]> sigrok.org Git - libsigrokdecode.git/blobdiff - decoders/uart/pd.py
uart: communicate periods of idle frames to stacked decoders
[libsigrokdecode.git] / decoders / uart / pd.py
index e767699250ce0ff70a8b5ce495816542ae1c15b8..d38258b9c7b5055995e65f2c649ced11e1fcc444 100644 (file)
@@ -18,6 +18,7 @@
 ##
 
 import sigrokdecode as srd
+from common.srdhelper import bitpack
 from math import floor, ceil
 
 '''
@@ -38,7 +39,10 @@ This is the list of <ptype>s and their respective <pdata> values:
  - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
  - 'PARITY ERROR': The data is a tuple with two entries. The first one is
    the expected parity value, the second is the actual parity value.
- - TODO: Frame error?
+ - 'BREAK': The data is always 0.
+ - 'FRAME': The data is always a tuple containing two items: The (integer)
+   value of the UART data, and a boolean which reflects the validity of the
+   UART frame.
 
 The <rxtx> field is 0 for RX packets, 1 for TX packets.
 '''
@@ -75,7 +79,7 @@ class ChannelError(Exception):
     pass
 
 class Decoder(srd.Decoder):
-    api_version = 2
+    api_version = 3
     id = 'uart'
     name = 'UART'
     longname = 'Universal Asynchronous Receiver/Transmitter'
@@ -83,6 +87,7 @@ class Decoder(srd.Decoder):
     license = 'gplv2+'
     inputs = ['logic']
     outputs = ['uart']
+    tags = ['Embedded/industrial']
     optional_channels = (
         # Allow specifying only one of the signals, e.g. if only one data
         # direction exists (or is relevant).
@@ -107,6 +112,12 @@ class Decoder(srd.Decoder):
             'values': ('yes', 'no')},
         {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
             'values': ('yes', 'no')},
+        {'id': 'rx_packet_delimiter', 'desc': 'RX packet delimiter (decimal)',
+            'default': -1},
+        {'id': 'tx_packet_delimiter', 'desc': 'TX packet delimiter (decimal)',
+            'default': -1},
+        {'id': 'rx_packet_len', 'desc': 'RX packet length', 'default': -1},
+        {'id': 'tx_packet_len', 'desc': 'TX packet length', 'default': -1},
     )
     annotations = (
         ('rx-data', 'RX data'),
@@ -123,14 +134,22 @@ class Decoder(srd.Decoder):
         ('tx-warnings', 'TX warnings'),
         ('rx-data-bits', 'RX data bits'),
         ('tx-data-bits', 'TX data bits'),
+        ('rx-break', 'RX break'),
+        ('tx-break', 'TX break'),
+        ('rx-packet', 'RX packet'),
+        ('tx-packet', 'TX packet'),
     )
     annotation_rows = (
         ('rx-data', 'RX', (0, 2, 4, 6, 8)),
         ('rx-data-bits', 'RX bits', (12,)),
         ('rx-warnings', 'RX warnings', (10,)),
+        ('rx-break', 'RX break', (14,)),
+        ('rx-packets', 'RX packets', (16,)),
         ('tx-data', 'TX', (1, 3, 5, 7, 9)),
         ('tx-data-bits', 'TX bits', (13,)),
         ('tx-warnings', 'TX warnings', (11,)),
+        ('tx-break', 'TX break', (15,)),
+        ('tx-packets', 'TX packets', (17,)),
     )
     binary = (
         ('rx', 'RX dump'),
@@ -143,6 +162,10 @@ class Decoder(srd.Decoder):
         s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
         self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
 
+    def putx_packet(self, rxtx, data):
+        s, halfbit = self.ss_packet[rxtx], self.bit_width / 2.0
+        self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
+
     def putpx(self, rxtx, data):
         s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
         self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
@@ -155,14 +178,24 @@ class Decoder(srd.Decoder):
         s, halfbit = self.samplenum, self.bit_width / 2.0
         self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
 
