]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
Consistently use the "Sysclk" spelling everywhere.
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <math.h>
24 #include <glib.h>
25 #include <libsigrok/libsigrok.h>
26 #include "libsigrok-internal.h"
27
28 #define LOG_PREFIX "es51919"
29
30 struct dev_buffer {
31         /** Total size of the buffer. */
32         size_t size;
33         /** Amount of data currently in the buffer. */
34         size_t len;
35         /** Offset where the data starts in the buffer. */
36         size_t offset;
37         /** Space for the data. */
38         uint8_t data[];
39 };
40
41 static struct dev_buffer *dev_buffer_new(size_t size)
42 {
43         struct dev_buffer *dbuf;
44
45         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
46         dbuf->size = size;
47         dbuf->len = 0;
48         dbuf->offset = 0;
49
50         return dbuf;
51 }
52
53 static void dev_buffer_destroy(struct dev_buffer *dbuf)
54 {
55         g_free(dbuf);
56 }
57
58 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
59                                   struct sr_dev_inst *sdi)
60 {
61         struct sr_serial_dev_inst *serial;
62         int len;
63
64         serial = sdi->conn;
65
66         /* If we already have data, move it to the beginning of the buffer. */
67         if (dbuf->len > 0 && dbuf->offset > 0)
68                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
69
70         dbuf->offset = 0;
71
72         len = dbuf->size - dbuf->len;
73         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
74         if (len < 0) {
75                 sr_err("Serial port read error: %d.", len);
76                 return len;
77         }
78
79         dbuf->len += len;
80
81         return SR_OK;
82 }
83
84 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
85                                 gboolean (*packet_valid)(const uint8_t *),
86                                 size_t packet_size)
87 {
88         size_t offset;
89
90         while (dbuf->len >= packet_size) {
91                 if (packet_valid(dbuf->data + dbuf->offset)) {
92                         offset = dbuf->offset;
93                         dbuf->offset += packet_size;
94                         dbuf->len -= packet_size;
95                         return dbuf->data + offset;
96                 }
97                 dbuf->offset++;
98                 dbuf->len--;
99         }
100
101         return NULL;
102 }
103
104 struct dev_limit_counter {
105         /** The current number of received samples/frames/etc. */
106         uint64_t count;
107         /** The limit (in number of samples/frames/etc.). */
108         uint64_t limit;
109 };
110
111 static void dev_limit_counter_start(struct dev_limit_counter *cnt)
112 {
113         cnt->count = 0;
114 }
115
116 static void dev_limit_counter_inc(struct dev_limit_counter *cnt)
117 {
118         cnt->count++;
119 }
120
121 static void dev_limit_counter_limit_set(struct dev_limit_counter *cnt,
122                                         uint64_t limit)
123 {
124         cnt->limit = limit;
125 }
126
127 static gboolean dev_limit_counter_limit_reached(struct dev_limit_counter *cnt)
128 {
129         if (cnt->limit && cnt->count >= cnt->limit) {
130                 sr_info("Requested counter limit reached.");
131                 return TRUE;
132         }
133
134         return FALSE;
135 }
136
137 struct dev_time_counter {
138         /** The starting time of current sampling run. */
139         int64_t starttime;
140         /** The time limit (in milliseconds). */
141         uint64_t limit;
142 };
143
144 static void dev_time_counter_start(struct dev_time_counter *cnt)
145 {
146         cnt->starttime = g_get_monotonic_time();
147 }
148
149 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
150 {
151         cnt->limit = limit;
152 }
153
154 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
155 {
156         int64_t time;
157
158         if (cnt->limit) {
159                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
160                 if (time > (int64_t)cnt->limit) {
161                         sr_info("Requested time limit reached.");
162                         return TRUE;
163                 }
164         }
165
166         return FALSE;
167 }
168
169 static void serial_conf_get(GSList *options, const char *def_serialcomm,
170                             const char **conn, const char **serialcomm)
171 {
172         struct sr_config *src;
173         GSList *l;
174
175         *conn = *serialcomm = NULL;
176         for (l = options; l; l = l->next) {
177                 src = l->data;
178                 switch (src->key) {
179                 case SR_CONF_CONN:
180                         *conn = g_variant_get_string(src->data, NULL);
181                         break;
182                 case SR_CONF_SERIALCOMM:
183                         *serialcomm = g_variant_get_string(src->data, NULL);
184                         break;
185                 }
186         }
187
188         if (*serialcomm == NULL)
189                 *serialcomm = def_serialcomm;
190 }
191
192 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
193                                                  const char *def_serialcomm)
