X-Git-Url: https://sigrok.org/gitweb/?p=libsigrok.git;a=blobdiff_plain;f=src%2Fhardware%2Fkingst-la2016%2Fprotocol.c;h=dc1a24a5193b6f0a96933e9f15443480b0eb2c5b;hp=f8b4547ebb82177966796dd74c60b8afadc57892;hb=c35baf6eb0b0b2bc7b1240809775eca1927ca199;hpb=e9430410c4fe1f7376062a718e365e31ff0bf254 diff --git a/src/hardware/kingst-la2016/protocol.c b/src/hardware/kingst-la2016/protocol.c index f8b4547e..dc1a24a5 100644 --- a/src/hardware/kingst-la2016/protocol.c +++ b/src/hardware/kingst-la2016/protocol.c @@ -28,62 +28,96 @@ #include "libsigrok-internal.h" #include "protocol.h" -#define UC_FIRMWARE "kingst-la-%04x.fw" -#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream" -#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream" -#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream" -#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream" - -#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200) -#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100) -#define MAX_SAMPLE_DEPTH 10e9 -#define MAX_PWM_FREQ SR_MHZ(20) -#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */ - -/* usb vendor class control requests to the cypress FX2 microcontroller */ +/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */ +#define MCU_FWFILE_FMT "kingst-la-%04x.fw" +#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream" + +/* + * List of supported devices and their features. See @ref kingst_model + * for the fields' type and meaning. Table is sorted by EEPROM magic. + * + * TODO + * - Below LA1016 properties were guessed, need verification. + * - Add LA5016 and LA5032 devices when their EEPROM magic is known. + * - Does LA1010 fit the driver implementation? Samplerates vary with + * channel counts, lack of local sample memory. Most probably not. + */ +static const struct kingst_model models[] = { + { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, }, + { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, }, + { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, }, + { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, }, +}; + +/* USB vendor class control requests, executed by the Cypress FX2 MCU. */ #define CMD_FPGA_ENABLE 0x10 -#define CMD_FPGA_SPI 0x20 /* access registers in the FPGA over SPI bus, ctrl_in reads, ctrl_out writes */ -#define CMD_BULK_START 0x30 /* begin transfer of capture data via usb endpoint 6 IN */ -#define CMD_BULK_RESET 0x38 /* flush FX2 usb endpoint 6 IN fifos */ -#define CMD_FPGA_INIT 0x50 /* used before and after FPGA bitstream loading */ -#define CMD_KAUTH 0x60 /* communicate with authentication ic U10, not used */ -#define CMD_EEPROM 0xa2 /* ctrl_in reads, ctrl_out writes */ +#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */ +#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */ +#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */ +#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */ +#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */ +#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */ /* - * fpga spi register addresses for control request CMD_FPGA_SPI: - * There are around 60 byte-wide registers within the fpga and - * these are the base addresses used for accessing them. - * On the spi bus, the msb of the address byte is set for read - * and cleared for write, but that is handled by the fx2 mcu - * as appropriate. In this driver code just use IN transactions - * to read, OUT to write. + * FPGA register addresses (base addresses when registers span multiple + * bytes, in that case data is kept in little endian format). Passed to + * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail + * of SPI transfers encoding the read (1) or write (0) direction in the + * MSB of the address field. There are some 60 byte-wide FPGA registers. + * + * Unfortunately the FPGA registers change their meaning between the + * read and write directions of access, or exclusively provide one of + * these directions and not the other. This is an arbitrary vendor's + * choice, there is nothing which the sigrok driver could do about it. + * Values written to registers typically cannot get read back, neither + * verified after writing a configuration, nor queried upon startup for + * automatic detection of the current configuration. Neither appear to + * be there echo registers for presence and communication checks, nor + * version identifying registers, as far as we know. */ -#define REG_RUN 0x00 /* read capture status, write capture start */ -#define REG_PWM_EN 0x02 /* user pwm channels on/off */ -#define REG_CAPT_MODE 0x03 /* set to 0x00 for capture to sdram, 0x01 bypass sdram for streaming */ -#define REG_BULK 0x08 /* write start address and number of bytes for capture data bulk upload */ -#define REG_SAMPLING 0x10 /* write capture config, read capture data location in sdram */ -#define REG_TRIGGER 0x20 /* write level and edge trigger config */ -#define REG_THRESHOLD 0x68 /* write two pwm configs to control input threshold dac */ -#define REG_PWM1 0x70 /* write config for user pwm1 */ -#define REG_PWM2 0x78 /* write config for user pwm2 */ +#define REG_RUN 0x00 /* Read capture status, write start capture. */ +#define REG_PWM_EN 0x02 /* User PWM channels on/off. */ +#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */ +#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */ +#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */ +#define REG_TRIGGER 0x20 /* write level and edge trigger config. */ +#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */ +#define REG_PWM1 0x70 /* Write config for user PWM1. */ +#define REG_PWM2 0x78 /* Write config for user PWM2. */ + +/* Bit patterns to write to REG_RUN, setup run mode. */ +#define RUNMODE_HALT 0x00 +#define RUNMODE_RUN 0x03 + +/* Bit patterns when reading from REG_RUN, get run state. */ +#define RUNSTATE_IDLE_BIT (1UL << 0) +#define RUNSTATE_DRAM_BIT (1UL << 1) +#define RUNSTATE_TRGD_BIT (1UL << 2) +#define RUNSTATE_POST_BIT (1UL << 3) + +/* Properties related to the layout of capture data downloads. */ +#define NUM_PACKETS_IN_CHUNK 5 +#define TRANSFER_PACKET_LENGTH 16 static int ctrl_in(const struct sr_dev_inst *sdi, - uint8_t bRequest, uint16_t wValue, uint16_t wIndex, - void *data, uint16_t wLength) + uint8_t bRequest, uint16_t wValue, uint16_t wIndex, + void *data, uint16_t wLength) { struct sr_usb_dev_inst *usb; int ret; usb = sdi->conn; - if ((ret = libusb_control_transfer( - usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, - bRequest, wValue, wIndex, (unsigned char *)data, wLength, - DEFAULT_TIMEOUT_MS)) != wLength) { - sr_err("failed to read %d bytes via ctrl-in %d %#x, %d: %s.", - wLength, bRequest, wValue, wIndex, - libusb_error_name(ret)); + ret = libusb_control_transfer(usb->devhdl, + LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, + bRequest, wValue, wIndex, data, wLength, + DEFAULT_TIMEOUT_MS); + if (ret != wLength) { + sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.", + wLength, bRequest, wValue, wIndex, + libusb_error_name(ret)); + sr_err("Cannot read %d bytes from USB: %s.", + wLength, libusb_error_name(ret)); return SR_ERR; } @@ -91,74 +125,154 @@ static int ctrl_in(const struct sr_dev_inst *sdi, } static int ctrl_out(const struct sr_dev_inst *sdi, - uint8_t bRequest, uint16_t wValue, uint16_t wIndex, - void *data, uint16_t wLength) + uint8_t bRequest, uint16_t wValue, uint16_t wIndex, + void *data, uint16_t wLength) { struct sr_usb_dev_inst *usb; int ret; usb = sdi->conn; - if ((ret = libusb_control_transfer( - usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, - bRequest, wValue, wIndex, (unsigned char*)data, wLength, - DEFAULT_TIMEOUT_MS)) != wLength) { - sr_err("failed to write %d bytes via ctrl-out %d %#x, %d: %s.", - wLength, bRequest, wValue, wIndex, - libusb_error_name(ret)); + ret = libusb_control_transfer(usb->devhdl, + LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, + bRequest, wValue, wIndex, data, wLength, + DEFAULT_TIMEOUT_MS); + if (ret != wLength) { + sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.", + wLength, bRequest, wValue, wIndex, + libusb_error_name(ret)); + sr_err("Cannot write %d bytes to USB: %s.", + wLength, libusb_error_name(ret)); return SR_ERR; } return SR_OK; } -static int upload_fpga_bitstream(const struct sr_dev_inst *sdi, const char *bitstream_fname) +/* + * Check the necessity for FPGA bitstream upload, because another upload + * would take some 600ms which is undesirable after program startup. Try + * to access some FPGA registers and check the values' plausibility. The + * check should fail on the safe side, request another upload when in + * doubt. A positive response (the request to continue operation with the + * currently active bitstream) should be conservative. Accessing multiple + * registers is considered cheap compared to the cost of bitstream upload. + * + * It helps though that both the vendor software and the sigrok driver + * use the same bundle of MCU firmware and FPGA bitstream for any of the + * supported models. We don't expect to successfully communicate to the + * device yet disagree on its protocol. Ideally we would access version + * identifying registers for improved robustness, but are not aware of + * any. A bitstream reload can always be forced by a power cycle. + */ +static int check_fpga_bitstream(const struct sr_dev_inst *sdi) +{ + uint8_t init_rsp; + int ret; + uint16_t run_state; + uint8_t pwm_en; + size_t read_len; + uint8_t buff[sizeof(run_state)]; + const uint8_t *rdptr; + + sr_dbg("Checking operation of the FPGA bitstream."); + + init_rsp = ~0; + ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp)); + if (ret != SR_OK || init_rsp != 0) { + sr_dbg("FPGA init query failed, or unexpected response."); + return SR_ERR_IO; + } + + read_len = sizeof(run_state); + ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len); + if (ret != SR_OK) { + sr_dbg("FPGA register access failed (run state)."); + return SR_ERR_IO; + } + rdptr = buff; + run_state = read_u16le_inc(&rdptr); + sr_spew("FPGA register: run state 0x%04x.", run_state); + if (run_state && (run_state & 0x3) != 0x1) { + sr_dbg("Unexpected FPGA register content (run state)."); + return SR_ERR_DATA; + } + if (run_state && (run_state & ~0xf) != 0x85e0) { + sr_dbg("Unexpected FPGA register content (run state)."); + return SR_ERR_DATA; + } + + read_len = sizeof(pwm_en); + ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len); + if (ret != SR_OK) { + sr_dbg("FPGA register access failed (PWM enable)."); + return SR_ERR_IO; + } + rdptr = buff; + pwm_en = read_u8_inc(&rdptr); + sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en); + if ((pwm_en & 0x3) != 0x0) { + sr_dbg("Unexpected FPGA register content (PWM enable)."); + return SR_ERR_DATA; + } + + sr_info("Could re-use current FPGA bitstream. No upload required."); + return SR_OK; +} + +static int upload_fpga_bitstream(const struct sr_dev_inst *sdi, + const char *bitstream_fname) { - struct dev_context *devc; struct drv_context *drvc; struct sr_usb_dev_inst *usb; struct sr_resource bitstream; + uint32_t bitstream_size; uint8_t buffer[sizeof(uint32_t)]; uint8_t *wrptr; - uint8_t cmd_resp; uint8_t block[4096]; int len, act_len; unsigned int pos; int ret; - unsigned int zero_pad_to = 0x2c000; + unsigned int zero_pad_to; - devc = sdi->priv; drvc = sdi->driver->context; usb = sdi->conn; sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname); - ret = sr_resource_open(drvc->sr_ctx, &bitstream, SR_RESOURCE_FIRMWARE, bitstream_fname); + ret = sr_resource_open(drvc->sr_ctx, &bitstream, + SR_RESOURCE_FIRMWARE, bitstream_fname); if (ret != SR_OK) { - sr_err("could not find fpga firmware %s!", bitstream_fname); + sr_err("Cannot find FPGA bitstream %s.", bitstream_fname); return ret; } - devc->bitstream_size = (uint32_t)bitstream.size; + bitstream_size = (uint32_t)bitstream.size; wrptr = buffer; - write_u32le_inc(&wrptr, devc->bitstream_size); - if ((ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer)) != SR_OK) { - sr_err("failed to give upload init command"); + write_u32le_inc(&wrptr, bitstream_size); + ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer); + if (ret != SR_OK) { + sr_err("Cannot initiate FPGA bitstream upload."); sr_resource_close(drvc->sr_ctx, &bitstream); return ret; } + zero_pad_to = bitstream_size; + zero_pad_to += LA2016_EP2_PADDING - 1; + zero_pad_to /= LA2016_EP2_PADDING; + zero_pad_to *= LA2016_EP2_PADDING; pos = 0; while (1) { if (pos < bitstream.size) { - len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, &block, sizeof(block)); + len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, + block, sizeof(block)); if (len < 0) { - sr_err("failed to read from fpga bitstream!"); + sr_err("Cannot read FPGA bitstream."); sr_resource_close(drvc->sr_ctx, &bitstream); return SR_ERR; } } else { - // fill with zero's until zero_pad_to + /* Zero-pad until 'zero_pad_to'. */ len = zero_pad_to - pos; if ((unsigned)len > sizeof(block)) len = sizeof(block); @@ -167,41 +281,55 @@ static int upload_fpga_bitstream(const struct sr_dev_inst *sdi, const char *bits if (len == 0) break; - ret = libusb_bulk_transfer(usb->devhdl, 2, (unsigned char*)&block[0], len, &act_len, DEFAULT_TIMEOUT_MS); + ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM, + &block[0], len, &act_len, DEFAULT_TIMEOUT_MS); if (ret != 0) { - sr_dbg("failed to write fpga bitstream block at %#x len %d: %s.", pos, (int)len, libusb_error_name(ret)); + sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.", + pos, (int)len, libusb_error_name(ret)); ret = SR_ERR; break; } if (act_len != len) { - sr_dbg("failed to write fpga bitstream block at %#x len %d: act_len is %d.", pos, (int)len, act_len); + sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.", + pos, (int)len, act_len); ret = SR_ERR; break; } pos += len; } sr_resource_close(drvc->sr_ctx, &bitstream); - if (ret != 0) + if (ret != SR_OK) return ret; - sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.", bitstream.size); + sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.", + bitstream.size); + + return SR_OK; +} - if ((ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &cmd_resp, sizeof(cmd_resp))) != SR_OK) { - sr_err("failed to read response after FPGA bitstream upload"); +static int enable_fpga_bitstream(const struct sr_dev_inst *sdi) +{ + int ret; + uint8_t resp; + + ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp)); + if (ret != SR_OK) { + sr_err("Cannot read response after FPGA bitstream upload."); return ret; } - if (cmd_resp != 0) { - sr_err("after fpga bitstream upload command response is 0x%02x, expect 0!", cmd_resp); + if (resp != 0) { + sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.", + resp); return SR_ERR; } + g_usleep(30 * 1000); - g_usleep(30000); - - if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0)) != SR_OK) { - sr_err("failed enable fpga"); + ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0); + if (ret != SR_OK) { + sr_err("Cannot enable FPGA after bitstream upload."); return ret; } + g_usleep(40 * 1000); - g_usleep(40000); return SR_OK; } @@ -209,59 +337,50 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage) { struct dev_context *devc; int ret; - - devc = sdi->priv; - - uint16_t duty_R79,duty_R56; + uint16_t duty_R79, duty_R56; uint8_t buf[2 * sizeof(uint16_t)]; uint8_t *wrptr; - /* clamp threshold setting within valid range for LA2016 */ - if (voltage > 4.0) { - voltage = 4.0; - } - else if (voltage < -4.0) { - voltage = -4.0; - } + devc = sdi->priv; - /* - * The fpga has two programmable pwm outputs which feed a dac that - * is used to adjust input offset. The dac changes the input - * swing around the fixed fpga input threshold. - * The two pwm outputs can be seen on R79 and R56 respectvely. - * Frequency is fixed at 100kHz and duty is varied. - * The R79 pwm uses just three settings. - * The R56 pwm varies with required threshold and its behaviour - * also changes depending on the setting of R79 PWM. - */ + /* Clamp threshold setting to valid range for LA2016. */ + if (voltage > LA2016_THR_VOLTAGE_MAX) { + voltage = LA2016_THR_VOLTAGE_MAX; + } else if (voltage < -LA2016_THR_VOLTAGE_MAX) { + voltage = -LA2016_THR_VOLTAGE_MAX; + } /* - * calculate required pwm duty register values from requested threshold voltage - * see last page of schematic (on wiki) for an explanation of these numbers + * Two PWM output channels feed one DAC which generates a bias + * voltage, which offsets the input probe's voltage level, and + * in combination with the FPGA pins' fixed threshold result in + * a programmable input threshold from the user's perspective. + * The PWM outputs can be seen on R79 and R56 respectively, the + * frequency is 100kHz and the duty cycle varies. The R79 PWM + * uses three discrete settings. The R56 PWM varies with desired + * thresholds and depends on the R79 PWM configuration. See the + * schematics comments which discuss the formulae. */ if (voltage >= 2.9) { - duty_R79 = 0; /* this pwm is off (0V)*/ + duty_R79 = 0; /* PWM off (0V). */ duty_R56 = (uint16_t)(302 * voltage - 363); - } - else if (voltage <= -0.4) { - duty_R79 = 0x02D7; /* 72% duty */ - duty_R56 = (uint16_t)(302 * voltage + 1090); - } - else { - duty_R79 = 0x00f2; /* 25% duty */ + } else if (voltage > -0.4) { + duty_R79 = 0x00f2; /* 25% duty cycle. */ duty_R56 = (uint16_t)(302 * voltage + 121); + } else { + duty_R79 = 0x02d7; /* 72% duty cycle. */ + duty_R56 = (uint16_t)(302 * voltage + 1090); } - /* clamp duty register values at sensible limits */ + /* Clamp duty register values to sensible limits. */ if (duty_R56 < 10) { duty_R56 = 10; - } - else if (duty_R56 > 1100) { + } else if (duty_R56 > 1100) { duty_R56 = 1100; } - sr_dbg("set threshold voltage %.2fV", voltage); - sr_dbg("duty_R56=0x%04x, duty_R79=0x%04x", duty_R56, duty_R79); + sr_dbg("Set threshold voltage %.2fV.", voltage); + sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79); wrptr = buf; write_u16le_inc(&wrptr, duty_R56); @@ -269,7 +388,7 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage) ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf); if (ret != SR_OK) { - sr_err("error setting new threshold voltage of %.2fV", voltage); + sr_err("Cannot set threshold voltage %.2fV.", voltage); return ret; } devc->threshold_voltage = voltage; @@ -277,114 +396,134 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage) return SR_OK; } -static int enable_pwm(const struct sr_dev_inst *sdi, uint8_t p1, uint8_t p2) +/* + * Communicates a channel's configuration to the device after the + * parameters may have changed. Configuration of one channel may + * interfere with other channels since they share FPGA registers. + */ +static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx) { + static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, }; + struct dev_context *devc; - uint8_t cfg; + struct pwm_setting *params; + uint8_t reg_base; + double val_f; + uint32_t val_u; + uint32_t period, duty; + size_t ch; int ret; + uint8_t enable_all, enable_cfg, reg_val; + uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */ + uint8_t *wrptr; devc = sdi->priv; - cfg = 0; + if (idx >= ARRAY_SIZE(devc->pwm_setting)) + return SR_ERR_ARG; + params = &devc->pwm_setting[idx]; + if (idx >= ARRAY_SIZE(reg_bases)) + return SR_ERR_ARG; + reg_base = reg_bases[idx]; - if (p1) cfg |= 1 << 0; - if (p2) cfg |= 1 << 1; + /* + * Map application's specs to hardware register values. Do math + * in floating point initially, but convert to u32 eventually. + */ + sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.", + idx, params->enabled ? 1 : 0, params->freq, params->duty); + val_f = PWM_CLOCK; + val_f /= params->freq; + val_u = val_f; + period = val_u; + val_f = period; + val_f *= params->duty; + val_f /= 100.0; + val_f += 0.5; + val_u = val_f; + duty = val_u; + sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.", + (unsigned)reg_base, (unsigned)period, (unsigned)duty); + + /* Get the "enabled" state of all supported PWM channels. */ + enable_all = 0; + for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) { + if (!devc->pwm_setting[ch].enabled) + continue; + enable_all |= 1U << ch; + } + enable_cfg = 1U << idx; + sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.", + enable_all, enable_cfg); - sr_dbg("set pwm enable %d %d", p1, p2); - ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg)); + /* + * Disable the to-get-configured channel before its parameters + * will change. Or disable and exit when the channel is supposed + * to get turned off. + */ + sr_spew("PWM config, disabling before param change."); + reg_val = enable_all & ~enable_cfg; + ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, + ®_val, sizeof(reg_val)); if (ret != SR_OK) { - sr_err("error setting new pwm enable 0x%02x", cfg); + sr_err("Cannot adjust PWM enabled state."); return ret; } - devc->pwm_setting[0].enabled = (p1) ? 1 : 0; - devc->pwm_setting[1].enabled = (p2) ? 1 : 0; - - return SR_OK; -} + if (!params->enabled) + return SR_OK; -static int set_pwm(const struct sr_dev_inst *sdi, uint8_t which, float freq, float duty) -{ - int CTRL_PWM[] = { REG_PWM1, REG_PWM2 }; - struct dev_context *devc; - pwm_setting_dev_t cfg; - pwm_setting_t *setting; - int ret; - uint8_t buf[2 * sizeof(uint32_t)]; - uint8_t *wrptr; - - devc = sdi->priv; - - if (which < 1 || which > 2) { - sr_err("invalid pwm channel: %d", which); - return SR_ERR; - } - if (freq > MAX_PWM_FREQ) { - sr_err("pwm frequency too high: %.1f", freq); - return SR_ERR; - } - if (duty > 100 || duty < 0) { - sr_err("invalid pwm percentage: %f", duty); - return SR_ERR; + /* Write register values to device. */ + sr_spew("PWM config, sending new parameters."); + wrptr = buf; + write_u32le_inc(&wrptr, period); + write_u32le_inc(&wrptr, duty); + ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf); + if (ret != SR_OK) { + sr_err("Cannot change PWM parameters."); + return ret; } - cfg.period = (uint32_t)(PWM_CLOCK / freq); - cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.)); - sr_dbg("set pwm%d period %d, duty %d", which, cfg.period, cfg.duty); - - wrptr = buf; - write_u32le_inc(&wrptr, cfg.period); - write_u32le_inc(&wrptr, cfg.duty); - ret = ctrl_out(sdi, CMD_FPGA_SPI, CTRL_PWM[which - 1], 0, buf, wrptr - buf); + /* Enable configured channel after write completion. */ + sr_spew("PWM config, enabling after param change."); + reg_val = enable_all | enable_cfg; + ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, + ®_val, sizeof(reg_val)); if (ret != SR_OK) { - sr_err("error setting new pwm%d config %d %d", which, cfg.period, cfg.duty); + sr_err("Cannot adjust PWM enabled state."); return ret; } - setting = &devc->pwm_setting[which - 1]; - setting->freq = freq; - setting->duty = duty; return SR_OK; } -static int set_defaults(const struct sr_dev_inst *sdi) +static uint16_t get_channels_mask(const struct sr_dev_inst *sdi) { - struct dev_context *devc; - int ret; - - devc = sdi->priv; - - devc->capture_ratio = 5; /* percent */ - devc->cur_channels = 0xffff; - devc->limit_samples = 5000000; - devc->cur_samplerate = SR_MHZ(100); - - ret = set_threshold_voltage(sdi, devc->threshold_voltage); - if (ret) - return ret; - - ret = enable_pwm(sdi, 0, 0); - if (ret) - return ret; - - ret = set_pwm(sdi, 1, 1e3, 50); - if (ret) - return ret; - - ret = set_pwm(sdi, 2, 100e3, 50); - if (ret) - return ret; - - ret = enable_pwm(sdi, 1, 1); - if (ret) - return ret; + uint16_t channels; + GSList *l; + struct sr_channel *ch; + + channels = 0; + for (l = sdi->channels; l; l = l->next) { + ch = l->data; + if (ch->type != SR_CHANNEL_LOGIC) + continue; + if (!ch->enabled) + continue; + channels |= 1UL << ch->index; + } - return SR_OK; + return channels; } static int set_trigger_config(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_trigger *trigger; - trigger_cfg_t cfg; + struct trigger_cfg { + uint32_t channels; + uint32_t enabled; + uint32_t level; + uint32_t high_or_falling; + } cfg; GSList *stages; GSList *channel; struct sr_trigger_stage *stage1; @@ -399,7 +538,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi) memset(&cfg, 0, sizeof(cfg)); - cfg.channels = devc->cur_channels; + cfg.channels = get_channels_mask(sdi); if (trigger && trigger->stages) { stages = trigger->stages; @@ -411,7 +550,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi) channel = stage1->matches; while (channel) { match = channel->data; - ch_mask = 1 << match->channel->index; + ch_mask = 1UL << match->channel->index; switch (match->match) { case SR_TRIGGER_ZERO: @@ -424,7 +563,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi) break; case SR_TRIGGER_RISING: if ((cfg.enabled & ~cfg.level)) { - sr_err("Only one trigger signal with falling-/rising-edge allowed."); + sr_err("Device only supports one edge trigger."); return SR_ERR; } cfg.level &= ~ch_mask; @@ -432,35 +571,41 @@ static int set_trigger_config(const struct sr_dev_inst *sdi) break; case SR_TRIGGER_FALLING: if ((cfg.enabled & ~cfg.level)) { - sr_err("Only one trigger signal with falling-/rising-edge allowed."); + sr_err("Device only supports one edge trigger."); return SR_ERR; } cfg.level &= ~ch_mask; cfg.high_or_falling |= ch_mask; break; default: - sr_err("Unknown trigger value."); + sr_err("Unknown trigger condition."); return SR_ERR; } cfg.enabled |= ch_mask; channel = channel->next; } } - sr_dbg("set trigger configuration channels: 0x%04x, " - "trigger-enabled 0x%04x, level-triggered 0x%04x, " - "high/falling 0x%04x", cfg.channels, cfg.enabled, cfg.level, - cfg.high_or_falling); + sr_dbg("Set trigger config: " + "channels 0x%04x, trigger-enabled 0x%04x, " + "level-triggered 0x%04x, high/falling 0x%04x.", + cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling); - devc->had_triggers_configured = cfg.enabled != 0; + devc->trigger_involved = cfg.enabled != 0; wrptr = buf; write_u32le_inc(&wrptr, cfg.channels); write_u32le_inc(&wrptr, cfg.enabled); write_u32le_inc(&wrptr, cfg.level); write_u32le_inc(&wrptr, cfg.high_or_falling); + /* TODO + * Comment on this literal 16. Origin, meaning? Cannot be the + * register offset, nor the transfer length. Is it a channels + * count that is relevant for 16 and 32 channel models? Is it + * an obsolete experiment? + */ ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf); if (ret != SR_OK) { - sr_err("error setting trigger config!"); + sr_err("Cannot setup trigger configuration."); return ret; } @@ -470,116 +615,216 @@ static int set_trigger_config(const struct sr_dev_inst *sdi) static int set_sample_config(const struct sr_dev_inst *sdi) { struct dev_context *devc; - double clock_divisor; - uint64_t total; - int ret; - uint16_t divisor; - uint8_t buf[2 * sizeof(uint32_t) + 48 / 8 + sizeof(uint16_t)]; + uint64_t min_samplerate, eff_samplerate; + uint16_t divider_u16; + uint64_t limit_samples; + uint64_t pre_trigger_samples; + uint64_t pre_trigger_memory; + uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */ uint8_t *wrptr; + int ret; devc = sdi->priv; - total = 128 * 1024 * 1024; - if (devc->cur_samplerate > devc->max_samplerate) { - sr_err("too high sample rate: %" PRIu64, devc->cur_samplerate); - return SR_ERR; + if (devc->cur_samplerate > devc->model->samplerate) { + sr_err("Too high a sample rate: %" PRIu64 ".", + devc->cur_samplerate); + return SR_ERR_ARG; } + min_samplerate = devc->model->samplerate; + min_samplerate /= 65536; + if (devc->cur_samplerate < min_samplerate) { + sr_err("Too low a sample rate: %" PRIu64 ".", + devc->cur_samplerate); + return SR_ERR_ARG; + } + divider_u16 = devc->model->samplerate / devc->cur_samplerate; + eff_samplerate = devc->model->samplerate / divider_u16; - clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate; - if (clock_divisor > 0xffff) - clock_divisor = 0xffff; - divisor = (uint16_t)(clock_divisor + 0.5); - devc->cur_samplerate = devc->max_samplerate / divisor; - - if (devc->limit_samples > MAX_SAMPLE_DEPTH) { - sr_err("too high sample depth: %" PRIu64, devc->limit_samples); - return SR_ERR; + ret = sr_sw_limits_get_remain(&devc->sw_limits, + &limit_samples, NULL, NULL, NULL); + if (ret != SR_OK) { + sr_err("Cannot get acquisition limits."); + return ret; + } + if (limit_samples > LA2016_NUM_SAMPLES_MAX) { + sr_warn("Too high a sample depth: %" PRIu64 ", capping.", + limit_samples); + limit_samples = LA2016_NUM_SAMPLES_MAX; + } + if (limit_samples == 0) { + limit_samples = LA2016_NUM_SAMPLES_MAX; + sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.", + limit_samples); } - devc->pre_trigger_size = (devc->capture_ratio * devc->limit_samples) / 100; + /* + * The acquisition configuration communicates "pre-trigger" + * specs in several formats. sigrok users provide a percentage + * (0-100%), which translates to a pre-trigger samples count + * (assuming that a total samples count limit was specified). + * The device supports hardware compression, which depends on + * slowly changing input data to be effective. Fast changing + * input data may occupy more space in sample memory than its + * uncompressed form would. This is why a third parameter can + * limit the amount of sample memory to use for pre-trigger + * data. Only the upper 24 bits of that memory size spec get + * communicated to the device (written to its FPGA register). + * + * TODO Determine whether the pre-trigger memory size gets + * specified in samples or in bytes. A previous implementation + * suggests bytes but this is suspicious when every other spec + * is in terms of samples. + */ + if (devc->trigger_involved) { + pre_trigger_samples = limit_samples; + pre_trigger_samples *= devc->capture_ratio; + pre_trigger_samples /= 100; + pre_trigger_memory = devc->model->memory_bits; + pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024); + pre_trigger_memory /= 8; /* devc->model->channel_count ? */ + pre_trigger_memory *= devc->capture_ratio; + pre_trigger_memory /= 100; + } else { + sr_dbg("No trigger setup, skipping pre-trigger config."); + pre_trigger_samples = 1; + pre_trigger_memory = 0; + } + /* Ensure non-zero value after LSB shift out in HW reg. */ + if (pre_trigger_memory < 0x100) { + pre_trigger_memory = 0x100; + } - sr_dbg("set sampling configuration %.0fkHz, %d samples, trigger-pos %d%%", - devc->cur_samplerate / 1e3, (unsigned int)devc->limit_samples, (unsigned int)devc->capture_ratio); + sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.", + eff_samplerate / SR_KHZ(1), limit_samples); + sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".", + devc->capture_ratio, pre_trigger_samples, pre_trigger_memory); + /* + * The acquisition configuration occupies a total of 16 bytes: + * - A 34bit total samples count limit (up to 10 billions) that + * is kept in a 40bit register. + * - A 34bit pre-trigger samples count limit (up to 10 billions) + * in another 40bit register. + * - A 32bit pre-trigger memory space limit (in bytes) of which + * the upper 24bits are kept in an FPGA register. + * - A 16bit clock divider which gets applied