X-Git-Url: https://sigrok.org/gitweb/?p=libsigrokdecode.git;a=blobdiff_plain;f=decoders%2Fjtag_stm32%2Fpd.py;h=d27a5577babc7af7889c7f0154652d80c17cc393;hp=ff5bb770666090a60d5f322b03e81379f2434209;hb=HEAD;hpb=92b7b49f6964f57a7d6fc4473645c993cfa4ba52 diff --git a/decoders/jtag_stm32/pd.py b/decoders/jtag_stm32/pd.py index ff5bb77..82558b8 100644 --- a/decoders/jtag_stm32/pd.py +++ b/decoders/jtag_stm32/pd.py @@ -14,8 +14,7 @@ ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## along with this program; if not, see . ## import sigrokdecode as srd @@ -32,6 +31,11 @@ ir = { '1000': ['ABORT', 35], # Abort register # TODO: 32 bits? Datasheet typo? } +# Boundary scan data registers (in IR[8:4]) and their sizes (in bits) +bs_ir = { + '11111': ['BYPASS', 1], # Bypass register +} + # ARM Cortex-M3 r1p1-01rel0 ID code cm3_idcode = 0x3ba00477 @@ -135,14 +139,15 @@ def data_out(bits): % (data_hex, ack_meaning) class Decoder(srd.Decoder): - api_version = 2 + api_version = 3 id = 'jtag_stm32' name = 'JTAG / STM32' longname = 'Joint Test Action Group / ST STM32' desc = 'ST STM32-specific JTAG protocol.' license = 'gplv2+' inputs = ['jtag'] - outputs = ['jtag_stm32'] + outputs = [] + tags = ['Debug/trace'] annotations = ( ('item', 'Item'), ('field', 'Field'), @@ -157,6 +162,9 @@ class Decoder(srd.Decoder): ) def __init__(self): + self.reset() + + def reset(self): self.state = 'IDLE' self.samplenums = None @@ -173,37 +181,35 @@ class Decoder(srd.Decoder): self.putx([0, ['BYPASS: ' + bits]]) def handle_reg_idcode(self, cmd, bits): - # IDCODE is a read-only register which is always accessible. - # IR == IDCODE: The 32bit device ID code is shifted out via DR next. - - id_hex, manuf, ver, part = decode_device_id_code(bits[:-1]) - cc = '0x%x' % int('0b' + bits[:-1][-12:-8], 2) - ic = '0x%x' % int('0b' + bits[:-1][-7:-1], 2) - - self.putf(0, 0, [1, ['Reserved (BS TAP)', 'BS', 'B']]) - self.putf(1, 1, [1, ['Reserved', 'Res', 'R']]) - self.putf(9, 12, [0, ['Continuation code: %s' % cc, 'CC', 'C']]) - self.putf(2, 8, [0, ['Identity code: %s' % ic, 'IC', 'I']]) - self.putf(2, 12, [1, ['Manufacturer: %s' % manuf, 'Manuf', 'M']]) - self.putf(13, 28, [1, ['Part: %s' % part, 'Part', 'P']]) - self.putf(29, 32, [1, ['Version: %s' % ver, 'Version', 'V']]) - - self.ss = self.samplenums[1][0] + bits = bits[1:] + + id_hex, manuf, ver, part = decode_device_id_code(bits) + cc = '0x%x' % int('0b' + bits[-12:-8], 2) + ic = '0x%x' % int('0b' + bits[-7:-1], 2) + + self.putf(0, 0, [1, ['Reserved', 'Res', 'R']]) + self.putf(8, 11, [0, ['Continuation code: %s' % cc, 'CC', 'C']]) + self.putf(1, 7, [0, ['Identity code: %s' % ic, 'IC', 'I']]) + self.putf(1, 11, [1, ['Manufacturer: %s' % manuf, 'Manuf', 'M']]) + self.putf(12, 27, [1, ['Part: %s' % part, 'Part', 'P']]) + self.putf(28, 31, [1, ['Version: %s' % ver, 'Version', 'V']]) + self.putf(32, 32, [1, ['BYPASS (BS TAP)', 'BS', 'B']]) + self.putx([2, ['IDCODE: %s (%s: %s/%s)' % \ - decode_device_id_code(bits[:-1])]]) + decode_device_id_code(bits)]]) def handle_reg_dpacc(self, cmd, bits): - bits = bits[:-1] + bits = bits[1:] s = data_in('DPACC', bits) if (cmd == 'DR TDI') else data_out(bits) self.putx([2, [s]]) def handle_reg_apacc(self, cmd, bits): - bits = bits[:-1] + bits = bits[1:] s = data_in('APACC', bits) if (cmd == 'DR TDI') else data_out(bits) self.putx([2, [s]]) def handle_reg_abort(self, cmd, bits): - bits = bits[:-1] + bits = bits[1:] # Bits[31:1]: reserved. Bit[0]: DAPABORT. a = '' if (bits[0] == '1') else 'No ' s = 'DAPABORT = %s: %sDAP abort generated' % (bits[0], a) @@ -214,7 +220,7 @@ class Decoder(srd.Decoder): self.putx([3, ['WARNING: DAPABORT[31:1] reserved!']]) def handle_reg_unknown(self, cmd, bits): - bits = bits[:-1] + bits = bits[1:] self.putx([2, ['Unknown instruction: %s' % bits]]) def decode(self, ss, es, data): @@ -227,22 +233,19 @@ class Decoder(srd.Decoder): val, self.samplenums = val self.samplenums.reverse() - # State machine - if self.state == 'IDLE': - # Wait until a new instruction is shifted into the IR register. - if cmd != 'IR TDI': - return + if cmd == 'IR TDI': # Switch to the state named after the instruction, or 'UNKNOWN'. # The STM32F10xxx has two serially connected JTAG TAPs, the # boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits). # See UM 31.5 "STM32F10xxx JTAG TAP connection" for details. - self.state = ir.get(val[:-1][-4:], ['UNKNOWN', 0])[0] - bstap_ir = ir.get(val[:-1][:4], ['UNKNOWN', 0])[0] - self.putf(5, 8, [1, ['IR (BS TAP): ' + bstap_ir]]) - self.putf(1, 4, [1, ['IR (M3 TAP): ' + self.state]]) - self.putf(0, 0, [1, ['Reserved (BS TAP)', 'BS', 'B']]) + self.state = ir.get(val[5:9], ['UNKNOWN', 0])[0] + bstap_ir = bs_ir.get(val[:5], ['UNKNOWN', 0])[0] + self.putf(4, 8, [1, ['IR (BS TAP): ' + bstap_ir]]) + self.putf(0, 3, [1, ['IR (M3 TAP): ' + self.state]]) self.putx([2, ['IR: %s' % self.state]]) - elif self.state == 'BYPASS': + + # State machine + if self.state == 'BYPASS': # Here we're interested in incoming bits (TDI). if cmd != 'DR TDI': return