+    def putgse(self, ss, es, data):
+        self.put(ss, es, self.out_ann, data)
+
+    def putpse(self, ss, es, data):
+        self.put(ss, es, self.out_python, data)
+
     def putbin(self, rxtx, data):
         s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
         self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
 
     def __init__(self):
+        self.reset()
+
+    def reset(self):
         self.samplerate = None
         self.samplenum = 0
         self.frame_start = [-1, -1]
+        self.frame_valid = [None, None]
         self.startbit = [-1, -1]
         self.cur_data_bit = [0, 0]
         self.datavalue = [0, 0]
@@ -170,9 +203,11 @@ class Decoder(srd.Decoder):
         self.stopbit1 = [-1, -1]
         self.startsample = [-1, -1]
         self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
-        self.oldbit = [1, 1]
-        self.oldpins = [-1, -1]
         self.databits = [[], []]
+        self.break_start = [None, None]
+        self.packet_cache = [[], []]
+        self.ss_packet, self.es_packet = [None, None], [None, None]
+        self.idle_start = [None, None]
 
     def start(self):
         self.out_python = self.register(srd.OUTPUT_PYTHON)
@@ -186,8 +221,8 @@ class Decoder(srd.Decoder):
             # The width of one UART bit in number of samples.
             self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
 
-    # Return true if we reached the middle of the desired bit, false otherwise.
-    def reached_bit(self, rxtx, bitnum):
+    def get_sample_point(self, rxtx, bitnum):
+        # Determine absolute sample number of a bit slot's sample point.
         # bitpos is the samplenumber which is in the middle of the
         # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
         # (if used) or the first stop bit, and so on).
@@ -195,32 +230,16 @@ class Decoder(srd.Decoder):
         # index of the middle sample within bit window is (bit_width - 1) / 2.
         bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
         bitpos += bitnum * self.bit_width
-        if self.samplenum >= bitpos:
-            return True
-        return False
-
-    def reached_bit_last(self, rxtx, bitnum):
-        bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
-        if self.samplenum >= bitpos:
-            return True
-        return False
-
-    def wait_for_start_bit(self, rxtx, old_signal, signal):
-        # The start bit is always 0 (low). As the idle UART (and the stop bit)
-        # level is 1 (high), the beginning of a start bit is a falling edge.
-        if not (old_signal == 1 and signal == 0):
-            return
+        return bitpos
 
+    def wait_for_start_bit(self, rxtx, signal):
         # Save the sample number where the start bit begins.
         self.frame_start[rxtx] = self.samplenum
+        self.frame_valid[rxtx] = True
 
         self.state[rxtx] = 'GET START BIT'
 
     def get_start_bit(self, rxtx, signal):
-        # Skip samples until we're in the middle of the start bit.
-        if not self.reached_bit(rxtx, 0):
-            return
-
         self.startbit[rxtx] = signal
 
         # The startbit must be 0. If not, we report an error and wait
@@ -228,6 +247,10 @@ class Decoder(srd.Decoder):
         if self.startbit[rxtx] != 0:
             self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
             self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
+            self.frame_valid[rxtx] = False
+            es = self.samplenum + ceil(self.bit_width / 2.0)
+            self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
+                (self.datavalue[rxtx], self.frame_valid[rxtx])])
             self.state[rxtx] = 'WAIT FOR START BIT'
             return
 
@@ -235,29 +258,40 @@ class Decoder(srd.Decoder):
         self.datavalue[rxtx] = 0
         self.startsample[rxtx] = -1
 
-        self.state[rxtx] = 'GET DATA BITS'
-
         self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
         self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
 
-    def get_data_bits(self, rxtx, signal):
-        # Skip samples until we're in the middle of the desired data bit.
-        if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
+        self.state[rxtx] = 'GET DATA BITS'
+
+    def handle_packet(self, rxtx):
+        d = 'rx' if (rxtx == RX) else 'tx'
+        delim = self.options[d + '_packet_delimiter']
+        plen = self.options[d + '_packet_len']
+        if delim == -1 and plen == -1:
             return
 
+        # Cache data values until we see the delimiter and/or the specified
+        # packet length has been reached (whichever happens first).
+        if len(self.packet_cache[rxtx]) == 0:
+            self.ss_packet[rxtx] = self.startsample[rxtx]
+        self.packet_cache[rxtx].append(self.datavalue[rxtx])
+        if self.datavalue[rxtx] == delim or len(self.packet_cache[rxtx]) == plen:
+            self.es_packet[rxtx] = self.samplenum
+            s = ''
+            for b in self.packet_cache[rxtx]:
+                s += self.format_value(b)
+                if self.options['format'] != 'ascii':
+                    s += ' '
+            if self.options['format'] != 'ascii' and s[-1] == ' ':
+                s = s[:-1] # Drop trailing space.
+            self.putx_packet(rxtx, [16 + rxtx, [s]])
+            self.packet_cache[rxtx] = []
+
+    def get_data_bits(self, rxtx, signal):
         # Save the sample number of the middle of the first data bit.
         if self.startsample[rxtx] == -1:
             self.startsample[rxtx] = self.samplenum
 
