave sends status register as long as master clocks. - if self.cmdstate <= 3: # TODO: While CS# asserted. - self.putx([24, ['Status register: 0x%02x' % miso]]) - self.putx([25, [decode_status_reg(miso)]]) - - if self.cmdstate == 3: # TODO: If CS# got de-asserted. - self.state = None - return + self.es_cmd = self.es + self.putx([Ann.BIT, [decode_status_reg(miso)]]) + self.putx([Ann.FIELD, ['Status register']]) + self.putc([Ann.RDSR, self.cmd_ann_list()]) + self.cmdstate += 1 + def handle_rdsr2(self, mosi, miso): + # Read status register 2: Master asserts CS#, sends RDSR2 command, + # reads status register 2 byte. If CS# is kept asserted, the status + # register 2 can be read continuously / multiple times in a row. + # When done, the master de-asserts CS# again. + if self.cmdstate == 1: + # Byte 1: Master sends command ID. + self.emit_cmd_byte() + elif self.cmdstate >= 2: + # Bytes 2-x: Slave sends status register 2 as long as master clocks. + self.es_cmd = self.es + # TODO: Decode status register 2 correctly. + self.putx([Ann.BIT, [decode_status_reg(miso)]]) + self.putx([Ann.FIELD, ['Status register 2']]) + self.putc([Ann.RDSR2, self.cmd_ann_list()]) self.cmdstate += 1 def handle_wrsr(self, mosi, miso): - pass # TODO + # Write status register: Master asserts CS#, sends WRSR command, + # writes 1 or 2 status register byte(s). + # When done, the master de-asserts CS# again. If this doesn't happen + # the WRSR command will not be executed. + if self.cmdstate == 1: + # Byte 1: Master sends command ID. + self.emit_cmd_byte() + elif self.cmdstate == 2: + # Byte 2: Master sends status register 1. + self.putx([Ann.BIT, [decode_status_reg(miso)]]) + self.putx([Ann.FIELD, ['Status register 1']]) + elif self.cmdstate == 3: + # Byte 3: Master sends status register 2. + # TODO: Decode status register 2 correctly. + self.putx([Ann.BIT, [decode_status_reg(miso)]]) + self.putx([Ann.FIELD, ['Status register 2']]) + self.es_cmd = self.es + self.putc([Ann.WRSR, self.cmd_ann_list()]) + self.cmdstate += 1 def handle_read(self, mosi, miso): # Read data bytes: Master asserts CS#, sends READ command, sends # 3-byte address, reads >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.putx([5, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends read address (24bits, MSB-first). - self.addr |= (mosi << ((4 - self.cmdstate) * 8)) - # self.putx([0, ['Read address, byte %d: 0x%02x' % \ - # (4 - self.cmdstate, mosi)]]) - if self.cmdstate == 4: - self.putx([24, ['Read address: 0x%06x' % self.addr]]) - self.addr = 0 + self.emit_addr_bytes(mosi) elif self.cmdstate >= 5: # Bytes 5-x: Master reads data bytes (until CS# de-asserted). - # TODO: For now we hardcode 256 bytes per READ command. - if self.cmdstate <= 256 + 4: # TODO: While CS# asserted. - self.data.append(miso) - # self.putx([0, ['New read byte: 0x%02x' % miso]]) - - if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted. - # s = ', '.join(map(hex, self.data)) - s = ''.join(map(chr, self.data)) - self.putx([24, ['Read data']]) - self.putx([25, ['Read data: %s' % s]]) - self.data = [] - self.state = None - return - + self.es_field = self.es # Will be overwritten for each byte. + if self.cmdstate == 5: + self.ss_field = self.ss + self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ) + self.data.append(miso) self.cmdstate += 1 def handle_fast_read(self, mosi, miso): @@ -183,60 +275,70 @@ class Decoder(srd.Decoder): # 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.putx([5, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends read address (24bits, MSB-first). - self.putx([24, ['AD%d: 0x%02x' % (self.cmdstate - 1, mosi)]]) - if self.cmdstate == 2: - self.ss_block = self.ss - self.addr |= (mosi << ((4 - self.cmdstate) * 8)) + self.emit_addr_bytes(mosi) elif self.cmdstate == 5: - self.putx([24, ['Dummy byte: 0x%02x' % mosi]]) - self.es_block = self.es - self.putb([5, ['Read address: 0x%06x' % self.addr]]) - self.addr = 0 + self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % mosi]]) elif self.cmdstate >= 6: # Bytes 6-x: Master reads data bytes (until