]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
Remove always-false condition
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <math.h>
24 #include <glib.h>
25 #include <libsigrok/libsigrok.h>
26 #include "libsigrok-internal.h"
27
28 #define LOG_PREFIX "es51919"
29
30 struct dev_buffer {
31         /** Total size of the buffer. */
32         size_t size;
33         /** Amount of data currently in the buffer. */
34         size_t len;
35         /** Offset where the data starts in the buffer. */
36         size_t offset;
37         /** Space for the data. */
38         uint8_t data[];
39 };
40
41 static struct dev_buffer *dev_buffer_new(size_t size)
42 {
43         struct dev_buffer *dbuf;
44
45         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
46         dbuf->size = size;
47         dbuf->len = 0;
48         dbuf->offset = 0;
49
50         return dbuf;
51 }
52
53 static void dev_buffer_destroy(struct dev_buffer *dbuf)
54 {
55         g_free(dbuf);
56 }
57
58 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
59                                   struct sr_dev_inst *sdi)
60 {
61         struct sr_serial_dev_inst *serial;
62         int len;
63
64         serial = sdi->conn;
65
66         /* If we already have data, move it to the beginning of the buffer. */
67         if (dbuf->len > 0 && dbuf->offset > 0)
68                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
69
70         dbuf->offset = 0;
71
72         len = dbuf->size - dbuf->len;
73         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
74         if (len < 0) {
75                 sr_err("Serial port read error: %d.", len);
76                 return len;
77         }
78
79         dbuf->len += len;
80
81         return SR_OK;
82 }
83
84 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
85                                 gboolean (*packet_valid)(const uint8_t *),
86                                 size_t packet_size)
87 {
88         size_t offset;
89
90         while (dbuf->len >= packet_size) {
91                 if (packet_valid(dbuf->data + dbuf->offset)) {
92                         offset = dbuf->offset;
93                         dbuf->offset += packet_size;
94                         dbuf->len -= packet_size;
95                         return dbuf->data + offset;
96                 }
97                 dbuf->offset++;
98                 dbuf->len--;
99         }
100
101         return NULL;
102 }
103
104 struct dev_limit_counter {
105         /** The current number of received samples/frames/etc. */
106         uint64_t count;
107         /** The limit (in number of samples/frames/etc.). */
108         uint64_t limit;
109 };
110
111 static void dev_limit_counter_start(struct dev_limit_counter *cnt)
112 {
113         cnt->count = 0;
114 }
115
116 static void dev_limit_counter_inc(struct dev_limit_counter *cnt)
117 {
118         cnt->count++;
119 }
120
121 static void dev_limit_counter_limit_set(struct dev_limit_counter *cnt,
122                                         uint64_t limit)
123 {
124         cnt->limit = limit;
125 }
126
127 static gboolean dev_limit_counter_limit_reached(struct dev_limit_counter *cnt)
128 {
129         if (cnt->limit && cnt->count >= cnt->limit) {
130                 sr_info("Requested counter limit reached.");
131                 return TRUE;
132         }
133
134         return FALSE;
135 }
136
137 struct dev_time_counter {
138         /** The starting time of current sampling run. */
139         int64_t starttime;
140         /** The time limit (in milliseconds). */
141         uint64_t limit;
142 };
143
144 static void dev_time_counter_start(struct dev_time_counter *cnt)
145 {
146         cnt->starttime = g_get_monotonic_time();
147 }
148
149 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
150 {
151         cnt->limit = limit;
152 }
153
154 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
155 {
156         int64_t time;
157
158         if (cnt->limit) {
159                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
160                 if (time > (int64_t)cnt->limit) {
161                         sr_info("Requested time limit reached.");
162                         return TRUE;
163                 }
164         }
165
166         return FALSE;
167 }
168
169 static void serial_conf_get(GSList *options, const char *def_serialcomm,
170                             const char **conn, const char **serialcomm)