-        # Get the next data bit in LSB-first or MSB-first fashion.
-        if self.options['bit_order'] == 'lsb-first':
-            self.datavalue[rxtx] >>= 1
-            self.datavalue[rxtx] |= \
-                (signal << (self.options['num_data_bits'] - 1))
-        else:
-            self.datavalue[rxtx] <<= 1
-            self.datavalue[rxtx] |= (signal << 0)
-
         self.putg([rxtx + 12, ['%d' % signal]])
 
         # Store individual data bits and their start/end samplenumbers.
@@ -265,12 +299,15 @@ class Decoder(srd.Decoder):
         self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
 
         # Return here, unless we already received all data bits.
-        if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
-            self.cur_data_bit[rxtx] += 1
+        self.cur_data_bit[rxtx] += 1
+        if self.cur_data_bit[rxtx] < self.options['num_data_bits']:
             return
 
-        self.state[rxtx] = 'GET PARITY BIT'
-
+        # Convert accumulated data bits to a data value.
+        bits = [b[0] for b in self.databits[rxtx]]
+        if self.options['bit_order'] == 'msb-first':
+            bits.reverse()
+        self.datavalue[rxtx] = bitpack(bits)
         self.putpx(rxtx, ['DATA', rxtx,
             (self.datavalue[rxtx], self.databits[rxtx])])
 
@@ -283,8 +320,16 @@ class Decoder(srd.Decoder):
         self.putbin(rxtx, [rxtx, bdata])
         self.putbin(rxtx, [2, bdata])
 
+        self.handle_packet(rxtx)
+
         self.databits[rxtx] = []
 
+        # Advance to either reception of the parity bit, or reception of
+        # the STOP bits if parity is not applicable.
+        self.state[rxtx] = 'GET PARITY BIT'
+        if self.options['parity_type'] == 'none':
+            self.state[rxtx] = 'GET STOP BITS'
+
     def format_value(self, v):
         # Format value 'v' according to configured options.
         # Reflects the user selected kind of representation, as well as
@@ -328,19 +373,8 @@ class Decoder(srd.Decoder):
         return None
 
     def get_parity_bit(self, rxtx, signal):
-        # If no parity is used/configured, skip to the next state immediately.
-        if self.options['parity_type'] == 'none':
-            self.state[rxtx] = 'GET STOP BITS'
-            return
-
-        # Skip samples until we're in the middle of the parity bit.
-        if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
-            return
-
         self.paritybit[rxtx] = signal
 
-        self.state[rxtx] = 'GET STOP BITS'
-
         if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
                      self.datavalue[rxtx], self.options['num_data_bits']):
             self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
@@ -349,69 +383,178 @@ class Decoder(srd.Decoder):
             # TODO: Return expected/actual parity values.
             self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
             self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
+            self.frame_valid[rxtx] = False
+
+        self.state[rxtx] = 'GET STOP BITS'
 
     # TODO: Currently only supports 1 stop bit.
     def get_stop_bits(self, rxtx, signal):
-        # Skip samples until we're in the middle of the stop bit(s).
-        skip_parity = 0 if self.options['parity_type'] == 'none' else 1
-        b = self.options['num_data_bits'] + 1 + skip_parity
-        if not self.reached_bit(rxtx, b):
-            return
-
         self.stopbit1[rxtx] = signal
 
         # Stop bits must be 1. If not, we report an error.
         if self.stopbit1[rxtx] != 1:
             self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
             self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
-            # TODO: Abort? Ignore the frame? Other?
-
-        self.state[rxtx] = 'WAIT FOR START BIT'
+            self.frame_valid[rxtx] = False
 
         self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
         self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
 
