X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=blobdiff_plain;f=decoders%2Fonewire%2Fonewire.py;h=e1972a8144131f3189d17392dbfc334a26182821;hp=f69c5955e2e0cc6441cfc79d39205534503612ae;hb=ffcfb70e83f3f001bf4751b5920db96d40b23c4f;hpb=51990c45a1cdcf023f3bbe75a5003c87f8ac902b diff --git a/decoders/onewire/onewire.py b/decoders/onewire/onewire.py index f69c595..e1972a8 100644 --- a/decoders/onewire/onewire.py +++ b/decoders/onewire/onewire.py @@ -1,7 +1,7 @@ ## ## This file is part of the sigrok project. ## -## Copyright (C) 2011-2012 Uwe Hermann +## Copyright (C) 2012 Iztok Jeras ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by @@ -23,18 +23,26 @@ import sigrokdecode as srd # Annotation feed formats -ANN_ASCII = 0 -ANN_DEC = 1 -ANN_HEX = 2 -ANN_OCT = 3 -ANN_BITS = 4 +ANN_LINK = 0 +ANN_NETWORK = 1 +ANN_TRANSPORT = 2 + +# a dictionary of ROM commands and their names +rom_command = {0x33: "READ ROM", + 0x0f: "CONDITIONAL READ ROM", + 0xcc: "SKIP ROM", + 0x55: "MATCH ROM", + 0xf0: "SEARCH ROM", + 0xec: "CONDITIONAL SEARCH ROM", + 0x3c: "OVERDRIVE SKIP ROM", + 0x6d: "OVERDRIVE MATCH ROM"} class Decoder(srd.Decoder): api_version = 1 id = 'onewire' name = '1-Wire' - longname = '' - desc = '1-Wire bus and MicroLan' + longname = '1-Wire serial communication bus' + desc = 'Bidirectional, half-duplex, asynchronous serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['onewire'] @@ -45,153 +53,311 @@ class Decoder(srd.Decoder): {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'}, ] options = { - 'overdrive': ['Overdrive', 0], + 'overdrive' : ['Overdrive', 1], + 'cnt_normal_bit' : ['Time (in samplerate periods) for normal mode sample bit' , 0], + 'cnt_normal_presence' : ['Time (in samplerate periods) for normal mode sample presence', 0], + 'cnt_normal_reset' : ['Time (in samplerate periods) for normal mode reset' , 0], + 'cnt_overdrive_bit' : ['Time (in samplerate periods) for overdrive mode sample bit' , 0], + 'cnt_overdrive_presence': ['Time (in samplerate periods) for overdrive mode sample presence', 0], + 'cnt_overdrive_reset' : ['Time (in samplerate periods) for overdrive mode reset' , 0], } annotations = [ - ['ASCII', 'Data bytes as ASCII characters'], - ['Decimal', 'Databytes as decimal, integer values'], - ['Hex', 'Data bytes in hex format'], - ['Octal', 'Data bytes as octal numbers'], - ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], + ['Link', 'Link layer events (reset, presence, bit slots)'], + ['Network', 'Network layer events (device addressing)'], + ['Transport', 'Transport layer events'], ] - def putx(self, data): - self.put(self.startsample, self.samplenum - 1, self.out_ann, data) - def __init__(self, **kwargs): # Common variables self.samplenum = 0 # Link layer variables - self.lnk_state = 'WAIT FOR EVENT' - self.lnk_event = 'NONE' - self.lnk_start = -1 - self.lnk_bit = -1 - self.lnk_cnt = 0 - self.lnk_byte = -1 + self.lnk_state = 'WAIT FOR FALLING EDGE' + self.lnk_event = 'NONE' + self.lnk_present = 0 + self.lnk_bit = 0 + self.lnk_overdrive = 0 + # Event timing variables + self.lnk_fall = 0 + self.lnk_rise = 0 + self.net_beg = 0 + self.net_end = 0 + self.net_len = 0 # Network layer variables - self.net_state = 'WAIT FOR EVENT' - self.net_event = 'NONE' - self.net_command = -1 - # Transport layer variables - self.trn_state = 'WAIT FOR EVENT' - self.trn_event = 'NONE' - - self.data_sample = -1 - self.cur_data_bit = 0 - self.databyte = 0 - self.startsample = -1 + self.net_state = 'IDLE' + self.net_cnt = 0 + self.net_search = "P" + self.net_data_p = 0x0 + self.net_data_n = 0x0 + self.net_data = 0x0 + self.net_rom = 0x0000000000000000 def start(self, metadata): - self.samplerate = metadata['samplerate'] self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire') - self.out_ann = self.add(srd.OUTPUT_ANN, 'onewire') + self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire') - # The width of the 1-Wire time base (30us) in number of samples. - # TODO: optimize this value - self.time_base = float(self.samplerate) / float(0.000030) - - def report(self): - pass + # check if samplerate is appropriate + self.samplerate = metadata['samplerate'] + if (self.options['overdrive']): + self.put(0, 0, self.out_ann, [ANN_LINK, + ['NOTE: Sample rate checks assume overdrive mode.']]) + if (self.samplerate < 2000000): + self.put(0, 0, self.out_ann, [ANN_LINK, + ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']]) + elif (self.samplerate < 5000000): + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']]) + else: + self.put(0, 0, self.out_ann, [ANN_LINK, + ['NOTE: Sample rate checks assume normal mode only.']]) + if (self.samplerate < 400000): + self.put(0, 0, self.out_ann, [ANN_LINK, + ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']]) + elif (self.samplerate < 1000000): + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']]) - def get_data_sample(self, owr): - # Skip samples until we're in the middle of the start bit. - if not self.reached_data_sample(): - return - - self.data_sample = owr - - self.cur_data_bit = 0 - self.databyte = 0 - self.startsample = -1 - - self.state = 'GET DATA BITS' - - self.put(self.cycle_start, self.samplenum, self.out_proto, - ['STARTBIT', self.startbit]) - self.put(self.cycle_start, self.samplenum, self.out_ann, - [ANN_ASCII, ['Start bit', 'Start', 'S']]) - - def get_data_bits(self, owr): - # Skip samples until we're in the middle of the desired data bit. - if not self.reached_bit(self.cur_data_bit + 1): - return - - # Save the sample number where the data byte starts. - if self.startsample == -1: - self.startsample = self.samplenum - - # Get the next data bit in LSB-first or MSB-first fashion. - if self.options['bit_order'] == 'lsb-first': - self.databyte >>= 1 - self.databyte |= \ - (owr << (self.options['num_data_bits'] - 1)) - elif self.options['bit_order'] == 'msb-first': - self.databyte <<= 1 - self.databyte |= (owr << 0) + # The default 1-Wire time base is 30us, this is used to calculate sampling times. + if (self.options['cnt_normal_bit']): + self.cnt_normal_bit = self.options['cnt_normal_bit'] + else: + self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns + if (self.options['cnt_normal_presence']): + self.cnt_normal_presence = self.options['cnt_normal_presence'] + else: + self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns + if (self.options['cnt_normal_reset']): + self.cnt_normal_reset = self.options['cnt_normal_reset'] + else: + self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns + if (self.options['cnt_overdrive_bit']): + self.cnt_overdrive_bit = self.options['cnt_overdrive_bit'] else: - raise Exception('Invalid bit order value: %s', - self.options['bit_order']) + self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns + if (self.options['cnt_overdrive_presence']): + self.cnt_overdrive_presence = self.options['cnt_overdrive_presence'] + else: + self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns + if (self.options['cnt_overdrive_reset']): + self.cnt_overdrive_reset = self.options['cnt_overdrive_reset'] + else: + self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns - # Return here, unless we already received all data bits. - # TODO? Off-by-one? - if self.cur_data_bit < self.options['num_data_bits'] - 1: - self.cur_data_bit += 1 - return + # calculating the slot size + self.cnt_normal_slot = int(float(self.samplerate) * 0.000060) - 1 # 60ns + self.cnt_overdrive_slot = int(float(self.samplerate) * 0.000006) - 1 # 6ns - self.state = 'GET PARITY BIT' + # organize values into lists + self.cnt_bit = [self.cnt_normal_bit , self.cnt_overdrive_bit ] + self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence] + self.cnt_reset = [self.cnt_normal_reset , self.cnt_overdrive_reset ] + self.cnt_slot = [self.cnt_normal_slot , self.cnt_overdrive_slot ] - self.put(self.startsample, self.samplenum - 1, self.out_proto, - ['DATA', self.databyte]) + # Check if sample times are in the allowed range + time_min = float(self.cnt_normal_bit ) / self.samplerate + time_max = float(self.cnt_normal_bit+1) / self.samplerate + if ( (time_min < 0.000005) or (time_max > 0.000015) ) : + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).' + % (time_min*1000000, time_max*1000000)]]) + time_min = float(self.cnt_normal_presence ) / self.samplerate + time_max = float(self.cnt_normal_presence+1) / self.samplerate + if ( (time_min < 0.0000681) or (time_max > 0.000075) ) : + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).' + % (time_min*1000000, time_max*1000000)]]) + time_min = float(self.cnt_overdrive_bit ) / self.samplerate + time_max = float(self.cnt_overdrive_bit+1) / self.samplerate + if ( (time_min < 0.000001) or (time_max > 0.000002) ) : + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).' + % (time_min*1000000, time_max*1000000)]]) + time_min = float(self.cnt_overdrive_presence ) / self.samplerate + time_max = float(self.cnt_overdrive_presence+1) / self.samplerate + if ( (time_min < 0.0000073) or (time_max > 0.000010) ) : + self.put(0, 0, self.out_ann, [ANN_LINK, + ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).' + % (time_min*1000000, time_max*1000000)]]) - self.putx([ANN_ASCII, [chr(self.databyte)]]) - self.putx([ANN_DEC, [str(self.databyte)]]) - self.putx([ANN_HEX, [hex(self.databyte), - hex(self.databyte)[2:]]]) - self.putx([ANN_OCT, [oct(self.databyte), - oct(self.databyte)[2:]]]) - self.putx([ANN_BITS, [bin(self.databyte), - bin(self.databyte)[2:]]]) + def report(self): + pass def decode(self, ss, es, data): - for (self.samplenum, owr) in data: - - # First sample: Save OWR value. - if self.oldbit == None: - self.oldbit = owr - continue + for (self.samplenum, (owr, pwr)) in data: # Data link layer + + # Clear events. + self.lnk_event = "NONE" + # State machine. if self.lnk_state == 'WAIT FOR FALLING EDGE': # The start of a cycle is a falling edge. - if (old_owr == 1 and owr == 0): - # Save the sample number where the start bit begins. - self.lnk_start = self.samplenum + if (owr == 0): + # Save the sample number for the falling edge. + self.lnk_fall = self.samplenum # Go to waiting for sample time - self.lnk_state = 'WAIT FOR SAMPLE' - elif self.lnk_state == 'WAIT FOR SAMPLE': - # Data should be sample one 'time unit' after a falling edge - if (self.samplenum == self.lnk_start + self.time_base): + self.lnk_state = 'WAIT FOR DATA SAMPLE' + elif self.lnk_state == 'WAIT FOR DATA SAMPLE': + # Sample data bit + if (self.samplenum - self.lnk_fall == self.cnt_bit[self.lnk_overdrive]): self.lnk_bit = owr & 0x1 - self.lnk_cnt = self.lnk_cnt + 1 - self.lnk_byte = (self.lnk_byte << 1) & self.lnk_bit - self.lnk_state = 'WAIT FOR RISING EDGE' + self.lnk_event = "DATA BIT" + if (self.lnk_bit): self.lnk_state = 'WAIT FOR FALLING EDGE' + else : self.lnk_state = 'WAIT FOR RISING EDGE' + self.put(self.lnk_fall, self.cnt_bit[self.lnk_overdrive], self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]]) elif self.lnk_state == 'WAIT FOR RISING EDGE': # The end of a cycle is a rising edge. - if (old_owr == 0 and owr == 1): - # Data bit cycle length should be between 2*T and - if (self.samplenum < self.lnk_start + 2*self.time_base): - if (self.lnk_cnt == 8) - self.put(self.startsample, self.samplenum - 1, self.out_proto, ['BYTE', self.lnk_byte]) - self.lnk_cnt = 0 - if (self.samplenum == self.lnk_start + 8*self.time_base): - self.put(self.startsample, self.samplenum - 1, self.out_proto, ['RESET']) - - # Go to waiting for sample time - self.lnk_state = 'WAIT FOR SAMPLE' + if (owr == 1): + # Check if this was a reset cycle + if (self.samplenum - self.lnk_fall > self.cnt_normal_reset): + # Save the sample number for the falling edge. + self.lnk_rise = self.samplenum + # Send a reset event to the next protocol layer. + self.lnk_event = "RESET" + self.lnk_state = "WAIT FOR PRESENCE DETECT" + self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET']) + self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET']]) + self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET']]) + # Reset the timer. + self.lnk_fall = self.samplenum + elif ((self.samplenum - self.lnk_fall > self.cnt_overdrive_reset) and (self.lnk_overdrive)): + # Save the sample number for the falling edge. + self.lnk_rise = self.samplenum + # Send a reset event to the next protocol layer. + self.lnk_event = "RESET" + self.lnk_state = "WAIT FOR PRESENCE DETECT" + self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET OVERDRIVE']) + self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']]) + self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']]) + # Reset the timer. + self.lnk_fall = self.samplenum + # Otherwise this is assumed to be a data bit. + else : + self.lnk_state = "WAIT FOR FALLING EDGE" + elif self.lnk_state == 'WAIT FOR PRESENCE DETECT': + # Sample presence status + if (self.samplenum - self.lnk_rise == self.cnt_presence[self.lnk_overdrive]): + self.lnk_present = owr & 0x1 + # Save the sample number for the falling edge. + if not (self.lnk_present) : self.lnk_fall = self.samplenum + # create presence detect event + #self.lnk_event = "PRESENCE DETECT" + if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE' + else : self.lnk_state = 'WAIT FOR RISING EDGE' + present_str = "False" if self.lnk_present else "True" + self.put(self.samplenum, 0, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]]) + self.put(self.samplenum, 0, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]]) + else: + raise Exception('Invalid lnk_state: %d' % self.lnk_state) + + # Network layer - elif self.state_lnk == 'GET DATA BITS' : self.get_data_bits(owr) - else : raise Exception('Invalid state: %d' % self.state) + # State machine. + if (self.lnk_event == "RESET"): + self.net_state = "COMMAND" + self.net_search = "P" + self.net_cnt = 0 + elif (self.net_state == "IDLE"): + pass + elif (self.net_state == "COMMAND"): + # Receiving and decoding a ROM command + if (self.onewire_collect(8)): + self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, + ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]]) + if (self.net_data == 0x33): # READ ROM + self.net_state = "GET ROM" + elif (self.net_data == 0x0f): # CONDITIONAL READ ROM + self.net_state = "GET ROM" + elif (self.net_data == 0xcc): # SKIP ROM + self.net_state = "TRANSPORT" + elif (self.net_data == 0x55): # MATCH ROM + self.net_state = "GET ROM" + elif (self.net_data == 0xf0): # SEARCH ROM + self.net_state = "SEARCH ROM" + elif (self.net_data == 0xec): # CONDITIONAL SEARCH ROM + self.net_state = "SEARCH ROM" + elif (self.net_data == 0x3c): # OVERDRIVE SKIP ROM + self.lnk_overdrive = 1 + self.net_state = "TRANSPORT" + elif (self.net_data == 0x69): # OVERDRIVE MATCH ROM + self.lnk_overdrive = 1 + self.net_state = "GET ROM" + elif (self.net_state == "GET ROM"): + # A 64 bit device address is selected + # family code (1B) + serial number (6B) + CRC (1B) + if (self.onewire_collect(64)): + self.net_rom = self.net_data & 0xffffffffffffffff + self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]]) + self.net_state = "TRANSPORT" + elif (self.net_state == "SEARCH ROM"): + # A 64 bit device address is searched for + # family code (1B) + serial number (6B) + CRC (1B) + if (self.onewire_search(64)): + self.net_rom = self.net_data & 0xffffffffffffffff + self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]]) + self.net_state = "TRANSPORT" + elif (self.net_state == "TRANSPORT"): + # The transport layer is handled in byte sized units + if (self.onewire_collect(8)): + self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]]) + self.put(self.net_beg, self.net_len, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]]) + self.put(self.net_beg, self.net_len, self.out_proto, ['transfer', self.net_data]) + # TODO: Sending translort layer data to 1-Wire device models + else: + raise Exception('Invalid net_state: %s' % self.net_state) - # Save current RX/TX values for the next round. - self.oldbit = owr + # Link/Network layer data collector + def onewire_collect (self, length): + if (self.lnk_event == "DATA BIT"): + # Storing the sampe this sequence begins with + if (self.net_cnt == 1): + self.net_beg = self.lnk_fall + self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt) + self.net_cnt = self.net_cnt + 1 + # Storing the sampe this sequence ends with + # In case the full length of the sequence is received, return 1 + if (self.net_cnt == length): + self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive] + self.net_len = self.net_end - self.net_beg + self.net_data = self.net_data & ((1<