171 {
172         struct sr_config *src;
173         GSList *l;
174
175         *conn = *serialcomm = NULL;
176         for (l = options; l; l = l->next) {
177                 src = l->data;
178                 switch (src->key) {
179                 case SR_CONF_CONN:
180                         *conn = g_variant_get_string(src->data, NULL);
181                         break;
182                 case SR_CONF_SERIALCOMM:
183                         *serialcomm = g_variant_get_string(src->data, NULL);
184                         break;
185                 }
186         }
187
188         if (*serialcomm == NULL)
189                 *serialcomm = def_serialcomm;
190 }
191
192 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
193                                                  const char *def_serialcomm)
194
195 {
196         const char *conn, *serialcomm;
197
198         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
199
200         if (!conn)
201                 return NULL;
202
203         return sr_serial_dev_inst_new(conn, serialcomm);
204 }
205
206 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
207                                    uint8_t *buf, size_t buflen,
208                                    size_t packet_size,
209                                    packet_valid_callback is_valid,
210                                    uint64_t timeout_ms, int baudrate)
211 {
212         size_t len, dropped;
213         int ret;
214
215         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
216                 return ret;
217
218         serial_flush(serial);
219
220         len = buflen;
221         ret = serial_stream_detect(serial, buf, &len, packet_size,
222                                    is_valid, timeout_ms, baudrate);
223
224         serial_close(serial);
225
226         if (ret != SR_OK)
227                 return ret;
228
229         /*
230          * If we dropped more than two packets worth of data, something is
231          * wrong. We shouldn't quit however, since the dropped bytes might be
232          * just zeroes at the beginning of the stream. Those can occur as a
233          * combination of the nonstandard cable that ships with some devices
234          * and the serial port or USB to serial adapter.
235          */
236         dropped = len - packet_size;
237         if (dropped > 2 * packet_size)
238                 sr_warn("Had to drop too much data.");
239
240         return SR_OK;
241 }
242
243 static int serial_stream_check(struct sr_serial_dev_inst *serial,
244                                size_t packet_size,
245                                packet_valid_callback is_valid,
246                                uint64_t timeout_ms, int baudrate)
247 {
248         uint8_t buf[128];
249
250         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
251                                        is_valid, timeout_ms, baudrate);
252 }
253
254 static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
255 {
256         struct sr_datafeed_packet packet;
257         struct sr_datafeed_meta meta;
258
259         memset(&meta, 0, sizeof(meta));
260
261         packet.type = SR_DF_META;
262         packet.payload = &meta;
263
264         meta.config = g_slist_append(meta.config, cfg);
265
266         return sr_session_send(sdi, &packet);
267 }
268
269 static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
270                                   GVariant *var)
271 {
272         struct sr_config *cfg;
273         int ret;
274
275         cfg = sr_config_new(key, var);
276         if (!cfg)
277                 return SR_ERR;
278
279         ret = send_config_update(sdi, cfg);
280         sr_config_free(cfg);
281
282         return ret;
283 }
284
285 /*
286  * Cyrustek ES51919 LCR chipset host protocol.
287  *
288  * Public official documentation does not contain the protocol
289  * description, so this is all based on reverse engineering.
290  *
291  * Packet structure (17 bytes):
292  *
293  * 0x00: header1 ?? (0x00)
294  * 0x01: header2 ?? (0x0d)
295  *
296  * 0x02: flags
297  *         bit 0 = hold enabled
298  *         bit 1 = reference shown (in delta mode)
299  *         bit 2 = delta mode
300  *         bit 3 = calibration mode
301  *         bit 4 = sorting mode
302  *         bit 5 = LCR mode
303  *         bit 6 = auto mode
