]> sigrok.org Git - libsigrok.git/blob - hardware/sysclk-lwla/protocol.c
build: Portability fixes.
[libsigrok.git] / hardware / sysclk-lwla / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21 #include <string.h>
22
23 /* Bit mask for the RLE repeat-count-follows flag. */
24 #define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
25
26 /* Start address of capture status memory area to read. */
27 #define CAP_STAT_ADDR 5
28
29 /* Number of 64-bit words read from the capture status memory. */
30 #define CAP_STAT_LEN 5
31
32 /* The bitstream filenames are indexed by the clock_config enumeration.
33  */
34 static const char bitstream_map[][32] = {
35         "sysclk-lwla1034-off.rbf",
36         "sysclk-lwla1034-int.rbf",
37         "sysclk-lwla1034-extpos.rbf",
38         "sysclk-lwla1034-extneg.rbf",
39 };
40
41 /* Submit an already filled-in USB transfer.
42  */
43 static int submit_transfer(struct dev_context *devc,
44                            struct libusb_transfer *xfer)
45 {
46         int ret;
47
48         ret = libusb_submit_transfer(xfer);
49
50         if (ret != 0) {
51                 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
52                 devc->transfer_error = TRUE;
53                 return SR_ERR;
54         }
55
56         return SR_OK;
57 }
58
59 /* Set up the LWLA in preparation for an acquisition session.
60  */
61 static int capture_setup(const struct sr_dev_inst *sdi)
62 {
63         struct dev_context *devc;
64         struct acquisition_state *acq;
65         uint64_t divider_count;
66         uint64_t trigger_mask;
67         uint64_t memory_limit;
68         uint16_t command[3 + 10*4];
69
70         devc = sdi->priv;
71         acq  = devc->acquisition;
72
73         command[0] = LWLA_WORD(CMD_CAP_SETUP);
74         command[1] = LWLA_WORD(0); /* address */
75         command[2] = LWLA_WORD(10); /* length */
76
77         command[3] = LWLA_WORD_0(devc->channel_mask);
78         command[4] = LWLA_WORD_1(devc->channel_mask);
79         command[5] = LWLA_WORD_2(devc->channel_mask);
80         command[6] = LWLA_WORD_3(devc->channel_mask);
81
82         /* Set the clock divide counter maximum for samplerates of up to
83          * 100 MHz. At the highest samplerate of 125 MHz the clock divider
84          * is bypassed.
85          */
86         if (!acq->bypass_clockdiv && devc->samplerate > 0)
87                 divider_count = SR_MHZ(100) / devc->samplerate - 1;
88         else
89                 divider_count = 0;
90
91         command[7]  = LWLA_WORD_0(divider_count);
92         command[8]  = LWLA_WORD_1(divider_count);
93         command[9]  = LWLA_WORD_2(divider_count);
94         command[10] = LWLA_WORD_3(divider_count);
95
96         command[11] = LWLA_WORD_0(devc->trigger_values);
97         command[12] = LWLA_WORD_1(devc->trigger_values);
98         command[13] = LWLA_WORD_2(devc->trigger_values);
99         command[14] = LWLA_WORD_3(devc->trigger_values);
100
101         command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
102         command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
103         command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
104         command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
105
106         trigger_mask = devc->trigger_mask;
107         /* Set bits to select external TRG input edge. */
108         if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
109                 switch (devc->cfg_trigger_slope) {
110                 case EDGE_POSITIVE: trigger_mask |= (uint64_t)1 << 35; break; 
111                 case EDGE_NEGATIVE: trigger_mask |= (uint64_t)1 << 34; break; 
112                 }
113
114         command[19] = LWLA_WORD_0(trigger_mask);
115         command[20] = LWLA_WORD_1(trigger_mask);
116         command[21] = LWLA_WORD_2(trigger_mask);
117         command[22] = LWLA_WORD_3(trigger_mask);
118
119         /* Set the capture memory full threshold. This is slightly less
120          * than the actual maximum, most likely in order to compensate for
121          * pipeline latency.
122          */
123         memory_limit = MEMORY_DEPTH - 16;
124
125         command[23] = LWLA_WORD_0(memory_limit);
126         command[24] = LWLA_WORD_1(memory_limit);
127         command[25] = LWLA_WORD_2(memory_limit);
128         command[26] = LWLA_WORD_3(memory_limit);
129
130         /* Fill remaining 64-bit words with zeroes. */
131         memset(&command[27], 0, 16 * sizeof(uint16_t));
132
133         return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
134 }
135
136 /* Issue a register write command as an asynchronous USB transfer.
137  */
138 static int issue_write_reg(const struct sr_dev_inst *sdi,
139                            unsigned int reg, unsigned int value)
140 {
141         struct dev_context *devc;
142         struct acquisition_state *acq;
143
144         devc = sdi->priv;
145         acq  = devc->acquisition;
146
147         acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
148         acq->xfer_buf_out[1] = LWLA_WORD(reg);
149         acq->xfer_buf_out[2] = LWLA_WORD_0(value);
150         acq->xfer_buf_out[3] = LWLA_WORD_1(value);
151
152         acq->xfer_out->length = 4 * sizeof(uint16_t);
153
154         return submit_transfer(devc, acq->xfer_out);
155 }
156
157 /* Issue a register write command as an asynchronous USB transfer for the
158  * next register/value pair of the currently active register write sequence.
