]> sigrok.org Git - libsigrokdecode.git/blob - decoders/spdif/pd.py
Add initial S/PDIF decoder.
[libsigrokdecode.git] / decoders / spdif / pd.py
1 ##
2 ## This file is part of the libsigrokdecode project.
3 ##
4 ## Copyright (C) 2014 Guenther Wenninger <robin@bitschubbser.org>
5 ##
6 ## This program is free software; you can redistribute it and/or modify
7 ## it under the terms of the GNU General Public License as published by
8 ## the Free Software Foundation; either version 2 of the License, or
9 ## (at your option) any later version.
10 ##
11 ## This program is distributed in the hope that it will be useful,
12 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 ## GNU General Public License for more details.
15 ##
16 ## You should have received a copy of the GNU General Public License
17 ## along with this program; if not, write to the Free Software
18 ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19 ##
20
21 import sigrokdecode as srd
22
23 class SamplerateError(Exception):
24     pass
25
26 class Decoder(srd.Decoder):
27     api_version = 2
28     id = 'spdif'
29     name = 'S/PDIF'
30     longname = 'Sony/Philips Digital Interface Format'
31     desc = 'Serial bus for connecting digital audio devices.'
32     license = 'gplv2+'
33     inputs = ['logic']
34     outputs = ['spdif']
35     channels = (
36         {'id': 'data', 'name': 'Data', 'desc': 'Data line'},
37     )
38     annotations = (
39         ('bitrate', 'Bitrate / baudrate'),
40         ('preamble', 'Preamble'),
41         ('bits', 'Bits'),
42         ('aux', 'Auxillary-audio-databits'),
43         ('samples', 'Audio Samples'),
44         ('validity', 'Data Valid'),
45         ('subcode', 'Subcode data'),
46         ('chan_stat', 'Channnel Status'),
47         ('parity', 'Parity Bit'),
48     )
49     annotation_rows = (
50         ('info', 'Info', (0, 1, 3, 5, 6, 7, 8)),
51         ('bits', 'Bits', (2,)),
52         ('samples', 'Samples', (4,)),
53     )
54
55     def putx(self, ss, es, data):
56         self.put(ss, es, self.out_ann, data)
57
58     def __init__(self, **kwargs):
59         self.state  = 0
60         self.olddata = None
61         self.ss_edge = None
62         self.first_edge = True
63         self.pulse_width = 0
64
65         self.clocks = []
66         self.range1 = 0
67         self.range2 = 0
68
69         self.preamble_state = 0
70         self.preamble = []
71         self.seen_preamble = False
72         self.last_preamble = 0
73
74         self.first_one = True
75         self.subframe = []
76
77     def start(self):
78         self.out_ann = self.register(srd.OUTPUT_ANN)
79
80     def metadata(self, key, value):
81         if key == srd.SRD_CONF_SAMPLERATE:
82             self.samplerate = value
83
84     def get_pulse_type(self, pulse):
85         if self.range1 == 0 or self.range2 == 0:
86             return -1
87         if pulse >= self.range2:
88             return 2
89         elif pulse >= self.range1:
90             return 0
91         else:
92             return 1
93
94     def decode(self, ss, es, data):
95         if not self.samplerate:
96             raise SamplerateError('Cannot decode without samplerate.')
97
98         for (self.samplenum, pins) in data:
99             data = pins[0]
100
101             # Initialize first self.olddata with the first sample value.
102             if self.olddata == None:
103                 self.olddata = data
104                 continue
105
106             # First we need to recover the clock.
107             if self.olddata == data:
108                 self.pulse_width += 1
109             else:
110                 # Found rising or falling edge.
111                 if self.first_edge:
112                     # Throw away first detected edge as it might be mangled data.
113                     self.first_edge = False
114                     self.pulse_width = 0
115                 else:
116                     if self.state == 0:
117                         # Find first pulse width.
118                         if self.pulse_width != 0:
119                             self.clocks.append(self.pulse_width)
120                             self.state = 1
121
122                     elif self.state == 1:
123                         # Find second pulse width.
124                         if self.pulse_width > (self.clocks[0] * 1.3) or self.pulse_width < (self.clocks[0] * 0.7):
125                             self.clocks.append(self.pulse_width)
126                             self.state = 2
127
128                     elif self.state == 2:
129                         # Find third pulse width.
130                         if (self.pulse_width > (self.clocks[0] * 1.3) or self.pulse_width < (self.clocks[0] * 0.7)) \
131                                 and (self.pulse_width > (self.clocks[1] * 1.3) or self.pulse_width < (self.clocks[1] * 0.7)):
132                             self.clocks.append(self.pulse_width)
133                             self.clocks.sort()
134                             self.range1 = (self.clocks[0] + self.clocks[1]) / 2
135                             self.range2 = (self.clocks[1] + self.clocks[2]) / 2
136                             spdif_bitrate = int(self.samplerate / (self.clocks[2] / 1.5))
137                             self.ss_edge = 0
138
139                             self.putx(self.ss_edge, self.samplenum, [0, \
140                                     ['Signal Bitrate: %d Mbit/s (=> %d kHz)' % \
141                                     (spdif_bitrate, (spdif_bitrate/ (2 * 32)))]])
142
143                             clock_period_nsec = 1000000000 / spdif_bitrate
144
145                             self.last_preamble = self.samplenum
146                             # We are done recovering the clock, now let's decode the data stream.