304  *         bit 7 = parallel measurement (vs. serial)
305  *
306  * 0x03: config
307  *         bit 0-4 = ??? (0x10)
308  *         bit 5-7 = test frequency
309  *                     0 = 100 Hz
310  *                     1 = 120 Hz
311  *                     2 = 1 kHz
312  *                     3 = 10 kHz
313  *                     4 = 100 kHz
314  *                     5 = 0 Hz (DC)
315  *
316  * 0x04: tolerance (sorting mode)
317  *         0 = not set
318  *         3 = +-0.25%
319  *         4 = +-0.5%
320  *         5 = +-1%
321  *         6 = +-2%
322  *         7 = +-5%
323  *         8 = +-10%
324  *         9 = +-20%
325  *        10 = -20+80%
326  *
327  * 0x05-0x09: primary measurement
328  *   0x05: measured quantity
329  *           1 = inductance
330  *           2 = capacitance
331  *           3 = resistance
332  *           4 = DC resistance
333  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
334  *   0x07: measurement LSB
335  *   0x08: measurement info
336  *           bit 0-2 = decimal point multiplier (10^-val)
337  *           bit 3-7 = unit
338  *                       0 = no unit
339  *                       1 = Ohm
340  *                       2 = kOhm
341  *                       3 = MOhm
342  *                       5 = uH
343  *                       6 = mH
344  *                       7 = H
345  *                       8 = kH
346  *                       9 = pF
347  *                       10 = nF
348  *                       11 = uF
349  *                       12 = mF
350  *                       13 = %
351  *                       14 = degree
352  *   0x09: measurement status
353  *           bit 0-3 = status
354  *                       0 = normal (measurement shown)
355  *                       1 = blank (nothing shown)
356  *                       2 = lines ("----")
357  *                       3 = outside limits ("OL")
358  *                       7 = pass ("PASS")
359  *                       8 = fail ("FAIL")
360  *                       9 = open ("OPEn")
361  *                      10 = shorted ("Srt")
362  *           bit 4-6 = ??? (maybe part of same field with 0-3)
363  *           bit 7   = ??? (some independent flag)
364  *
365  * 0x0a-0x0e: secondary measurement
366  *   0x0a: measured quantity
367  *           0 = none
368  *           1 = dissipation factor
369  *           2 = quality factor
370  *           3 = parallel AC resistance / ESR
371  *           4 = phase angle
372  *   0x0b-0x0e: like primary measurement
373  *
374  * 0x0f: footer1 (0x0d) ?
375  * 0x10: footer2 (0x0a) ?
376  */
377
378 #define PACKET_SIZE 17
379
380 static const double frequencies[] = {
381         100, 120, 1000, 10000, 100000, 0,
382 };
383
384 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
385
386 static const char *const models[] = {
387         "NONE", "PARALLEL", "SERIES", "AUTO",
388 };
389
390 struct dev_context {
391         struct dev_limit_counter frame_count;
392
393         struct dev_time_counter time_count;
394
395         struct dev_buffer *buf;
396
397         /** The frequency of the test signal (index to frequencies[]). */
398         unsigned int freq;
399
400         /** Equivalent circuit model (index to models[]). */
401         unsigned int model;
402 };
403
404 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
405 {
406         return is_secondary ? pkt + 10 : pkt + 5;
407 }
408
409 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
410 {
411         const uint8_t *buf;
412
413         buf = pkt_to_buf(pkt, is_secondary);
414
415         switch (is_secondary << 8 | buf[0]) {
416         case 0x001:
417                 return is_parallel ?
418                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
419         case 0x002:
420                 return is_parallel ?
421                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
422         case 0x003:
423         case 0x103:
424                 return is_parallel ?
425                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
426         case 0x004:
427                 return SR_MQ_RESISTANCE;
428         case 0x100:
429                 return SR_MQ_DIFFERENCE;
430         case 0x101:
431                 return SR_MQ_DISSIPATION_FACTOR;
432         case 0x102:
433                 return SR_MQ_QUALITY_FACTOR;
434         case 0x104:
435                 return SR_MQ_PHASE_ANGLE;
436         }
437