194
195 {
196         const char *conn, *serialcomm;
197
198         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
199
200         if (!conn)
201                 return NULL;
202
203         return sr_serial_dev_inst_new(conn, serialcomm);
204 }
205
206 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
207                                    uint8_t *buf, size_t buflen,
208                                    size_t packet_size,
209                                    packet_valid_callback is_valid,
210                                    uint64_t timeout_ms, int baudrate)
211 {
212         size_t len, dropped;
213         int ret;
214
215         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
216                 return ret;
217
218         serial_flush(serial);
219
220         len = buflen;
221         ret = serial_stream_detect(serial, buf, &len, packet_size,
222                                    is_valid, timeout_ms, baudrate);
223
224         serial_close(serial);
225
226         if (ret != SR_OK)
227                 return ret;
228
229         /*
230          * If we dropped more than two packets worth of data, something is
231          * wrong. We shouldn't quit however, since the dropped bytes might be
232          * just zeroes at the beginning of the stream. Those can occur as a
233          * combination of the nonstandard cable that ships with some devices
234          * and the serial port or USB to serial adapter.
235          */
236         dropped = len - packet_size;
237         if (dropped > 2 * packet_size)
238                 sr_warn("Had to drop too much data.");
239
240         return SR_OK;
241 }
242
243 static int serial_stream_check(struct sr_serial_dev_inst *serial,
244                                size_t packet_size,
245                                packet_valid_callback is_valid,
246                                uint64_t timeout_ms, int baudrate)
247 {
248         uint8_t buf[128];
249
250         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
251                                        is_valid, timeout_ms, baudrate);
252 }
253
254 /*
255  * Cyrustek ES51919 LCR chipset host protocol.
256  *
257  * Public official documentation does not contain the protocol
258  * description, so this is all based on reverse engineering.
259  *
260  * Packet structure (17 bytes):
261  *
262  * 0x00: header1 ?? (0x00)
263  * 0x01: header2 ?? (0x0d)
264  *
265  * 0x02: flags
266  *         bit 0 = hold enabled
267  *         bit 1 = reference shown (in delta mode)
268  *         bit 2 = delta mode
269  *         bit 3 = calibration mode
270  *         bit 4 = sorting mode
271  *         bit 5 = LCR mode
272  *         bit 6 = auto mode
273  *         bit 7 = parallel measurement (vs. serial)
274  *
275  * 0x03: config
276  *         bit 0-4 = ??? (0x10)
277  *         bit 5-7 = test frequency
278  *                     0 = 100 Hz
279  *                     1 = 120 Hz
280  *                     2 = 1 kHz
281  *                     3 = 10 kHz
282  *                     4 = 100 kHz
283  *                     5 = 0 Hz (DC)
284  *
285  * 0x04: tolerance (sorting mode)
286  *         0 = not set
287  *         3 = +-0.25%
288  *         4 = +-0.5%
289  *         5 = +-1%
290  *         6 = +-2%
291  *         7 = +-5%
292  *         8 = +-10%
293  *         9 = +-20%
294  *        10 = -20+80%
295  *
296  * 0x05-0x09: primary measurement
297  *   0x05: measured quantity
298  *           1 = inductance
299  *           2 = capacitance
300  *           3 = resistance
301  *           4 = DC resistance
302  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
303  *   0x07: measurement LSB
304  *   0x08: measurement info
305  *           bit 0-2 = decimal point multiplier (10^-val)
306  *           bit 3-7 = unit
307  *                       0 = no unit
308  *                       1 = Ohm
309  *                       2 = kOhm
310  *                       3 = MOhm
311  *                       5 = uH
312  *                       6 = mH
313  *                       7 = H
314  *                       8 = kH
315  *                       9 = pF
316  *                       10 = nF
317  *                       11 = uF
318  *                       12 = mF
319  *                       13 = %
320  *                       14 = degree
321  *   0x09: measurement status
322  *           bit 0-3 = status
323  *                       0 = normal (measurement shown)
324  *                       1 = blank (nothing shown)
325  *                       2 = lines ("----")
326  *                       3 = outside limits ("OL")
327  *                       7 = pass ("PASS")
328  *                       8 = fail ("FAIL")
329  *                       9 = open ("OPEn")
330  *                      10 = shorted ("Srt")
331  *           bit 4-6 = ??? (maybe part of same field with 0-3)
332  *           bit 7   = ??? (some independent flag)
333  *
334  * 0x0a-0x0e: secondary measurement
335  *   0x0a: measured quantity
336  *           0 = none
337  *           1 = dissipation factor
338  *           2 = quality factor
339  *           3 = parallel AC resistance / ESR
340  *           4 = phase angle
341  *   0x0b-0x0e: like primary measurement
342  *
343  * 0x0f: footer1 (0x0d) ?