to the maximum + * samplerate of the device. + * - An 8bit register of unknown meaning. Currently always 0. + */ wrptr = buf; - write_u32le_inc(&wrptr, devc->limit_samples); - write_u8_inc(&wrptr, 0); - write_u32le_inc(&wrptr, devc->pre_trigger_size); - write_u32le_inc(&wrptr, ((total * devc->capture_ratio) / 100) & 0xFFFFFF00); - write_u16le_inc(&wrptr, divisor); + write_u40le_inc(&wrptr, limit_samples); + write_u40le_inc(&wrptr, pre_trigger_samples); + write_u24le_inc(&wrptr, pre_trigger_memory >> 8); + write_u16le_inc(&wrptr, divider_u16); write_u8_inc(&wrptr, 0); - ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf); if (ret != SR_OK) { - sr_err("error setting sample config!"); + sr_err("Cannot setup acquisition configuration."); return ret; } return SR_OK; } -/* The run state is read from FPGA registers 1[hi-byte] and 0[lo-byte] - * and the bits are interpreted as follows: - * - * register 0: - * bit0 1= idle - * bit1 1= writing to sdram - * bit2 0= waiting_for_trigger 1=been_triggered - * bit3 0= pretrigger_sampling 1=posttrigger_sampling - * ...unknown... - * register 1: - * meaning of bits unknown (but vendor software reads this, so just do the same) +/* + * FPGA register REG_RUN holds the run state (u16le format). Bit fields + * of interest: + * bit 0: value 1 = idle + * bit 1: value 1 = writing to SDRAM + * bit 2: value 0 = waiting for trigger, 1 = trigger seen + * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling + * The meaning of other bit fields is unknown. * - * The run state values occur in this order: - * 0x85E2: pre-sampling (for samples before trigger position, capture ratio > 0%) - * 0x85EA: pre-sampling complete, now waiting for trigger (whilst sampling continuously) - * 0x85EE: running - * 0x85ED: idle + * Typical values in order of appearance during execution: + * 0x85e1: idle, no acquisition pending + * IDLE set, TRGD don't care, POST don't care; DRAM don't care + * "In idle state." Takes precedence over all others. + * 0x85e2: pre-sampling, samples before the trigger position, + * when capture ratio > 0% + * IDLE clear, TRGD clear, POST clear; DRAM don't care + * "Not idle any more, no post yet, not triggered yet." + * 0x85ea: pre-sampling complete, now waiting for the trigger + * (whilst sampling continuously) + * IDLE clear, TRGD clear, POST set; DRAM don't care + * "Post set thus after pre, not triggered yet" + * 0x85ee: trigger seen, capturing post-trigger samples, running + * IDLE clear, TRGD set, POST set; DRAM don't care + * "Triggered and in post, not idle yet." + * 0x85ed: idle + * IDLE set, TRGD don't care, POST don't care; DRAM don't care + * "In idle state." TRGD/POST don't care, same meaning as above. */ +static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT; +static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT; +static const uint16_t runstate_mask_step = + RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT; +static const uint16_t runstate_patt_pre_trig = 0; +static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT; +static const uint16_t runstate_patt_post_trig = + RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT; + static uint16_t run_state(const struct sr_dev_inst *sdi) { - uint16_t state; - static uint16_t previous_state = 0; + static uint16_t previous_state; + int ret; + uint16_t state; + uint8_t buff[sizeof(state)]; + const uint8_t *rdptr; + const char *label; - if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, &state, sizeof(state))) != SR_OK) { - sr_err("failed to read run state!"); + ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state)); + if (ret != SR_OK) { + sr_err("Cannot read run state."); return ret; } + rdptr = buff; + state = read_u16le_inc(&rdptr); - /* This function is called about every 50ms. - * To avoid filling the log file with redundant information during long captures, - * just print a log message if status has changed. + /* + * Avoid flooding the log, only dump values as they change. + * The routine is called about every 50ms. */ - - if (state != previous_state) { - previous_state = state; - if ((state & 0x0003) == 0x01) { - sr_dbg("run_state: 0x%04x (%s)", state, "idle"); - } - else if ((state & 0x000f) == 0x02) { - sr_dbg("run_state: 0x%04x (%s)", state, "pre-trigger sampling"); - } - else if ((state & 0x000f) == 0x0a) { - sr_dbg("run_state: 0x%04x (%s)", state, "sampling, waiting for trigger"); - } - else if ((state & 0x000f) == 0x0e) { - sr_dbg("run_state: 0x%04x (%s)", state, "post-trigger sampling"); - } - else { - sr_dbg("run_state: 0x%04x", state); - } - } + if (state == previous_state) + return state; + + previous_state = state; + label = NULL; + if ((state & runstate_mask_idle) == runstate_patt_idle) + label = "idle"; + if ((state & runstate_mask_step) == runstate_patt_pre_trig) + label = "pre-trigger sampling"; + if ((state & runstate_mask_step) == runstate_patt_wait_trig) + label = "sampling, waiting for trigger"; + if ((state & runstate_mask_step) == runstate_patt_post_trig) + label = "post-trigger sampling"; + if (label && *label) + sr_dbg("Run state: 0x%04x (%s).", state, label); + else + sr_dbg("Run state: 0x%04x.", state); return state; } -static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t fast_blinking) +static int la2016_is_idle(const struct sr_dev_inst *sdi) +{ + uint16_t state; + + state = run_state(sdi); + if ((state & runstate_mask_idle) == runstate_patt_idle) + return 1; + + return 0; +} + +static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode) { int ret; - if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &fast_blinking, sizeof(fast_blinking))) != SR_OK) { - sr_err("failed to send set-run-mode command %d", fast_blinking); + ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode)); + if (ret != SR_OK) { + sr_err("Cannot configure run mode %d.", mode); return ret; } @@ -595,8 +840,9 @@ static int get_capture_info(const struct sr_dev_inst *sdi) devc = sdi->priv; - if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf))) != SR_OK) { - sr_err("failed to read capture info!"); + ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf)); + if (ret != SR_OK) { + sr_err("Cannot read capture info."); return ret; } @@ -605,22 +851,46 @@ static int get_capture_info(const struct sr_dev_inst *sdi) devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr); devc->info.write_pos = read_u32le_inc(&rdptr); - sr_dbg("capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x%d", - devc->info.n_rep_packets, devc->info.n_rep_packets, - devc->info.n_rep_packets_before_trigger, devc->info.n_rep_packets_before_trigger, - devc->info.write_pos, devc->info.write_pos); + sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.", + devc->info.n_rep_packets, devc->info.n_rep_packets, + devc->info.n_rep_packets_before_trigger, + devc->info.n_rep_packets_before_trigger, + devc->info.write_pos, devc->info.write_pos); - if (devc->info.n_rep_packets % 5) - sr_warn("number of packets is not as expected multiples of 5: %d", devc->info.n_rep_packets); + if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) { + sr_warn("Unexpected packets count %lu, not a multiple of %d.", + (unsigned long)devc->info.n_rep_packets, + NUM_PACKETS_IN_CHUNK); + } return SR_OK; } -SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id) +SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi, + struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id) { - char fw_file[1024]; - snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id); - return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file); + struct dev_context *devc; + char *fw_file; + int ret; + + devc = sdi ? sdi->priv : NULL; + + fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id); + sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file); + + ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file); + if (ret != SR_OK) { + g_free(fw_file); + return ret; + } + + if (devc) { + devc->mcu_firmware = fw_file; + fw_file = NULL; + } + g_free(fw_file); + + return SR_OK; } SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi) @@ -636,8 +906,9 @@ SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi) return ret; cmd = 0; - if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd))) != SR_OK) { - sr_err("failed to send stop sampling command"); + ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd)); + if (ret != SR_OK) { + sr_err("Cannot send command to stop sampling."); return ret; } @@ -656,7 +927,7 @@ SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi) { int ret; - ret = set_run_mode(sdi, 3); + ret = set_run_mode(sdi, RUNMODE_RUN); if (ret != SR_OK) return ret; @@ -667,7 +938,7 @@ static int la2016_stop_acquisition(const struct sr_dev_inst *sdi) { int ret; - ret = set_run_mode(sdi, 0); + ret = set_run_mode(sdi, RUNMODE_HALT); if (ret != SR_OK) return ret; @@ -690,16 +961,8 @@ SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi) return SR_OK; } -static int la2016_has_triggered(const struct sr_dev_inst *sdi) -{ - uint16_t state; - - state = run_state(sdi); - - return (state & 0x3) == 1; -} - -static int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfer_cb_fn cb) +static int la2016_start_download(const struct sr_dev_inst *sdi, + libusb_transfer_cb_fn cb) { struct dev_context *devc; struct sr_usb_dev_inst *usb; @@ -712,7 +975,8 @@ static int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfer devc = sdi->priv; usb = sdi->conn; - if ((ret = get_capture_info(sdi)) != SR_OK) + ret = get_capture_info(sdi); + if (ret != SR_OK) return ret; devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK; @@ -720,46 +984,55 @@ static int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfer devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read; devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger; - sr_dbg("want to read %d tfer-packets starting from pos %d", - devc->n_transfer_packets_to_read, devc->read_pos); + sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".", + devc->n_transfer_packets_to_read, devc->read_pos); - if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) { - sr_err("failed to reset bulk state"); + ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0); + if (ret != SR_OK) { + sr_err("Cannot reset USB bulk state."); return ret; } - sr_dbg("will read from 0x%08x, 0x%08x bytes", devc->read_pos, devc->n_bytes_to_read); + sr_dbg("Will read from 0x%08lx, 0x%08x bytes.", + (unsigned long)devc->read_pos, devc->n_bytes_to_read); wrptr = wrbuf; write_u32le_inc(&wrptr, devc->read_pos); write_u32le_inc(&wrptr, devc->n_bytes_to_read); - if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf)) != SR_OK) { - sr_err("failed to send bulk config"); + ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf); + if (ret != SR_OK) { + sr_err("Cannot send USB bulk config."); return ret; } - if ((ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0)) != SR_OK) { - sr_err("failed to unblock bulk transfers"); + ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0); + if (ret != SR_OK) { + sr_err("Cannot unblock USB bulk transfers."); return ret; } + /* + * Pick a buffer size for all USB transfers. The buffer size + * must be a multiple of the endpoint packet size. And cannot + * exceed a maximum value. + */ to_read = devc->n_bytes_to_read; - /* choose a buffer size for all of the usb transfers */ - if (to_read >= LA2016_USB_BUFSZ) - to_read = LA2016_USB_BUFSZ; /* multiple transfers */ - else /* one transfer, make buffer size some multiple of LA2016_EP6_PKTSZ */ + if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */ + to_read = LA2016_USB_BUFSZ; + else /* One transfer. */ to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1); buffer = g_try_malloc(to_read); if (!buffer) { - sr_err("Failed to allocate %d bytes for bulk transfer", to_read); + sr_dbg("USB bulk transfer size %d bytes.", (int)to_read); + sr_err("Cannot allocate buffer for USB bulk transfer."); return SR_ERR_MALLOC; } devc->transfer = libusb_alloc_transfer(0); - libusb_fill_bulk_transfer( - devc->transfer, usb->devhdl, - 0x86, buffer, to_read, - cb, (void *)sdi, DEFAULT_TIMEOUT_MS); + libusb_fill_bulk_transfer(devc->transfer, + usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN, + buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS); - if ((ret = libusb_submit_transfer(devc->transfer)) != 0) { - sr_err("Failed to submit transfer: %s.", libusb_error_name(ret)); + ret = libusb_submit_transfer(devc->transfer); + if (ret != 0) { + sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret)); libusb_free_transfer(devc->transfer); devc->transfer = NULL; g_free(buffer); @@ -769,83 +1042,70 @@ static int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfer return SR_OK; } +/* + * A chunk (received via USB) contains a number of transfers (USB length + * divided by 16) which contain a number of packets (5 per transfer) which + * contain a number of samples (8bit repeat count per 16bit sample data). + */ static void send_chunk(struct sr_dev_inst *sdi, - const uint8_t *packets, unsigned int num_tfers) + const uint8_t *packets, size_t num_xfers) { struct dev_context *devc; - struct sr_datafeed_logic logic; - struct sr_datafeed_packet sr_packet; - unsigned int max_samples, n_samples, total_samples, free_n_samples; - unsigned int i, j, k; - int do_signal_trigger; - uint16_t *wp; + size_t num_pkts; const uint8_t *rp; - uint16_t state; - uint8_t repetitions; + uint16_t sample_value; + size_t repetitions; + uint8_t sample_buff[sizeof(sample_value)]; devc = sdi->priv; - logic.unitsize = 2; - logic.data = devc->convbuffer; + /* Ignore incoming USB data after complete sample data download. */ + if (devc->download_finished) + return; - sr_packet.type = SR_DF_LOGIC; - sr_packet.payload = &logic; - - max_samples = devc->convbuffer_size / 2; - n_samples = 0; - wp = (uint16_t *)devc->convbuffer; - total_samples = 0; - do_signal_trigger = 0; - - if (devc->had_triggers_configured && devc->reading_behind_trigger == 0 && devc->info.n_rep_packets_before_trigger == 0) { - std_session_send_df_trigger(sdi); - devc->reading_behind_trigger = 1; + if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) { + feed_queue_logic_send_trigger(devc->feed_queue); + devc->trigger_marked = TRUE; } rp = packets; - for (i = 0; i < num_tfers; i++) { - for (k = 0; k < NUM_PACKETS_IN_CHUNK; k++) { - free_n_samples = max_samples - n_samples; - if (free_n_samples < 256 || do_signal_trigger) { - logic.length = n_samples * 2; - sr_session_send(sdi, &sr_packet); - n_samples = 0; - wp = (uint16_t *)devc->convbuffer; - if (do_signal_trigger) { - std_session_send_df_trigger(sdi); - do_signal_trigger = 0; - } - } + while (num_xfers--) { + num_pkts = NUM_PACKETS_IN_CHUNK; + while (num_pkts--) { - state = read_u16le_inc(&rp); + sample_value = read_u16le_inc(&rp); repetitions = read_u8_inc(&rp); - for (j = 0; j < repetitions; j++) - *wp++ = state; - n_samples += repetitions; - total_samples += repetitions; devc->total_samples += repetitions; - if (!devc->reading_behind_trigger) { - devc->n_reps_until_trigger--; - if (devc->n_reps_until_trigger == 0) { - devc->reading_behind_trigger = 1; - do_signal_trigger = 1; - sr_dbg(" here is trigger position after %" PRIu64 " samples, %.6fms", - devc->total_samples, - (double)devc->total_samples / devc->cur_samplerate * 1e3); + + write_u16le(sample_buff, sample_value); + feed_queue_logic_submit(devc->feed_queue, + sample_buff, repetitions); + sr_sw_limits_update_samples_read(&devc->sw_limits, + repetitions); + + if (devc->trigger_involved && !devc->trigger_marked) { + if (!