CS# de-asserted). - # TODO: For now we hardcode 32 bytes per FAST READ command. + self.es_field = self.es # Will be overwritten for each byte. if self.cmdstate == 6: - self.ss_block = self.ss - if self.cmdstate <= 32 + 5: # TODO: While CS# asserted. - self.data.append(miso) - if self.cmdstate == 32 + 5: # TODO: If CS# got de-asserted. - self.es_block = self.es - s = ' '.join([hex(b)[2:] for b in self.data]) - self.putb([25, ['Read data: %s' % s]]) - self.data = [] - self.state = None - return - + self.ss_field = self.ss + self.on_end_transaction = lambda: self.output_data_block('Data', Ann.FAST_READ) + self.data.append(miso) self.cmdstate += 1 def handle_2read(self, mosi, miso): - pass # TODO + # 2x I/O read (fast read dual I/O): Master asserts CS#, sends 2READ + # command, sends 3-byte address + 1 dummy byte, reads >= 1 data bytes, + # de-asserts CS#. All data after the command is sent via two I/O pins. + # MOSI = SIO0 = even bits, MISO = SIO1 = odd bits. + if self.cmdstate != 1: + b1, b2 = decode_dual_bytes(mosi, miso) + if self.cmdstate == 1: + # Byte 1: Master sends command ID. + self.emit_cmd_byte() + elif self.cmdstate == 2: + # Bytes 2/3(/4): Master sends read address (24bits, MSB-first). + # Handle bytes 2 and 3 here. + self.emit_addr_bytes(b1) + self.cmdstate = 3 + self.emit_addr_bytes(b2) + elif self.cmdstate == 4: + # Byte 5: Dummy byte. Also handle byte 4 (address LSB) here. + self.emit_addr_bytes(b1) + self.cmdstate = 5 + self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % b2]]) + elif self.cmdstate >= 6: + # Bytes 6-x: Master reads data bytes (until CS# de-asserted). + self.es_field = self.es # Will be overwritten for each byte. + if self.cmdstate == 6: + self.ss_field = self.ss + self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ2X) + self.data.append(b1) + self.data.append(b2) + self.cmdstate += 1 # TODO: Warn/abort if we don't see the necessary amount of bytes. # TODO: Warn if WREN was not seen before. def handle_se(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.addr = 0 - self.ss_block = self.ss - self.putx([8, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends sector address (24bits, MSB-first). - self.addr |= (mosi << ((4 - self.cmdstate) * 8)) - # self.putx([0, ['Sector address, byte %d: 0x%02x' % \ - # (4 - self.cmdstate, mosi)]]) + self.emit_addr_bytes(mosi) if self.cmdstate == 4: + self.es_cmd = self.es d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr) - self.put(self.ss_block, self.es, self.out_ann, [24, [d]]) + self.putc([Ann.SE, [d]]) # TODO: Max. size depends on chip, check that too if possible. if self.addr % 4096 != 0: # Sector addresses must be 4K-aligned (same for all 3 chips). - d = 'Warning: Invalid sector address!' - self.put(self.ss_block, self.es, self.out_ann, [101, [d]]) + self.putc([Ann.WARN, ['Warning: Invalid sector address!']]) self.state = None else: self.cmdstate += 1 @@ -255,31 +357,17 @@ class Decoder(srd.Decoder): # page address, sends >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.putx([12, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends page address (24bits, MSB-first). - self.addr |= (mosi << ((4 - self.cmdstate) * 8)) - # self.putx([0, ['Page address, byte %d: 0x%02x' % \ - # (4 - self.cmdstate, mosi)]]) - if self.cmdstate == 4: - self.putx([24, ['Page address: 0x%06x' % self.addr]]) - self.addr = 0 + self.emit_addr_bytes(mosi) elif self.cmdstate >= 5: # Bytes 5-x: Master sends data bytes (until CS# de-asserted). - # TODO: For now we hardcode 256 bytes per page / PP command. - if self.cmdstate <= 256 + 4: # TODO: While CS# asserted. - self.data.append(mosi) - # self.putx([0, ['New data byte: 0x%02x' % mosi]]) - - if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted. - # s = ', '.join(map(hex, self.data)) - s = ''.join(map(chr, self.data)) - self.putx([24, ['Page data']]) - self.putx([25, ['Page data: %s' % s]]) - self.data = [] - self.state = None - return - + self.es_field = self.es # Will be overwritten for each byte. + if self.cmdstate == 5: + self.ss_field = self.ss + self.on_end_transaction = lambda: self.output_data_block('Data', Ann.PP) + self.data.append(mosi) self.cmdstate += 1 def handle_cp(self, mosi, miso): @@ -289,38 +377,52 @@ class Decoder(srd.Decoder): pass # TODO def handle_rdp_res(self, mosi, miso): - pass # TODO + if self.cmdstate == 1: + # Byte 1: Master sends command ID. + self.emit_cmd_byte() + elif self.cmdstate in (2, 3, 4): + # Bytes 2/3/4: Master sends three dummy bytes. + self.putx([Ann.FIELD, ['Dummy byte: %02x' % mosi]]) + elif self.cmdstate == 5: + # Byte 5: Slave sends device ID. + self.es_cmd = self.es + self.device_id = miso + self.putx([Ann.FIELD, ['Device ID: %s' % self.device()]]) + d = 'Device = %s' % self.vendor_device() + self.putc([Ann.RDP_RES, self.cmd_vendor_dev_list()]) + self.state = None + self.cmdstate += 1 def handle_rems(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. - self.ss_block = self.ss - self.putx([16, ['Command: %s' % cmds[self.state][1]]]) + self.emit_cmd_byte() elif self.cmdstate in (2, 3): # Bytes 2/3: Master sends two dummy bytes. - # TODO: Check dummy bytes? Check reply from device? - self.putx([24, ['Dummy byte: %s' % mosi]]) + self.putx([Ann.FIELD, ['Dummy byte: 0x%02x' % mosi]]) elif self.cmdstate == 4: # Byte 4: Master sends 0x00 or 0x01. # 0x00: Master wants manufacturer ID as first reply byte. # 0x01: Master wants device ID as first reply byte. self.manufacturer_id_first = True if (mosi == 0x00) else False d = 'manufacturer' if (mosi == 0x00) else 'device' - self.putx([24, ['Master wants %s ID first' % d]]) + self.putx([Ann.FIELD, ['Master wants %s ID first' % d]]) elif self.cmdstate == 5: # Byte 5: Slave sends manufacturer ID (or device ID). self.ids = [miso] d = 'Manufacturer' if self.manufacturer_id_first else 'Device' - self.putx([24, ['%s ID' % d]]) + self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]]) elif self.cmdstate == 6: # Byte 6: Slave sends device ID (or manufacturer ID). self.ids.append(miso) - d = 'Manufacturer' if self.manufacturer_id_first else 'Device' - self.putx([24, ['%s ID' % d]]) + d = 'Device' if self.manufacturer_id_first else 'Manufacturer' + self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]]) if self.cmdstate == 6: id = self.ids[1] if self.manufacturer_id_first else self.ids[0] - self.putx([24, ['Device: Macronix %s' % device_name[id]]]) + self.device_id = id + self.es_cmd = self.es + self.putc([Ann.REMS, self.cmd_vendor_dev_list()]) self.state = None else: self.cmdstate += 1 @@ -346,34 +448,37 @@ class Decoder(srd.Decoder): def handle_dsry(self, mosi, miso): pass # TODO - def decode(self, ss, es, data): + def output_data_block(self, label, idx): + # Print accumulated block of data + # (called on CS# de-assert via self.on_end_transaction callback). + self.es_cmd = self.es # End on the CS# de-assert sample. + if self.options['format'] == 'hex': + s = ' '.join([('%02x' % b) for b in self.data]) + else: + s = ''.join(map(chr, self.data)) + self.putf([Ann.FIELD, ['%s (%d bytes)' % (label, len(self.data))]]) + self.putc([idx, ['%s (addr 0x%06x, %d bytes): %s' % \ + (cmds[self.state][1], self.addr, len(self.data), s)]]) + def decode(self, ss, es, data): ptype, mosi, miso = data - # if ptype == 'DATA': - # self.putx([0, ['MOSI: 0x%02x, MISO: 0x%02x' % (mosi, miso)]]) + self.ss, self.es = ss, es - # if ptype == 'CS-CHANGE': - # if mosi == 1 and miso == 0: - # self.putx([0, ['Asserting CS#']]) - # elif mosi == 0 and miso == 1: - # self.putx([0, ['De-asserting CS#']]) + if ptype == 'CS-CHANGE': + self.end_current_transaction() if ptype != 'DATA': return - self.ss, self.es = ss, es - # If we encountered a known chip command, enter the resp. state. if self.state is None: self.state = mosi self.cmdstate = 1 # Handle commands. - if self.state in cmds: - s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_') - handle_reg = getattr(self, s) - handle_reg(mosi, miso) - else: - self.putx([24, ['Unknown command: 0x%02x' % mosi]]) + try: + self.cmd_handlers[self.state](mosi, miso) + except KeyError: + self.putx([Ann.BIT, ['Unknown command: 0x%02x' % mosi]]) self.state = None