-    def decode(self, ss, es, data):
+        # Pass the complete UART frame to upper layers.
+        es = self.samplenum + ceil(self.bit_width / 2.0)
+        self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
+            (self.datavalue[rxtx], self.frame_valid[rxtx])])
+
+        self.state[rxtx] = 'WAIT FOR START BIT'
+        self.idle_start[rxtx] = self.frame_start[rxtx] + self.frame_len_sample_count
+
+    def handle_break(self, rxtx):
+        self.putpse(self.frame_start[rxtx], self.samplenum,
+                ['BREAK', rxtx, 0])
+        self.putgse(self.frame_start[rxtx], self.samplenum,
+                [rxtx + 14, ['Break condition', 'Break', 'Brk', 'B']])
+        self.state[rxtx] = 'WAIT FOR START BIT'
+
+    def get_wait_cond(self, rxtx, inv):
+        # Return condititions that are suitable for Decoder.wait(). Those
+        # conditions either match the falling edge of the START bit, or
+        # the sample point of the next bit time.
+        state = self.state[rxtx]
+        if state == 'WAIT FOR START BIT':
+            return {rxtx: 'r' if inv else 'f'}
+        if state == 'GET START BIT':
+            bitnum = 0
+        elif state == 'GET DATA BITS':
+            bitnum = 1 + self.cur_data_bit[rxtx]
+        elif state == 'GET PARITY BIT':
+            bitnum = 1 + self.options['num_data_bits']
+        elif state == 'GET STOP BITS':
+            bitnum = 1 + self.options['num_data_bits']
+            bitnum += 0 if self.options['parity_type'] == 'none' else 1
+        want_num = ceil(self.get_sample_point(rxtx, bitnum))
+        return {'skip': want_num - self.samplenum}
+
+    def get_idle_cond(self, rxtx, inv):
+        # Return a condition that corresponds to the (expected) end of
+        # the next frame, assuming that it will be an "idle frame"
+        # (constant high input level for the frame's length).
+        if self.idle_start[rxtx] is None:
+            return None
+        end_of_frame = self.idle_start[rxtx] + self.frame_len_sample_count
+        if end_of_frame < self.samplenum:
+            return None
+        return {'skip': end_of_frame - self.samplenum}
+
+    def inspect_sample(self, rxtx, signal, inv):
+        # Inspect a sample returned by .wait() for the specified UART line.
+        if inv:
+            signal = not signal
+
+        state = self.state[rxtx]
+        if state == 'WAIT FOR START BIT':
+            self.wait_for_start_bit(rxtx, signal)
+        elif state == 'GET START BIT':
+            self.get_start_bit(rxtx, signal)
+        elif state == 'GET DATA BITS':
+            self.get_data_bits(rxtx, signal)
+        elif state == 'GET PARITY BIT':
+            self.get_parity_bit(rxtx, signal)
+        elif state == 'GET STOP BITS':
+            self.get_stop_bits(rxtx, signal)
+
+    def inspect_edge(self, rxtx, signal, inv):
+        # Inspect edges, independently from traffic, to detect break conditions.
+        if inv:
+            signal = not signal
+        if not signal:
+            # Signal went low. Start another interval.
+            self.break_start[rxtx] = self.samplenum
+            return
+        # Signal went high. Was there an extended period with low signal?
+        if self.break_start[rxtx] is None:
+            return
+        diff = self.samplenum - self.break_start[rxtx]
+        if diff >= self.break_min_sample_count:
+            self.handle_break(rxtx)
+        self.break_start[rxtx] = None
+
+    def inspect_idle(self, rxtx, signal, inv):
+        # Check each edge and each period of stable input (either level).
+        # Can derive the "idle frame period has passed" condition.
+        if inv:
+            signal = not signal
+        if not signal:
+            # Low input, cease inspection.
+            self.idle_start[rxtx] = None
+            return
+        # High input, either just reached, or still stable.
+        if self.idle_start[rxtx] is None:
+            self.idle_start[rxtx] = self.samplenum
+        diff = self.samplenum - self.idle_start[rxtx]
+        if diff < self.frame_len_sample_count:
+            return
+        ss, es = self.idle_start[rxtx], self.samplenum
+        self.putpse(ss, es, ['IDLE', rxtx, 0])
+        self.idle_start[rxtx] = self.samplenum
+
+    def decode(self):
         if not self.samplerate:
             raise SamplerateError('Cannot decode without samplerate.')
-        for (self.samplenum, pins) in data:
-
-            # We want to skip identical samples for performance reasons but,
