X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=blobdiff_plain;f=decoders%2Fonewire_link%2Fpd.py;h=564d6f0bc86895725b37116f683dbfe15bfae9eb;hp=253e6cd335415d5be5922fc6d9889839136b7b95;hb=HEAD;hpb=938aa7fb36fc0f172dda3b2bc5c15b226a458295 diff --git a/decoders/onewire_link/pd.py b/decoders/onewire_link/pd.py index 253e6cd..6ad2802 100644 --- a/decoders/onewire_link/pd.py +++ b/decoders/onewire_link/pd.py @@ -1,7 +1,7 @@ ## ## This file is part of the libsigrokdecode project. ## -## Copyright (C) 2012 Iztok Jeras +## Copyright (C) 2017 Kevin Redon ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by @@ -14,16 +14,82 @@ ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## along with this program; if not, see . ## -# 1-Wire protocol decoder (link layer) - import sigrokdecode as srd +class SamplerateError(Exception): + pass + +# Timing values in us for the signal at regular and overdrive speed. +timing = { + 'RSTL': { + 'min': { + False: 480.0, + True: 48.0, + }, + 'max': { + False: 960.0, + True: 80.0, + }, + }, + 'RSTH': { + 'min': { + False: 480.0, + True: 48.0, + }, + }, + 'PDH': { + 'min': { + False: 15.0, + True: 2.0, + }, + 'max': { + False: 60.0, + True: 6.0, + }, + }, + 'PDL': { + 'min': { + False: 60.0, + True: 8.0, + }, + 'max': { + False: 240.0, + True: 24.0, + }, + }, + 'SLOT': { + 'min': { + False: 60.0, + True: 6.0, + }, + 'max': { + False: 120.0, + True: 16.0, + }, + }, + 'REC': { + 'min': { + False: 1.0, + True: 1.0, + }, + }, + 'LOWR': { + 'min': { + False: 1.0, + True: 1.0, + }, + 'max': { + False: 15.0, + True: 2.0, + }, + }, +} + class Decoder(srd.Decoder): - api_version = 1 + api_version = 3 id = 'onewire_link' name = '1-Wire link layer' longname = '1-Wire serial communication bus (link layer)' @@ -31,62 +97,70 @@ class Decoder(srd.Decoder): license = 'gplv2+' inputs = ['logic'] outputs = ['onewire_link'] - probes = [ + tags = ['Embedded/industrial'] + channels = ( {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire signal line'}, - ] - optional_probes = [ - {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power supply pin'}, - ] - options = { - 'overdrive': ['Overdrive', 1], - # Time options (specified in number of samplerate periods): - 'cnt_normal_bit': ['Normal mode sample bit time', 0], - 'cnt_normal_slot': ['Normal mode data slot time', 0], - 'cnt_normal_presence': ['Normal mode sample presence time', 0], - 'cnt_normal_reset': ['Normal mode reset time', 0], - 'cnt_overdrive_bit': ['Overdrive mode sample bit time', 0], - 'cnt_overdrive_slot': ['Overdrive mode data slot time', 0], - 'cnt_overdrive_presence': ['Overdrive mode sample presence time', 0], - 'cnt_overdrive_reset': ['Overdrive mode reset time', 0], - } - annotations = [ - ['bit', 'Bit'], - ['warnings', 'Warnings'], - ['reset', 'Reset/presence'], - ['overdrive', 'Overdrive mode notifications'], - ] - - def putm(self, data): - self.put(0, 0, self.out_ann, data) + ) + options = ( + {'id': 'overdrive', 'desc': 'Start in overdrive speed', + 'default': 'no', 'values': ('yes', 'no')}, + ) + annotations = ( + ('bit', 'Bit'), + ('warning', 'Warning'), + ('reset', 'Reset'), + ('presence', 'Presence'), + ('overdrive', 'Overdrive speed notification'), + ) + annotation_rows = ( + ('bits', 'Bits', (0, 2, 3)), + ('info', 'Info', (4,)), + ('warnings', 'Warnings', (1,)), + ) - def putpb(self, data): - self.put(self.fall, self.samplenum, self.out_proto, data) + def __init__(self): + self.reset() - def putb(self, data): - self.put(self.fall, self.samplenum, self.out_ann, data) - - def putx(self, data): - self.put(self.fall, self.cnt_bit[self.overdrive], self.out_ann, data) - - def __init__(self, **kwargs): - self.samplenum = 0 - self.state = 'WAIT FOR FALLING EDGE' + def reset(self): + self.samplerate = None + self.state = 'INITIAL' self.present = 0 self.bit = 0 - self.bit_cnt = 0 + self.bit_count = -1 self.command = 0 - self.overdrive = 0 + self.overdrive = False + self.fall = 0 + self.rise = 0 + + def start(self): + self.out_python = self.register(srd.OUTPUT_PYTHON) + self.out_ann = self.register(srd.OUTPUT_ANN) + self.overdrive = (self.options['overdrive'] == 'yes') self.fall = 0 self.rise = 0 + self.bit_count = -1 + + def putm(self, data): + self.put(0, 0, self.out_ann, data) + + def putpfs(self, data): + self.put(self.fall, self.samplenum, self.out_python, data) - def start(self, metadata): - self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire_link') - self.out_ann = self.add(srd.OUTPUT_ANN, 'onewire_link') + def putfs(self, data): + self.put(self.fall, self.samplenum, self.out_ann, data) - self.samplerate = metadata['samplerate'] + def putfr(self, data): + self.put(self.fall, self.rise, self.out_ann, data) + def putprs(self, data): + self.put(self.rise, self.samplenum, self.out_python, data) + + def putrs(self, data): + self.put(self.rise, self.samplenum, self.out_ann, data) + + def checks(self): # Check if samplerate is appropriate. - if self.options['overdrive']: + if self.options['overdrive'] == 'yes': if self.samplerate < 2000000: self.putm([1, ['Sampling rate is too low. Must be above ' + '2MHz for proper overdrive mode decoding.']]) @@ -97,174 +171,177 @@ class Decoder(srd.Decoder): if self.samplerate < 400000: self.putm([1, ['Sampling rate is too low. Must be above ' + '400kHz for proper normal mode decoding.']]) - elif (self.samplerate < 1000000): + elif self.samplerate < 1000000: self.putm([1, ['Sampling rate is suggested to be above ' + '1MHz for proper normal mode decoding.']]) - # The default 1-Wire time base is 30us. This is used to calculate - # sampling times. - samplerate = float(self.samplerate) - if self.options['cnt_normal_bit']: - self.cnt_normal_bit = self.options['cnt_normal_bit'] - else: - self.cnt_normal_bit = int(samplerate * 0.000015) - 1 # 15ns - if self.options['cnt_normal_slot']: - self.cnt_normal_slot = self.options['cnt_normal_slot'] - else: - self.cnt_normal_slot = int(samplerate * 0.000060) - 1 # 60ns - if self.options['cnt_normal_presence']: - self.cnt_normal_presence = self.options['cnt_normal_presence'] - else: - self.cnt_normal_presence = int(samplerate * 0.000075) - 1 # 75ns - if self.options['cnt_normal_reset']: - self.cnt_normal_reset = self.options['cnt_normal_reset'] - else: - self.cnt_normal_reset = int(samplerate * 0.000480) - 1 # 480ns - if self.options['cnt_overdrive_bit']: - self.cnt_overdrive_bit = self.options['cnt_overdrive_bit'] - else: - self.cnt_overdrive_bit = int(samplerate * 0.000002) - 1 # 2ns - if self.options['cnt_overdrive_slot']: - self.cnt_overdrive_slot = self.options['cnt_overdrive_slot'] - else: - self.cnt_overdrive_slot = int(samplerate * 0.0000073) - 1 # 6ns+1.3ns - if self.options['cnt_overdrive_presence']: - self.cnt_overdrive_presence = self.options['cnt_overdrive_presence'] - else: - self.cnt_overdrive_presence = int(samplerate * 0.000010) - 1 # 10ns - if self.options['cnt_overdrive_reset']: - self.cnt_overdrive_reset = self.options['cnt_overdrive_reset'] - else: - self.cnt_overdrive_reset = int(samplerate * 0.000048) - 1 # 48ns - - # Organize values into lists. - self.cnt_bit = [self.cnt_normal_bit, self.cnt_overdrive_bit] - self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence] - self.cnt_reset = [self.cnt_normal_reset, self.cnt_overdrive_reset] - self.cnt_slot = [self.cnt_normal_slot, self.cnt_overdrive_slot] - - # Check if sample times are in the allowed range. - - time_min = float(self.cnt_normal_bit) / self.samplerate - time_max = float(self.cnt_normal_bit + 1) / self.samplerate - if (time_min < 0.000005) or (time_max > 0.000015): - self.putm([1, ['The normal mode data sample time interval ' + - '(%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).' - % (time_min * 1000000, time_max * 1000000)]]) - - time_min = float(self.cnt_normal_presence) / self.samplerate - time_max = float(self.cnt_normal_presence + 1) / self.samplerate - if (time_min < 0.0000681) or (time_max > 0.000075): - self.putm([1, ['The normal mode presence sample time interval ' + - '(%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).' - % (time_min * 1000000, time_max * 1000000)]]) - - time_min = float(self.cnt_overdrive_bit) / self.samplerate - time_max = float(self.cnt_overdrive_bit + 1) / self.samplerate - if (time_min < 0.000001) or (time_max > 0.000002): - self.putm([1, ['The overdrive mode data sample time interval ' + - '(%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).' - % (time_min * 1000000, time_max * 1000000)]]) - - time_min = float(self.cnt_overdrive_presence) / self.samplerate - time_max = float(self.cnt_overdrive_presence + 1) / self.samplerate - if (time_min < 0.0000073) or (time_max > 0.000010): - self.putm([1, ['The overdrive mode presence sample time interval ' + - '(%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).' - % (time_min*1000000, time_max*1000000)]]) + def metadata(self, key, value): + if key != srd.SRD_CONF_SAMPLERATE: + return + self.samplerate = value - def report(self): - pass + def wait_falling_timeout(self, start, t): + # Wait until either a falling edge is seen, and/or the specified + # number of samples have been skipped (i.e. time has passed). + cnt = int((t[self.overdrive] / 1000000.0) * self.samplerate) + samples_to_skip = (start + cnt) - self.samplenum + samples_to_skip = samples_to_skip if (samples_to_skip > 0) else 0 + return self.wait([{0: 'f'}, {'skip': samples_to_skip}]) - def decode(self, ss, es, data): - for (self.samplenum, (owr, pwr)) in data: + def decode(self): + if not self.samplerate: + raise SamplerateError('Cannot decode without samplerate.') + self.checks() + while True: # State machine. - if self.state == 'WAIT FOR FALLING EDGE': - # The start of a cycle is a falling edge. - if owr != 0: - continue - # Save the sample number for the falling edge. + if self.state == 'INITIAL': # Unknown initial state. + # Wait until we reach the idle high state. + self.wait({0: 'h'}) + self.rise = self.samplenum + self.state = 'IDLE' + elif self.state == 'IDLE': # Idle high state. + # Wait for falling edge. + self.wait({0: 'f'}) self.fall = self.samplenum - # Go to waiting for sample time. - self.state = 'WAIT FOR DATA SAMPLE' - elif self.state == 'WAIT FOR DATA SAMPLE': - # Sample data bit. - t = self.samplenum - self.fall - if t == self.cnt_bit[self.overdrive]: - self.bit = owr - self.state = 'WAIT FOR DATA SLOT END' - elif self.state == 'WAIT FOR DATA SLOT END': - # A data slot ends in a recovery period, otherwise, this is - # probably a reset. - t = self.samplenum - self.fall - if t != self.cnt_slot[self.overdrive]: - continue - - if owr == 0: - # This seems to be a reset slot, wait for its end. - self.state = 'WAIT FOR RISING EDGE' - continue - - self.putb([0, ['Bit: %d' % self.bit]]) - self.putpb(['BIT', self.bit]) + # Get time since last rising edge. + time = ((self.fall - self.rise) / self.samplerate) * 1000000.0 + if self.rise > 0 and \ + time < timing['REC']['min'][self.overdrive]: + self.putfr([1, ['Recovery