438         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
439
440         return 0;
441 }
442
443 static float parse_value(const uint8_t *buf, int *digits)
444 {
445         static const int exponents[] = {0, -1, -2, -3, -4, -5, -6, -7};
446         int exponent;
447         int16_t val;
448
449         exponent = exponents[buf[3] & 7];
450         *digits = -exponent;
451         val = (buf[1] << 8) | buf[2];
452         return (float)val * powf(10, exponent);
453 }
454
455 static void parse_measurement(const uint8_t *pkt, float *floatval,
456                               struct sr_datafeed_analog *analog,
457                               int is_secondary)
458 {
459         static const struct {
460                 int unit;
461                 int exponent;
462         } units[] = {
463                 { SR_UNIT_UNITLESS,   0 }, /* no unit */
464                 { SR_UNIT_OHM,        0 }, /* Ohm */
465                 { SR_UNIT_OHM,        3 }, /* kOhm */
466                 { SR_UNIT_OHM,        6 }, /* MOhm */
467                 { -1,                 0 }, /* ??? */
468                 { SR_UNIT_HENRY,     -6 }, /* uH */
469                 { SR_UNIT_HENRY,     -3 }, /* mH */
470                 { SR_UNIT_HENRY,      0 }, /* H */
471                 { SR_UNIT_HENRY,      3 }, /* kH */
472                 { SR_UNIT_FARAD,    -12 }, /* pF */
473                 { SR_UNIT_FARAD,     -9 }, /* nF */
474                 { SR_UNIT_FARAD,     -6 }, /* uF */
475                 { SR_UNIT_FARAD,     -3 }, /* mF */
476                 { SR_UNIT_PERCENTAGE, 0 }, /* % */
477                 { SR_UNIT_DEGREE,     0 }, /* degree */
478         };
479         const uint8_t *buf;
480         int digits, exponent;
481         int state;
482
483         buf = pkt_to_buf(pkt, is_secondary);
484
485         analog->meaning->mq = 0;
486         analog->meaning->mqflags = 0;
487
488         state = buf[4] & 0xf;
489
490         if (state != 0 && state != 3)
491                 return;
492
493         if (pkt[2] & 0x18) {
494                 /* Calibration and Sorting modes not supported. */
495                 return;
496         }
497
498         if (!is_secondary) {
499                 if (pkt[2] & 0x01)
500                         analog->meaning->mqflags |= SR_MQFLAG_HOLD;
501                 if (pkt[2] & 0x02)
502                         analog->meaning->mqflags |= SR_MQFLAG_REFERENCE;
503         } else {
504                 if (pkt[2] & 0x04)
505                         analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
506         }
507
508         if ((analog->meaning->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) == 0)
509                 return;
510
511         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
512                 sr_err("Unknown unit %u.", buf[3] >> 3);
513                 analog->meaning->mq = 0;
514                 return;
515         }
516
517         analog->meaning->unit = units[buf[3] >> 3].unit;
518
519         exponent = units[buf[3] >> 3].exponent;
520         *floatval = parse_value(buf, &digits);
521         *floatval *= (state == 0) ? powf(10, exponent) : INFINITY;
522         analog->encoding->digits = digits - exponent;
523         analog->spec->spec_digits = digits - exponent;
524 }
525
526 static unsigned int parse_freq(const uint8_t *pkt)
527 {
528         unsigned int freq;
529
530         freq = pkt[3] >> 5;
531
532         if (freq >= ARRAY_SIZE(frequencies)) {
533                 sr_err("Unknown frequency %u.", freq);
534                 freq = ARRAY_SIZE(frequencies) - 1;
535         }
536
537         return freq;
538 }
539
540 static unsigned int parse_model(const uint8_t *pkt)
541 {
542         if (pkt[2] & 0x40)
543                 return MODEL_AUTO;
544         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
545                 return MODEL_NONE;
546         else if (pkt[2] & 0x80)
547                 return MODEL_PAR;
548         else
549                 return MODEL_SER;
550 }
551
552 static gboolean packet_valid(const uint8_t *pkt)
553 {
554         /*
555          * If the first two bytes of the packet are indeed a constant
556          * header, they should be checked too. Since we don't know it
557          * for sure, we'll just check the last two for now since they
558          * seem to be constant just like in the other Cyrustek chipset
559          * protocols.