344  * 0x10: footer2 (0x0a) ?
345  */
346
347 #define PACKET_SIZE 17
348
349 static const double frequencies[] = {
350         100, 120, 1000, 10000, 100000, 0,
351 };
352
353 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
354
355 static const char *const models[] = {
356         "NONE", "PARALLEL", "SERIES", "AUTO",
357 };
358
359 struct dev_context {
360         struct dev_limit_counter frame_count;
361
362         struct dev_time_counter time_count;
363
364         struct dev_buffer *buf;
365
366         /** The frequency of the test signal (index to frequencies[]). */
367         unsigned int freq;
368
369         /** Equivalent circuit model (index to models[]). */
370         unsigned int model;
371 };
372
373 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
374 {
375         return is_secondary ? pkt + 10 : pkt + 5;
376 }
377
378 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
379 {
380         const uint8_t *buf;
381
382         buf = pkt_to_buf(pkt, is_secondary);
383
384         switch (is_secondary << 8 | buf[0]) {
385         case 0x001:
386                 return is_parallel ?
387                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
388         case 0x002:
389                 return is_parallel ?
390                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
391         case 0x003:
392         case 0x103:
393                 return is_parallel ?
394                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
395         case 0x004:
396                 return SR_MQ_RESISTANCE;
397         case 0x100:
398                 return SR_MQ_DIFFERENCE;
399         case 0x101:
400                 return SR_MQ_DISSIPATION_FACTOR;
401         case 0x102:
402                 return SR_MQ_QUALITY_FACTOR;
403         case 0x104:
404                 return SR_MQ_PHASE_ANGLE;
405         }
406
407         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
408
409         return 0;
410 }
411
412 static float parse_value(const uint8_t *buf, int *digits)
413 {
414         static const int exponents[] = {0, -1, -2, -3, -4, -5, -6, -7};
415         int exponent;
416         int16_t val;
417
418         exponent = exponents[buf[3] & 7];
419         *digits = -exponent;
420         val = (buf[1] << 8) | buf[2];
421         return (float)val * powf(10, exponent);
422 }
423
424 static void parse_measurement(const uint8_t *pkt, float *floatval,
425                               struct sr_datafeed_analog *analog,
426                               int is_secondary)
427 {
428         static const struct {
429                 int unit;
430                 int exponent;
431         } units[] = {
432                 { SR_UNIT_UNITLESS,   0 }, /* no unit */
433                 { SR_UNIT_OHM,        0 }, /* Ohm */
434                 { SR_UNIT_OHM,        3 }, /* kOhm */
435                 { SR_UNIT_OHM,        6 }, /* MOhm */
436                 { -1,                 0 }, /* ??? */
437                 { SR_UNIT_HENRY,     -6 }, /* uH */
438                 { SR_UNIT_HENRY,     -3 }, /* mH */
439                 { SR_UNIT_HENRY,      0 }, /* H */