time not long enough' + 'Recovery too short', + 'REC < ' + str(timing['REC']['min'][self.overdrive])]]) + # A reset pulse or slot can start on a falling edge. + self.state = 'LOW' + # TODO: Check minimum recovery time. + elif self.state == 'LOW': # Reset pulse or slot. + # Wait for rising edge. + self.wait({0: 'r'}) + self.rise = self.samplenum + # Detect reset or slot base on timing. + time = ((self.rise - self.fall) / self.samplerate) * 1000000.0 + if time >= timing['RSTL']['min'][False]: # Normal reset pulse. + if time > timing['RSTL']['max'][False]: + self.putfr([1, ['Too long reset pulse might mask interrupt ' + + 'signalling by other devices', + 'Reset pulse too long', + 'RST > ' + str(timing['RSTL']['max'][False])]]) + # Regular reset pulse clears overdrive speed. + if self.overdrive: + self.putfr([4, ['Exiting overdrive mode', 'Overdrive off']]) + self.overdrive = False + self.putfr([2, ['Reset', 'Rst', 'R']]) + self.state = 'PRESENCE DETECT HIGH' + elif self.overdrive == True and \ + time >= timing['RSTL']['min'][self.overdrive] and \ + time < timing['RSTL']['max'][self.overdrive]: + # Overdrive reset pulse. + self.putfr([2, ['Reset', 'Rst', 'R']]) + self.state = 'PRESENCE DETECT HIGH' + elif time < timing['SLOT']['max'][self.overdrive]: + # Read/write time slot. + if time < timing['LOWR']['min'][self.overdrive]: + self.putfr([1, ['Low signal not long enough', + 'Low too short', + 'LOW < ' + str(timing['LOWR']['min'][self.overdrive])]]) + if time < timing['LOWR']['max'][self.overdrive]: + self.bit = 1 # Short pulse is a 1 bit. + else: + self.bit = 0 # Long pulse is a 0 bit. + # Wait for end of slot. + self.state = 'SLOT' + else: + # Timing outside of known states. + self.putfr([1, ['Erroneous signal', 'Error', 'Err', 'E']]) + self.state = 'IDLE' + elif self.state == 'PRESENCE DETECT HIGH': # Wait for slave presence signal. + # Wait for a falling edge and/or presence detect signal. + self.wait_falling_timeout(self.rise, timing['PDH']['max']) - # Checking the first command to see if overdrive mode - # should be entered. - if self.bit_cnt <= 8: - self.command |= (self.bit << self.bit_cnt) - elif self.bit_cnt == 8 and self.command in [0x3c, 0x69]: - self.putx([3, ['Entering overdrive mode']]) - # Increment the bit counter. - self.bit_cnt += 1 - # Wait for next slot. - self.state = 'WAIT FOR FALLING EDGE' - elif self.state == 'WAIT FOR RISING EDGE': - # The end of a cycle is a rising edge. - if owr != 1: - continue + # Calculate time since rising edge. + time = ((self.samplenum - self.rise) / self.samplerate) * 1000000.0 - # Check if this was a reset cycle. - t = self.samplenum - self.fall - if t > self.cnt_normal_reset: - # Save the sample number for the falling edge. + if self.matched[0] and not self.matched[1]: + # Presence detected. + if time < timing['PDH']['min'][self.overdrive]: + self.putrs([1, ['Presence detect signal is too early', + 'Presence detect too early', + 'PDH < ' + str(timing['PDH']['min'][self.overdrive])]]) + self.fall = self.samplenum + self.state = 'PRESENCE DETECT LOW' + else: # No presence detected. + self.putrs([3, ['Presence: false', 'Presence', 'Pres', 'P']]) + self.putprs(['RESET/PRESENCE', False]) + self.state = 'IDLE' + elif self.state == 'PRESENCE DETECT LOW': # Slave presence signalled. + # Wait for end of presence signal (on rising edge). + self.wait({0: 'r'}) + # Calculate time since start of presence signal. + time = ((self.samplenum - self.fall) / self.samplerate) * 1000000.0 + if time < timing['PDL']['min'][self.overdrive]: + self.putfs([1, ['Presence detect signal is too short', + 'Presence detect too short', + 'PDL < ' + str(timing['PDL']['min'][self.overdrive])]]) + elif time > timing['PDL']['max'][self.overdrive]: + self.putfs([1, ['Presence detect signal is too long', + 'Presence detect too long', + 'PDL > ' + str(timing['PDL']['max'][self.overdrive])]]) + if time > timing['RSTH']['min'][self.overdrive]: self.rise = self.samplenum - self.state = 'WAIT FOR PRESENCE DETECT' - # Exit overdrive mode. - if self.overdrive: - self.putx([3, ['Exiting overdrive mode']]) - self.overdrive = 0 - # Clear command bit counter and data register. - self.bit_cnt = 0 - self.command = 0 - elif (t > self.cnt_overdrive_reset) and self.overdrive: - # Save the sample number for the falling edge. - self.rise = self.samplenum - self.state = "WAIT FOR PRESENCE DETECT" - # Otherwise this is assumed to be a data bit. - else: - self.state = "WAIT FOR FALLING EDGE" - elif self.state == 'WAIT FOR PRESENCE DETECT': - # Sample presence status. - t = self.samplenum - self.rise - if t == self.cnt_presence[self.overdrive]: - self.present = owr - self.state = 'WAIT FOR RESET SLOT END' - elif self.state == 'WAIT FOR RESET SLOT END': - # A reset slot ends in a long recovery period. - t = self.samplenum - self.rise - if t != self.cnt_reset[self.overdrive]: - continue + # Wait for end of presence detect. + self.state = 'PRESENCE DETECT' + + # End states (for additional checks). + if self.state == 'SLOT': # Wait for end of time slot. + # Wait for a falling edge and/or end of timeslot. + self.wait_falling_timeout(self.fall, timing['SLOT']['min']) - if owr == 0: - # This seems to be a reset slot, wait for its end. - self.state = 'WAIT FOR RISING EDGE' - continue + if self.matched[0] and not self.matched[1]: + # Low detected before end of slot. + self.putfs([1, ['Time slot not long enough', + 'Slot too short', + 'SLOT < ' + str(timing['SLOT']['min'][self.overdrive])]]) + # Don't output invalid bit. + self.fall = self.samplenum + self.state = 'LOW' + else: # End of time slot. + # Output bit. + self.putfs([0, ['Bit: %d' % self.bit, '%d' % self.bit]]) + self.putpfs(['BIT', self.bit]) + # Save command bits. + if self.bit_count >= 0: + self.command += (self.bit << self.bit_count) + self.bit_count += 1 + # Check for overdrive ROM command. + if self.bit_count >= 8: + if self.command == 0x3c or self.command == 0x69: + self.overdrive = True + self.put(self.samplenum, self.samplenum, + self.out_ann, + [4, ['Entering overdrive mode', 'Overdrive on']]) + self.bit_count = -1 + self.state = 'IDLE' - p = 'false' if self.present else 'true' - self.putb([2, ['Reset/presence: %s' % p]]) - self.putpb(['RESET/PRESENCE', not self.present]) + if self.state == 'PRESENCE DETECT': + # Wait for a falling edge and/or end of presence detect. + self.wait_falling_timeout(self.rise, timing['RSTH']['min']) - # Wait for next slot. - self.state = 'WAIT FOR FALLING EDGE' - else: - raise Exception('Invalid state: %s' % self.state) + if self.matched[0] and not self.matched[1]: + # Low detected before end of presence detect. + self.putfs([1, ['Presence detect not long enough', + 'Presence detect too short', + 'RTSH < ' + str(timing['RSTH']['min'][self.overdrive])]]) + # Inform about presence detected. + self.putrs([3, ['Slave presence detected', 'Slave present', + 'Present', 'P']]) + self.putprs(['RESET/PRESENCE', True]) + self.fall = self.samplenum + self.state = 'LOW' + else: # End of time slot. + # Inform about presence detected. + self.putrs([3, ['Presence: true', 'Presence', 'Pres', 'P']]) + self.putprs(['RESET/PRESENCE', True]) + self.rise = self.samplenum + # Start counting the first 8 bits to get the ROM command. + self.bit_count = 0 + self.command = 0 + self.state = 'IDLE'