560          */
561         if (pkt[15] == 0xd && pkt[16] == 0xa)
562                 return TRUE;
563
564         return FALSE;
565 }
566
567 static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
568                             GVariant *var)
569 {
570         return send_config_update_key(sdi, key, var);
571 }
572
573 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
574 {
575         return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
576                                 g_variant_new_double(frequencies[freq]));
577 }
578
579 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
580 {
581         return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
582                                 g_variant_new_string(models[model]));
583 }
584
585 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
586 {
587         struct sr_datafeed_packet packet;
588         struct sr_datafeed_analog analog;
589         struct sr_analog_encoding encoding;
590         struct sr_analog_meaning meaning;
591         struct sr_analog_spec spec;
592         struct dev_context *devc;
593         unsigned int val;
594         float floatval;
595         gboolean frame;
596         struct sr_channel *channel;
597
598         devc = sdi->priv;
599
600         val = parse_freq(pkt);
601         if (val != devc->freq) {
602                 if (send_freq_update(sdi, val) == SR_OK)
603                         devc->freq = val;
604                 else
605                         return;
606         }
607
608         val = parse_model(pkt);
609         if (val != devc->model) {
610                 if (send_model_update(sdi, val) == SR_OK)
611                         devc->model = val;
612                 else
613                         return;
614         }
615
616         frame = FALSE;
617
618         /* Note: digits/spec_digits will be overridden later. */
619         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
620
621         analog.num_samples = 1;
622         analog.data = &floatval;
623
624         channel = sdi->channels->data;
625         analog.meaning->channels = g_slist_append(NULL, channel);
626
627         parse_measurement(pkt, &floatval, &analog, 0);
628         if (analog.meaning->mq != 0 && channel->enabled) {
629                 if (!frame) {
630                         packet.type = SR_DF_FRAME_BEGIN;
631                         sr_session_send(sdi, &packet);
632                         frame = TRUE;
633                 }
634
635                 packet.type = SR_DF_ANALOG;
636                 packet.payload = &analog;
637
638                 sr_session_send(sdi, &packet);
639         }
640
641         g_slist_free(analog.meaning->channels);
642
643         channel = sdi->channels->next->data;
644         analog.meaning->channels = g_slist_append(NULL, channel);
645
646         parse_measurement(pkt, &floatval, &analog, 1);
647         if (analog.meaning->mq != 0 && channel->enabled) {
648                 if (!frame) {
649                         packet.type = SR_DF_FRAME_BEGIN;
650                         sr_session_send(sdi, &packet);
651                         frame = TRUE;
652                 }
653
654                 packet.type = SR_DF_ANALOG;
655                 packet.payload = &analog;
656
657                 sr_session_send(sdi, &packet);
658         }
659
660         g_slist_free(analog.meaning->channels);
661
662         if (frame) {
663                 packet.type = SR_DF_FRAME_END;
664                 sr_session_send(sdi, &packet);
665                 dev_limit_counter_inc(&devc->frame_count);
666         }
667 }
668
669 static int handle_new_data(struct sr_dev_inst *sdi)
670 {
671         struct dev_context *devc;
672         uint8_t *pkt;
673         int ret;
674
675         devc = sdi->priv;
676
677         ret = dev_buffer_fill_serial(devc->buf, sdi);
678         if (ret < 0)
679                 return ret;
680
681         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
682                                              PACKET_SIZE)))
683                 handle_packet(sdi, pkt);
684
685         return SR_OK;
686 }
687
688 static int receive_data(int fd, int revents, void *cb_data)
689 {
690         struct sr_dev_inst *sdi;
691         struct dev_context *devc;
692
693         (void)fd;
694
695         if (!(sdi = cb_data))
696                 return TRUE;
697
698         if (!(devc = sdi->priv))
699                 return TRUE;
700
701         if (revents == G_IO_IN) {
702                 /* Serial data arrived. */
703                 handle_new_data(sdi);
704         }
705
706         if (dev_limit_counter_limit_reached(&devc->frame_count) ||
707             dev_time_limit_reached(&devc->time_count))
708                 sr_dev_acquisition_stop(sdi);
709
710         return TRUE;
711 }
712
713 static const char *const channel_names[] = { "P1", "P2" };
714
715 static int setup_channels(struct sr_dev_inst *sdi)
716 {
717         unsigned int i;
718
719         for (i = 0; i < ARRAY_SIZE(channel_names); i++)
720                 sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
721
722         return SR_OK;
723 }
724
725 SR_PRIV void es51919_serial_clean(void *priv)
726 {
727         struct dev_context *devc;
728
729         if (!(devc = priv))
730                 return;
731
732         dev_buffer_destroy(devc->buf);
733 }
734