--devc->n_reps_until_trigger) { + feed_queue_logic_send_trigger(devc->feed_queue); + devc->trigger_marked = TRUE; + sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.", + devc->total_samples, + (double)devc->total_samples / devc->cur_samplerate * 1e3); } } } (void)read_u8_inc(&rp); /* Skip sequence number. */ } - if (n_samples) { - logic.length = n_samples * 2; - sr_session_send(sdi, &sr_packet); - if (do_signal_trigger) { - std_session_send_df_trigger(sdi); - } + + if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) { + sr_dbg("Acquisition limit reached."); + devc->download_finished = TRUE; } - sr_dbg("send_chunk done after %d samples", total_samples); + if (devc->download_finished) { + sr_dbg("Download finished, flushing session feed queue."); + feed_queue_logic_flush(devc->feed_queue); + } + sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples); } static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer) @@ -853,6 +1113,7 @@ static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer) struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_usb_dev_inst *usb; + size_t num_xfers; int ret; sdi = transfer->user_data; @@ -860,35 +1121,44 @@ static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer) usb = sdi->conn; sr_dbg("receive_transfer(): status %s received %d bytes.", - libusb_error_name(transfer->status), transfer->actual_length); - - if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) { - sr_err("bulk transfer timeout!"); - devc->transfer_finished = 1; - } - send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH); + libusb_error_name(transfer->status), transfer->actual_length); + /* + * Implementation detail: A USB transfer timeout is not fatal + * here. We just process whatever was received, empty input is + * perfectly acceptable. Reaching (or exceeding) the sw limits + * or exhausting the device's captured data will complete the + * sample data download. + */ + num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH; + send_chunk(sdi, transfer->buffer, num_xfers); devc->n_bytes_to_read -= transfer->actual_length; if (devc->n_bytes_to_read) { uint32_t to_read = devc->n_bytes_to_read; - /* determine read size for the next usb transfer */ + /* + * Determine read size for the next USB transfer. Make + * the buffer size a multiple of the endpoint packet + * size. Don't exceed a maximum value. + */ if (to_read >= LA2016_USB_BUFSZ) to_read = LA2016_USB_BUFSZ; - else /* last transfer, make read size some multiple of LA2016_EP6_PKTSZ */ + else to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1); - libusb_fill_bulk_transfer( - transfer, usb->devhdl, - 0x86, transfer->buffer, to_read, + libusb_fill_bulk_transfer(transfer, + usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN, + transfer->buffer, to_read, receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS); - if ((ret = libusb_submit_transfer(transfer)) == 0) + ret = libusb_submit_transfer(transfer); + if (ret == 0) return; - sr_err("Failed to submit further transfer: %s.", libusb_error_name(ret)); + sr_err("Cannot submit another USB transfer: %s.", + libusb_error_name(ret)); } g_free(transfer->buffer); libusb_free_transfer(transfer); - devc->transfer_finished = 1; + devc->download_finished = TRUE; } SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data) @@ -897,6 +1167,7 @@ SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data) struct dev_context *devc; struct drv_context *drvc; struct timeval tv; + int ret; (void)fd; (void)revents; @@ -905,176 +1176,255 @@ SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data) devc = sdi->priv; drvc = sdi->driver->context; - if (devc->have_trigger == 0) { - if (la2016_has_triggered(sdi) == 0) { - /* not yet ready for download */ + /* + * Wait for the acquisition to complete in hardware. + * Periodically check a potentially configured msecs timeout. + */ + if (!devc->completion_seen) { + if (!la2016_is_idle(sdi)) { + if (sr_sw_limits_check(&devc->sw_limits)) { + devc->sw_limits.limit_msec = 0; + sr_dbg("Limit reached. Stopping acquisition."); + la2016_stop_acquisition(sdi); + } + /* Not yet ready for sample data download. */ return TRUE; } - devc->have_trigger = 1; - devc->transfer_finished = 0; - devc->reading_behind_trigger = 0; + sr_dbg("Acquisition completion seen (hardware)."); + devc->sw_limits.limit_msec = 0; + devc->completion_seen = TRUE; + devc->download_finished = FALSE; + devc->trigger_marked = FALSE; devc->total_samples = 0; - /* we can start retrieving data! */ - if (la2016_start_retrieval(sdi, receive_transfer) != SR_OK) { - sr_err("failed to start retrieval!"); + + /* Initiate the download of acquired sample data. */ + std_session_send_df_frame_begin(sdi); + ret = la2016_start_download(sdi, receive_transfer); + if (ret != SR_OK) { + sr_err("Cannot start acquisition data download."); return FALSE; } - sr_dbg("retrieval is started..."); - std_session_send_df_frame_begin(sdi); + sr_dbg("Acquisition data download started."); return TRUE; } + /* Handle USB reception. Drives sample data download. */ tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv); - if (devc->transfer_finished) { - sr_dbg("transfer is finished!"); - std_session_send_df_frame_end(sdi); - - usb_source_remove(sdi->session, drvc->sr_ctx); - std_session_send_df_end(sdi); + /* Postprocess completion of sample data download. */ + if (devc->download_finished) { + sr_dbg("Download finished, post processing."); la2016_stop_acquisition(sdi); - - g_free(devc->convbuffer); - devc->convbuffer = NULL; - + usb_source_remove(sdi->session, drvc->sr_ctx); devc->transfer = NULL; - sr_dbg("transfer is now finished"); + feed_queue_logic_flush(devc->feed_queue); + feed_queue_logic_free(devc->feed_queue); + devc->feed_queue = NULL; + std_session_send_df_frame_end(sdi); + std_session_send_df_end(sdi); + + sr_dbg("Download finished, done post processing."); } return TRUE; } -SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi) +SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi, + gboolean show_message) { struct dev_context *devc; - uint16_t state; uint8_t buf[8]; - int16_t purchase_date_bcd[2]; + size_t rdoff, rdlen; + const uint8_t *rdptr; + uint8_t date_yy, date_mm; + uint8_t dinv_yy, dinv_mm; uint8_t magic; + size_t model_idx; + const struct kingst_model *model; int ret; devc = sdi->priv; - /* Four bytes of eeprom at 0x20 are purchase year & month in BCD format, with 16bit - * complemented checksum; e.g. 2004DFFB = 2020-April. - * This helps to identify the age of devices if unknown magic numbers occur. + /* + * Four EEPROM bytes at offset 0x20 are the manufacturing date, + * year and month in BCD format, followed by inverted values for + * consistency checks. For example bytes 20 04 df fb translate + * to 2020-04. This information can help identify the vintage of + * devices when unknown magic numbers are seen. */ - if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, purchase_date_bcd, sizeof(purchase_date_bcd))) != SR_OK) { - sr_err("failed to read eeprom purchase_date_bcd"); - } - else { - sr_dbg("purchase date: 20%02hx-%02hx", (purchase_date_bcd[0]) & 0x00ff, (purchase_date_bcd[0] >> 8) & 0x00ff); - if (purchase_date_bcd[0] != (0x0ffff & ~purchase_date_bcd[1])) { - sr_err("purchase date: checksum failure"); + rdoff = 0x20; + rdlen = 4 * sizeof(uint8_t); + ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen); + if (ret != SR_OK && !show_message) { + /* Non-fatal weak attempt during probe. Not worth logging. */ + sr_dbg("Cannot access EEPROM."); + return SR_ERR_IO; + } else if (ret != SR_OK) { + /* Failed attempt in regular use. Non-fatal. Worth logging. */ + sr_err("Cannot read manufacture date in