440                 { SR_UNIT_HENRY,      3 }, /* kH */
441                 { SR_UNIT_FARAD,    -12 }, /* pF */
442                 { SR_UNIT_FARAD,     -9 }, /* nF */
443                 { SR_UNIT_FARAD,     -6 }, /* uF */
444                 { SR_UNIT_FARAD,     -3 }, /* mF */
445                 { SR_UNIT_PERCENTAGE, 0 }, /* % */
446                 { SR_UNIT_DEGREE,     0 }, /* degree */
447         };
448         const uint8_t *buf;
449         int digits, exponent;
450         int state;
451
452         buf = pkt_to_buf(pkt, is_secondary);
453
454         analog->meaning->mq = 0;
455         analog->meaning->mqflags = 0;
456
457         state = buf[4] & 0xf;
458
459         if (state != 0 && state != 3)
460                 return;
461
462         if (pkt[2] & 0x18) {
463                 /* Calibration and Sorting modes not supported. */
464                 return;
465         }
466
467         if (!is_secondary) {
468                 if (pkt[2] & 0x01)
469                         analog->meaning->mqflags |= SR_MQFLAG_HOLD;
470                 if (pkt[2] & 0x02)
471                         analog->meaning->mqflags |= SR_MQFLAG_REFERENCE;
472         } else {
473                 if (pkt[2] & 0x04)
474                         analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
475         }
476
477         if ((analog->meaning->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) == 0)
478                 return;
479
480         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
481                 sr_err("Unknown unit %u.", buf[3] >> 3);
482                 analog->meaning->mq = 0;
483                 return;
484         }
485
486         analog->meaning->unit = units[buf[3] >> 3].unit;
487
488         exponent = units[buf[3] >> 3].exponent;
489         *floatval = parse_value(buf, &digits);
490         *floatval *= (state == 0) ? powf(10, exponent) : INFINITY;
491         analog->encoding->digits = digits - exponent;
492         analog->spec->spec_digits = digits - exponent;
493 }
494
495 static unsigned int parse_freq(const uint8_t *pkt)
496 {
497         unsigned int freq;
498
499         freq = pkt[3] >> 5;
500
501         if (freq >= ARRAY_SIZE(frequencies)) {
502                 sr_err("Unknown frequency %u.", freq);
503                 freq = ARRAY_SIZE(frequencies) - 1;
504         }
505
506         return freq;
507 }
508
509 static unsigned int parse_model(const uint8_t *pkt)
510 {
511         if (pkt[2] & 0x40)
512                 return MODEL_AUTO;
513         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
514                 return MODEL_NONE;
515         else if (pkt[2] & 0x80)
516                 return MODEL_PAR;
517         else
518                 return MODEL_SER;
519 }
520
521 static gboolean packet_valid(const uint8_t *pkt)
522 {
523         /*
524          * If the first two bytes of the packet are indeed a constant
525          * header, they should be checked too. Since we don't know it
526          * for sure, we'll just check the last two for now since they
527          * seem to be constant just like in the other Cyrustek chipset
528          * protocols.