-            # for now, we can only do that when we are in the idle state
-            # (meaning both channels are waiting for the start bit).
-            if self.state == self.idle_state and self.oldpins == pins:
-                continue
-
-            self.oldpins, (rx, tx) = pins, pins
-
-            if self.options['invert_rx'] == 'yes':
-                rx = not rx
-            if self.options['invert_tx'] == 'yes':
-                tx = not tx
-
-            # Either RX or TX (but not both) can be omitted.
-            has_pin = [rx in (0, 1), tx in (0, 1)]
-            if has_pin == [False, False]:
-                raise ChannelError('Either TX or RX (or both) pins required.')
-
-            # State machine.
-            for rxtx in (RX, TX):
-                # Don't try to handle RX (or TX) if not supplied.
-                if not has_pin[rxtx]:
-                    continue
-
-                signal = rx if (rxtx == RX) else tx
-
-                if self.state[rxtx] == 'WAIT FOR START BIT':
-                    self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
-                elif self.state[rxtx] == 'GET START BIT':
-                    self.get_start_bit(rxtx, signal)
-                elif self.state[rxtx] == 'GET DATA BITS':
-                    self.get_data_bits(rxtx, signal)
-                elif self.state[rxtx] == 'GET PARITY BIT':
-                    self.get_parity_bit(rxtx, signal)
-                elif self.state[rxtx] == 'GET STOP BITS':
-                    self.get_stop_bits(rxtx, signal)
-
-                # Save current RX/TX values for the next round.
-                self.oldbit[rxtx] = signal
+
+        has_pin = [self.has_channel(ch) for ch in (RX, TX)]
+        if has_pin == [False, False]:
+            raise ChannelError('Either TX or RX (or both) pins required.')
+
+        opt = self.options
+        inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
+        cond_data_idx = [None] * len(has_pin)
+
+        # Determine the number of samples for a complete frame's time span.
+        # A period of low signal (at least) that long is a break condition.
+        frame_samples = 1 # START
+        frame_samples += self.options['num_data_bits']
+        frame_samples += 0 if self.options['parity_type'] == 'none' else 1
+        frame_samples += self.options['num_stop_bits']
+        frame_samples *= self.bit_width
+        self.frame_len_sample_count = ceil(frame_samples)
+        self.break_min_sample_count = self.frame_len_sample_count
+        cond_edge_idx = [None] * len(has_pin)
+        cond_idle_idx = [None] * len(has_pin)
+
+        while True:
+            conds = []
+            if has_pin[RX]:
+                cond_data_idx[RX] = len(conds)
+                conds.append(self.get_wait_cond(RX, inv[RX]))
+                cond_edge_idx[RX] = len(conds)
+                conds.append({RX: 'e'})
+                cond_idle_idx[RX] = None
+                idle_cond = self.get_idle_cond(RX, inv[RX])
+                if idle_cond:
+                    cond_idle_idx[RX] = len(conds)
+                    conds.append(idle_cond)
+            if has_pin[TX]:
+                cond_data_idx[TX] = len(conds)
+                conds.append(self.get_wait_cond(TX, inv[TX]))
+                cond_edge_idx[TX] = len(conds)
+                conds.append({TX: 'e'})
+                cond_idle_idx[TX] = None
+                idle_cond = self.get_idle_cond(TX, inv[TX])
+                if idle_cond:
+                    cond_idle_idx[TX] = len(conds)
+                    conds.append(idle_cond)
+            (rx, tx) = self.wait(conds)
+            if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]:
+                self.inspect_sample(RX, rx, inv[RX])
+            if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]:
+                self.inspect_edge(RX, rx, inv[RX])
+                self.inspect_idle(RX, rx, inv[RX])
+            if cond_idle_idx[RX] is not None and self.matched[cond_idle_idx[RX]]:
+                self.inspect_idle(RX, rx, inv[RX])
+            if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]:
+                self.inspect_sample(TX, tx, inv[TX])
+            if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]:
+                self.inspect_edge(TX, tx, inv[TX])
+                self.inspect_idle(TX, tx, inv[TX])
+            if cond_idle_idx[TX] is not None and self.matched[cond_idle_idx[TX]]:
+                self.inspect_idle(TX, tx, inv[TX])