EEPROM."); + } else { + if (sr_log_loglevel_get() >= SR_LOG_SPEW) { + GString *txt; + txt = sr_hexdump_new(buf, rdlen); + sr_spew("Manufacture date bytes %s.", txt->str); + sr_hexdump_free(txt); } + rdptr = &buf[0]; + date_yy = read_u8_inc(&rdptr); + date_mm = read_u8_inc(&rdptr); + dinv_yy = read_u8_inc(&rdptr); + dinv_mm = read_u8_inc(&rdptr); + sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm); + if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff) + sr_warn("Manufacture date fails checksum test."); } /* - * There are four known kingst logic analyser devices which use this same usb vid and pid: - * LA2016, LA1016 and the older revision of each of these. They all use the same hardware - * and the same FX2 mcu firmware but each requires a different fpga bitstream. They are - * differentiated by a 'magic' byte within the 8 bytes of EEPROM from address 0x08. - * For example; + * Several Kingst logic analyzer devices share the same USB VID + * and PID. The product ID determines which MCU firmware to load. + * The MCU firmware provides access to EEPROM content which then + * allows to identify the device model. Which in turn determines + * which FPGA bitstream to load. Eight bytes at offset 0x08 are + * to get inspected. * - * magic=0x08 - * | ~magic=0xf7 - * | | - * 08F7000008F710EF - * | | - * | ~magic-backup - * magic-backup + * EEPROM content for model identification is kept redundantly + * in memory. The values are stored in verbatim and in inverted + * form, multiple copies are kept at different offsets. Example + * data: * - * It seems that only these magic bytes are used, other bytes shown above are 'don't care'. - * Changing the magic byte on newer device to older magic causes OEM software to load - * the older fpga bitstream. The device then functions but has channels out of order. - * It's likely the bitstreams were changed to move input channel pins due to PCB changes. + * magic 0x08 + * | ~magic 0xf7 + * | | + * 08f7000008f710ef + * | | + * | ~magic backup + * magic backup * - * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream" (latest v1.3.0 PCB, perhaps others) - * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream" (latest v1.3.0 PCB, perhaps others) - * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream" - * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream" + * Exclusively inspecting the magic byte appears to be sufficient, + * other fields seem to be 'don't care'. * - * This was all determined by altering the eeprom contents of an LA2016 and LA1016 and observing - * the vendor software actions, either raising errors or loading specific bitstreams. + * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream" + * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream" + * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream" + * (latest v1.3.0 PCB, perhaps others) + * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream" + * (latest v1.3.0 PCB, perhaps others) * - * Note: - * An LA1016 cannot be converted to an LA2016 by changing the magic number - the bitstream - * will not authenticate with ic U10, which has different security coding for each device type. + * When EEPROM content does not match the hardware configuration + * (the board layout), the software may load but yield incorrect + * results (like swapped channels). The FPGA bitstream itself + * will authenticate with IC U10 and fail when its capabilities + * do not match the hardware model. An LA1016 won't become a + * LA2016 by faking its EEPROM content. */ - - if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) { - sr_err("failed to read eeprom device identifier bytes"); + devc->identify_magic = 0; + rdoff = 0x08; + rdlen = 8 * sizeof(uint8_t); + ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen); + if (ret != SR_OK) { + sr_err("Cannot read EEPROM device identifier bytes."); return ret; } - - magic = 0; - if (buf[0] == (0x0ff & ~buf[1])) { - /* primary copy of magic passes complement check */ - magic = buf[0]; + if (sr_log_loglevel_get() >= SR_LOG_SPEW) { + GString *txt; + txt = sr_hexdump_new(buf, rdlen); + sr_spew("EEPROM magic bytes %s.", txt->str); + sr_hexdump_free(txt); } - else if (buf[4] == (0x0ff & ~buf[5])) { - /* backup copy of magic passes complement check */ - sr_dbg("device_type: using backup copy of magic number"); + if ((buf[0] ^ buf[1]) == 0xff) { + /* Primary copy of magic passes complement check. */ + magic = buf[0]; + sr_dbg("Using primary magic, value %d.", (int)magic); + } else if ((buf[4] ^ buf[5]) == 0xff) { + /* Backup copy of magic passes complement check. */ magic = buf[4]; + sr_dbg("Using backup magic, value %d.", (int)magic); + } else { + sr_err("Cannot find consistent device type identification."); + magic = 0; } - - sr_dbg("device_type: magic number is %hhu", magic); - - /* select the correct fpga bitstream for this device */ - switch (magic) { - case 2: - ret = upload_fpga_bitstream(sdi, FPGA_FW_LA2016); - devc->max_samplerate = MAX_SAMPLE_RATE_LA2016; - break; - case 3: - ret = upload_fpga_bitstream(sdi, FPGA_FW_LA1016); - devc->max_samplerate = MAX_SAMPLE_RATE_LA1016; + devc->identify_magic = magic; + + devc->model = NULL; + for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) { + model = &models[model_idx]; + if (model->magic != magic) + continue; + devc->model = model; + sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.", + model->name, model->channel_count, + model->samplerate / SR_MHZ(1)); + devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT, + model->fpga_stem); + sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream); break; - case 8: - ret = upload_fpga_bitstream(sdi, FPGA_FW_LA2016A); - devc->max_samplerate = MAX_SAMPLE_RATE_LA2016; - break; - case 9: - ret = upload_fpga_bitstream(sdi, FPGA_FW_LA1016A); - devc->max_samplerate = MAX_SAMPLE_RATE_LA1016; - break; - default: - sr_err("device_type: device not supported; magic number indicates this is not a LA2016 or LA1016"); + } + if (!devc->model) { + sr_err("Cannot identify as one of the supported models."); return SR_ERR; } + return SR_OK; +} + +SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi) +{ + struct dev_context *devc; + const char *bitstream_fn; + int ret; + uint16_t state; + + devc = sdi->priv; + bitstream_fn = devc ? devc->fpga_bitstream : ""; + + ret = check_fpga_bitstream(sdi); if (ret != SR_OK) { - sr_err("failed to upload fpga bitstream"); + ret = upload_fpga_bitstream(sdi, bitstream_fn); + if (ret != SR_OK) { + sr_err("Cannot upload FPGA bitstream."); + return ret; + } + } + ret = enable_fpga_bitstream(sdi); + if (ret != SR_OK) { + sr_err("Cannot enable FPGA bitstream after upload."); return ret; } state = run_state(sdi); if (state != 0x85e9) { - sr_warn("expect run state to be 0x85e9, but it reads 0x%04x", state); + sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state); } - if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) { - sr_err("failed to send CMD_BULK_RESET"); + ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0); + if (ret != SR_OK) { + sr_err("Cannot reset USB bulk transfer."); return ret; } - sr_dbg("device should be initialized"); + sr_dbg("Device should be initialized."); - return set_defaults(sdi); + return SR_OK; } -SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi) +SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi) { int ret; - if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) { - sr_err("failed to send deinit command"); + ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0); + if (ret != SR_OK) { + sr_err("Cannot deinitialize device's FPGA."); return ret; } return SR_OK; } + +SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx) +{ + return set_pwm_config(sdi, idx); +}