529          */
530         if (pkt[15] == 0xd && pkt[16] == 0xa)
531                 return TRUE;
532
533         return FALSE;
534 }
535
536 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
537 {
538         return sr_session_send_meta(sdi, SR_CONF_OUTPUT_FREQUENCY,
539                                 g_variant_new_double(frequencies[freq]));
540 }
541
542 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
543 {
544         return sr_session_send_meta(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
545                                 g_variant_new_string(models[model]));
546 }
547
548 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
549 {
550         struct sr_datafeed_packet packet;
551         struct sr_datafeed_analog analog;
552         struct sr_analog_encoding encoding;
553         struct sr_analog_meaning meaning;
554         struct sr_analog_spec spec;
555         struct dev_context *devc;
556         unsigned int val;
557         float floatval;
558         gboolean frame;
559         struct sr_channel *channel;
560
561         devc = sdi->priv;
562
563         val = parse_freq(pkt);
564         if (val != devc->freq) {
565                 if (send_freq_update(sdi, val) == SR_OK)
566                         devc->freq = val;
567                 else
568                         return;
569         }
570
571         val = parse_model(pkt);
572         if (val != devc->model) {
573                 if (send_model_update(sdi, val) == SR_OK)
574                         devc->model = val;
575                 else
576                         return;
577         }
578
579         frame = FALSE;
580
581         /* Note: digits/spec_digits will be overridden later. */
582         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
583
584         analog.num_samples = 1;
585         analog.data = &floatval;
586
587         channel = sdi->channels->data;
588         analog.meaning->channels = g_slist_append(NULL, channel);
589
590         parse_measurement(pkt, &floatval, &analog, 0);
591         if (analog.meaning->mq != 0 && channel->enabled) {
592                 if (!frame) {
593                         packet.type = SR_DF_FRAME_BEGIN;
594                         sr_session_send(sdi, &packet);
595                         frame = TRUE;
596                 }
597
598                 packet.type = SR_DF_ANALOG;
599                 packet.payload = &analog;
600
601                 sr_session_send(sdi, &packet);
602         }
603
604         g_slist_free(analog.meaning->channels);
605
606         channel = sdi->channels->next->data;
607         analog.meaning->channels = g_slist_append(NULL, channel);
608
609         parse_measurement(pkt, &floatval, &analog, 1);
610         if (analog.meaning->mq != 0 && channel->enabled) {
611                 if (!frame) {
612                         packet.type = SR_DF_FRAME_BEGIN;
613                         sr_session_send(sdi, &packet);
614                         frame = TRUE;
615                 }
616
617                 packet.type = SR_DF_ANALOG;
618                 packet.payload = &analog;
619
620                 sr_session_send(sdi, &packet);
621         }
622
623         g_slist_free(analog.meaning->channels);
624
625         if (frame) {
626                 packet.type = SR_DF_FRAME_END;
627                 sr_session_send(sdi, &packet);
628                 dev_limit_counter_inc(&devc->frame_count);
629         }
630 }
631
632 static int handle_new_data(struct sr_dev_inst *sdi)
633 {
634         struct dev_context *devc;
635         uint8_t *pkt;
636         int ret;
637
638         devc = sdi->priv;
639
640         ret = dev_buffer_fill_serial(devc->buf, sdi);
641         if (ret < 0)
642                 return ret;
643
644         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
645                                              PACKET_SIZE)))
646                 handle_packet(sdi, pkt);
647
648         return SR_OK;
649 }
650
651 static int receive_data(int fd, int revents, void *cb_data)
652 {
653         struct sr_dev_inst *sdi;
654         struct dev_context *devc;
655
656         (void)fd;
657
658         if (!(sdi = cb_data))
659                 return TRUE;
660
661         if (!(devc = sdi->priv))
662                 return TRUE;
663
664         if (revents == G_IO_IN) {
665                 /* Serial data arrived. */
666                 handle_new_data(sdi);
667         }
668
669         if (dev_limit_counter_limit_reached(&devc->frame_count) ||
670             dev_time_limit_reached(&devc->time_count))
671                 sr_dev_acquisition_stop(sdi);
672
673         return TRUE;
674 }
675
676 static const char *const channel_names[] = { "P1", "P2" };
677
678 static int setup_channels(struct sr_dev_inst *sdi)
679 {
680         unsigned int i;
681
682         for (i = 0; i < ARRAY_SIZE(channel_names); i++)
683                 sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
684
685         return SR_OK;
686 }
687
688 SR_PRIV void es51919_serial_clean(void *priv)
689 {
690         struct dev_context *devc;
691
692         if (!(devc = priv))
693                 return;
694
695         dev_buffer_destroy(devc->buf);
696 }
697
698 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