735 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
736                                                 const char *vendor,
737                                                 const char *model)
738 {
739         struct sr_serial_dev_inst *serial;
740         struct sr_dev_inst *sdi;
741         struct dev_context *devc;
742         int ret;
743
744         serial = NULL;
745         sdi = NULL;
746         devc = NULL;
747
748         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
749                 goto scan_cleanup;
750
751         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
752                                   3000, 9600);
753         if (ret != SR_OK)
754                 goto scan_cleanup;
755
756         sr_info("Found device on port %s.", serial->port);
757
758         sdi = g_malloc0(sizeof(struct sr_dev_inst));
759         sdi->status = SR_ST_INACTIVE;
760         sdi->vendor = g_strdup(vendor);
761         sdi->model = g_strdup(model);
762         devc = g_malloc0(sizeof(struct dev_context));
763         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
764         sdi->inst_type = SR_INST_SERIAL;
765         sdi->conn = serial;
766         sdi->priv = devc;
767
768         if (setup_channels(sdi) != SR_OK)
769                 goto scan_cleanup;
770
771         return sdi;
772
773 scan_cleanup:
774         es51919_serial_clean(devc);
775         sr_dev_inst_free(sdi);
776         sr_serial_dev_inst_free(serial);
777
778         return NULL;
779 }
780
781 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
782                                       const struct sr_dev_inst *sdi,
783                                       const struct sr_channel_group *cg)
784 {
785         struct dev_context *devc;
786
787         (void)cg;
788
789         devc = sdi->priv;
790
791         switch (key) {
792         case SR_CONF_OUTPUT_FREQUENCY:
793                 *data = g_variant_new_double(frequencies[devc->freq]);
794                 break;
795         case SR_CONF_EQUIV_CIRCUIT_MODEL:
796                 *data = g_variant_new_string(models[devc->model]);
797                 break;
798         default:
799                 return SR_ERR_NA;
800         }
801
802         return SR_OK;
803 }
804
805 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
806                                       const struct sr_dev_inst *sdi,
807                                       const struct sr_channel_group *cg)
808 {
809         struct dev_context *devc;
810         uint64_t val;
811
812         (void)cg;
813
814         if (!(devc = sdi->priv))
815                 return SR_ERR_BUG;
816
817         switch (key) {
818         case SR_CONF_LIMIT_MSEC:
819                 val = g_variant_get_uint64(data);
820                 dev_time_limit_set(&devc->time_count, val);
821                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
822                 break;
823         case SR_CONF_LIMIT_FRAMES:
824                 val = g_variant_get_uint64(data);
825                 dev_limit_counter_limit_set(&devc->frame_count, val);
826                 sr_dbg("Setting frame limit to %" PRIu64 ".", val);
827                 break;
828         default:
829                 sr_spew("%s: Unsupported key %u", __func__, key);
830                 return SR_ERR_NA;
831         }
832
833         return SR_OK;
834 }
835
836 static const uint32_t scanopts[] = {
837         SR_CONF_CONN,
838         SR_CONF_SERIALCOMM,
839 };
840
841 static const uint32_t drvopts[] = {
842         SR_CONF_LCRMETER,
843 };
844
845 static const uint32_t devopts[] = {
846         SR_CONF_CONTINUOUS,
847         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
848         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
849         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
850         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
851 };
852
853 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
854                                        const struct sr_dev_inst *sdi,
855                                        const struct sr_channel_group *cg)
856 {
857         switch (key) {
858         case SR_CONF_SCAN_OPTIONS:
859         case SR_CONF_DEVICE_OPTIONS:
860                 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
861         case SR_CONF_OUTPUT_FREQUENCY:
862                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_DOUBLE,
863                         ARRAY_AND_SIZE(frequencies), sizeof(double));
864                 break;
865         case SR_CONF_EQUIV_CIRCUIT_MODEL:
866                 *data = g_variant_new_strv(ARRAY_AND_SIZE(models));
867                 break;
868         default:
869                 return SR_ERR_NA;
870         }
871
872         return SR_OK;
873 }
874
875 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi)
876 {
877         struct dev_context *devc;
878         struct sr_serial_dev_inst *serial;
879
880         if (!(devc = sdi->priv))
881                 return SR_ERR_BUG;
882
883         dev_limit_counter_start(&devc->frame_count);
884         dev_time_counter_start(&devc->time_count);
885
886         std_session_send_df_header(sdi);
887
888         serial = sdi->conn;
889         serial_source_add(sdi->session, serial, G_IO_IN, 50,
890                           receive_data, (void *)sdi);
891
892         return SR_OK;
893 }