147                             self.state = 3
148
149                     elif self.state == 3:
150                         # Decode the stream.
151                         pulse = self.get_pulse_type(self.pulse_width)
152
153                         if self.seen_preamble:
154                             if pulse == 1 and self.first_one:
155                                 self.first_one = False
156                                 self.subframe.append([pulse, self.samplenum - self.pulse_width - 1, self.samplenum])
157                             elif pulse == 1 and not self.first_one:
158                                 self.subframe[-1][2] = self.samplenum
159                                 self.putx(self.subframe[-1][1], self.samplenum, [2, ['1']])
160                                 self.bitcount += 1
161                                 self.first_one = True
162                             else:
163                                 self.subframe.append([pulse, self.samplenum - self.pulse_width - 1, self.samplenum])
164                                 self.putx(self.samplenum - self.pulse_width - 1, self.samplenum, [2, ['0']])
165                                 self.bitcount += 1
166
167                             if self.bitcount == 28:
168                                 aux_audio_data = self.subframe[0:4]
169                                 sam, sam_rot = '', ''
170                                 for a in aux_audio_data:
171                                     sam = sam + str(a[0])
172                                     sam_rot = str(a[0]) + sam_rot
173                                 sample = self.subframe[4:24]
174                                 for s in sample:
175                                     sam = sam + str(s[0])
176                                     sam_rot = str(s[0]) + sam_rot
177                                 validity = self.subframe[24:25]
178                                 subcode_data = self.subframe[25:26]
179                                 channel_status = self.subframe[26:27]
180                                 parity = self.subframe[27:28]
181
182                                 self.putx(aux_audio_data[0][1], aux_audio_data[3][2], \
183                                           [3, ['Aux 0x%x' % int(sam, 2), '0x%x' % int(sam, 2)]])
184                                 self.putx(sample[0][1], sample[19][2], \
185                                           [3, ['Sample 0x%x' % int(sam, 2), '0x%x' % int(sam, 2)]])
186                                 self.putx(aux_audio_data[0][1], sample[19][2], \
187                                           [4, ['Audio 0x%x' % int(sam_rot, 2), '0x%x' % int(sam_rot, 2)]])
188                                 if validity[0][0] == 0:
189                                     self.putx(validity[0][1], validity[0][2], [5, ['V']])
190                                 else:
191                                     self.putx(validity[0][1], validity[0][2], [5, ['E']])
192                                 self.putx(subcode_data[0][1], subcode_data[0][2], [6, ['S: %d' % subcode_data[0][0]]])
193                                 self.putx(channel_status[0][1], channel_status[0][2], [7, ['C: %d' % channel_status[0][0]]])
194                                 self.putx(parity[0][1], parity[0][2], [8, ['P: %d' % parity[0][0]]])
195
196                                 self.subframe = []
197                                 self.seen_preamble = False
198                                 self.bitcount = 0
199                         else:
200                             # This is probably the start of a preamble, so go
201                             # ahead and decode it.
202                             if pulse == 2:
203                                 self.preamble.append(self.get_pulse_type(self.pulse_width))
204                                 self.state = 4 # Decode a preamble.
205                                 self.ss_edge = self.samplenum - self.pulse_width - 1
206
207                     elif self.state == 4:
208                         if self.preamble_state == 0:
209                             self.preamble.append(self.get_pulse_type(self.pulse_width))
210                             self.preamble_state = 1
211                         elif self.preamble_state == 1:
212                             self.preamble.append(self.get_pulse_type(self.pulse_width))
213                             self.preamble_state = 2
214                         elif self.preamble_state == 2:
215                             self.preamble.append(self.get_pulse_type(self.pulse_width))
216                             self.preamble_state = 0
217                             self.state = 3
218                             if self.preamble == [2, 0, 1, 0]:
219                                 self.putx(self.ss_edge, self.samplenum, [1, ['Preamble W', 'W']])
220                             elif self.preamble == [2, 2, 1, 1]:
221                                 self.putx(self.ss_edge, self.samplenum, [1, ['Preamble M', 'M']])
222                             elif self.preamble == [2, 1, 1, 2]:
223                                 self.putx(self.ss_edge, self.samplenum, [1, ['Preamble B', 'B']])
224                             else:
225                                 self.putx(self.ss_edge, self.samplenum, [1, ['Unknown Preamble', 'Unkown Prea.', 'U']])
226                             self.preamble = []
227                             self.seen_preamble = True
228                             self.bitcount = 0
229                             self.first_one = True
230
231                         self.last_preamble = self.samplenum
232
233                 self.pulse_width = 0
234
235             self.olddata = data
236