699                                                 const char *vendor,
700                                                 const char *model)
701 {
702         struct sr_serial_dev_inst *serial;
703         struct sr_dev_inst *sdi;
704         struct dev_context *devc;
705         int ret;
706
707         serial = NULL;
708         sdi = NULL;
709         devc = NULL;
710
711         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
712                 goto scan_cleanup;
713
714         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
715                                   3000, 9600);
716         if (ret != SR_OK)
717                 goto scan_cleanup;
718
719         sr_info("Found device on port %s.", serial->port);
720
721         sdi = g_malloc0(sizeof(struct sr_dev_inst));
722         sdi->status = SR_ST_INACTIVE;
723         sdi->vendor = g_strdup(vendor);
724         sdi->model = g_strdup(model);
725         devc = g_malloc0(sizeof(struct dev_context));
726         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
727         sdi->inst_type = SR_INST_SERIAL;
728         sdi->conn = serial;
729         sdi->priv = devc;
730
731         if (setup_channels(sdi) != SR_OK)
732                 goto scan_cleanup;
733
734         return sdi;
735
736 scan_cleanup:
737         es51919_serial_clean(devc);
738         sr_dev_inst_free(sdi);
739         sr_serial_dev_inst_free(serial);
740
741         return NULL;
742 }
743
744 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
745                                       const struct sr_dev_inst *sdi,
746                                       const struct sr_channel_group *cg)
747 {
748         struct dev_context *devc;
749
750         (void)cg;
751
752         devc = sdi->priv;
753
754         switch (key) {
755         case SR_CONF_OUTPUT_FREQUENCY:
756                 *data = g_variant_new_double(frequencies[devc->freq]);
757                 break;
758         case SR_CONF_EQUIV_CIRCUIT_MODEL:
759                 *data = g_variant_new_string(models[devc->model]);
760                 break;
761         default:
762                 return SR_ERR_NA;
763         }
764
765         return SR_OK;
766 }
767
768 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
769                                       const struct sr_dev_inst *sdi,
770                                       const struct sr_channel_group *cg)
771 {
772         struct dev_context *devc;
773         uint64_t val;
774
775         (void)cg;
776
777         if (!(devc = sdi->priv))
778                 return SR_ERR_BUG;
779
780         switch (key) {
781         case SR_CONF_LIMIT_MSEC:
782                 val = g_variant_get_uint64(data);
783                 dev_time_limit_set(&devc->time_count, val);
784                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
785                 break;
786         case SR_CONF_LIMIT_FRAMES:
787                 val = g_variant_get_uint64(data);
788                 dev_limit_counter_limit_set(&devc->frame_count, val);
789                 sr_dbg("Setting frame limit to %" PRIu64 ".", val);
790                 break;
791         default:
792                 sr_spew("%s: Unsupported key %u", __func__, key);
793                 return SR_ERR_NA;
794         }
795
796         return SR_OK;
797 }
798
799 static const uint32_t scanopts[] = {
800         SR_CONF_CONN,
801         SR_CONF_SERIALCOMM,
802 };
803
804 static const uint32_t drvopts[] = {
805         SR_CONF_LCRMETER,
806 };
807
808 static const uint32_t devopts[] = {
809         SR_CONF_CONTINUOUS,
810         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
811         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
812         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
813         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
814 };
815
816 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
817                                        const struct sr_dev_inst *sdi,
818                                        const struct sr_channel_group *cg)
819 {
820         switch (key) {
821         case SR_CONF_SCAN_OPTIONS:
822         case SR_CONF_DEVICE_OPTIONS:
823                 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
824         case SR_CONF_OUTPUT_FREQUENCY:
825                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_DOUBLE,
826                         ARRAY_AND_SIZE(frequencies), sizeof(double));
827                 break;
828         case SR_CONF_EQUIV_CIRCUIT_MODEL:
829                 *data = g_variant_new_strv(ARRAY_AND_SIZE(models));
830                 break;
831         default:
832                 return SR_ERR_NA;
833         }
834
835         return SR_OK;
836 }
837
838 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi)
839 {
840         struct dev_context *devc;
841         struct sr_serial_dev_inst *serial;
842
843         if (!(devc = sdi->priv))
844                 return SR_ERR_BUG;
845
846         dev_limit_counter_start(&devc->frame_count);
847         dev_time_counter_start(&devc->time_count);
848
849         std_session_send_df_header(sdi);
850
851         serial = sdi->conn;
852         serial_source_add(sdi->session, serial, G_IO_IN, 50,
853                           receive_data, (void *)sdi);
854
855         return SR_OK;
856 }