159  */
160 static int issue_next_write_reg(const struct sr_dev_inst *sdi)
161 {
162         struct dev_context *devc;
163         struct regval_pair *regval;
164         int ret;
165
166         devc = sdi->priv;
167
168         if (devc->reg_write_pos >= devc->reg_write_len) {
169                 sr_err("Already written all registers in sequence.");
170                 return SR_ERR_BUG;
171         }
172         regval = &devc->reg_write_seq[devc->reg_write_pos];
173
174         ret = issue_write_reg(sdi, regval->reg, regval->val);
175         if (ret != SR_OK)
176                 return ret;
177
178         ++devc->reg_write_pos;
179         return SR_OK;
180 }
181
182 /* Issue a capture status request as an asynchronous USB transfer.
183  */
184 static void request_capture_status(const struct sr_dev_inst *sdi)
185 {
186         struct dev_context *devc;
187         struct acquisition_state *acq;
188
189         devc = sdi->priv;
190         acq  = devc->acquisition;
191
192         acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
193         acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
194         acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
195
196         acq->xfer_out->length = 3 * sizeof(uint16_t);
197
198         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
199                 devc->state = STATE_STATUS_REQUEST;
200 }
201
202 /* Issue a request for the capture buffer fill level as
203  * an asynchronous USB transfer.
204  */
205 static void request_capture_length(const struct sr_dev_inst *sdi)
206 {
207         struct dev_context *devc;
208         struct acquisition_state *acq;
209
210         devc = sdi->priv;
211         acq  = devc->acquisition;
212
213         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
214         acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
215
216         acq->xfer_out->length = 2 * sizeof(uint16_t);
217
218         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
219                 devc->state = STATE_LENGTH_REQUEST;
220 }
221
222 /* Initiate the capture memory read operation:  Reset the acquisition state
223  * and start a sequence of register writes in order to set up the device for
224  * reading from the capture buffer.
225  */
226 static void issue_read_start(const struct sr_dev_inst *sdi)
227 {
228         struct dev_context *devc;
229         struct acquisition_state *acq;
230         struct regval_pair *regvals;
231
232         devc = sdi->priv;
233         acq  = devc->acquisition;
234
235         /* Reset RLE state. */
236         acq->rle = RLE_STATE_DATA;
237         acq->sample  = 0;
238         acq->run_len = 0;
239
240         acq->samples_done = 0;
241
242         /* For some reason, the start address is 4 rather than 0. */
243         acq->mem_addr_done = 4;
244         acq->mem_addr_next = 4;
245         acq->mem_addr_stop = acq->mem_addr_fill;
246
247         /* Sample position in the packet output buffer. */
248         acq->out_index = 0;
249
250         regvals = devc->reg_write_seq;
251
252         regvals[0].reg = REG_DIV_BYPASS;
253         regvals[0].val = 1;
254
255         regvals[1].reg = REG_MEM_CTRL2;
256         regvals[1].val = 2;
257
258         regvals[2].reg = REG_MEM_CTRL4;
259         regvals[2].val = 4;
260
261         devc->reg_write_pos = 0;
262         devc->reg_write_len = 3;
263
264         if (issue_next_write_reg(sdi) == SR_OK)
265                 devc->state = STATE_READ_PREPARE;
266 }
267
268 /* Issue a command as an asynchronous USB transfer which returns the device
269  * to normal state after a read operation.  Sets a new device context state
270  * on success.
271  */
272 static void issue_read_end(const struct sr_dev_inst *sdi)
273 {
274         struct dev_context *devc;
275
276         devc = sdi->priv;
277
278         if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
279                 devc->state = STATE_READ_END;
280 }
281
282 /* Decode an incoming reponse to a buffer fill level request and act on it
283  * as appropriate.  Note that this function changes the device context state.
284  */
285 static void process_capture_length(const struct sr_dev_inst *sdi)
286 {
287         struct dev_context *devc;
288         struct acquisition_state *acq;
289
290         devc = sdi->priv;
291         acq  = devc->acquisition;
292
293         if (acq->xfer_in->actual_length != 4) {
294                 sr_err("Received size %d doesn't match expected size 4.",
295                        acq->xfer_in->actual_length);
296                 devc->transfer_error = TRUE;
297                 return;
298         }
299         acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
300
301         sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
302
303         if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
304                 issue_read_start(sdi);
305         else
306                 issue_read_end(sdi);
307 }
308
309 /* Initiate a sequence of register write commands with the effect of
310  * cancelling a running capture operation.  This sets a new device state
311  * if issuing the first command succeeds.
312  */
313 static void issue_stop_capture(const struct sr_dev_inst *sdi)
314 {
315         struct dev_context *devc;
316         struct regval_pair *regvals;
317
318         devc = sdi->priv;
319
320         if (devc->stopping_in_progress)
321                 return;
322
323         regvals = devc->reg_write_seq;
324
325         regvals[0].reg = REG_CMD_CTRL2;
326         regvals[0].val = 10;
327
328         regvals[1].reg = REG_CMD_CTRL3;
329         regvals[1].val = 0;
330
331         regvals[2].reg = REG_CMD_CTRL4;
332         regvals[2].val = 0;
333
334         regvals[3].reg = REG_CMD_CTRL1;
335         regvals[3].val = 0;
336
337         regvals[4].reg = REG_DIV_BYPASS;
338         regvals[4].val = 0;
339
340         devc->reg_write_pos = 0;
341         devc->reg_write_len = 5;
342
343         if (issue_next_write_reg(sdi) == SR_OK) {
344                 devc->stopping_in_progress = TRUE;
345                 devc->state = STATE_STOP_CAPTURE;
346         }
347 }
348
349 /* Decode an incoming capture status reponse and act on it as appropriate.
350  * Note that this function changes the device state.
351  */
352 static void process_capture_status(const struct sr_dev_inst *sdi)
353 {
354         uint64_t duration;
355         struct dev_context *devc;
356         struct acquisition_state *acq;
357         unsigned int mem_fill;
358         unsigned int flags;
359
360         devc = sdi->priv;
361         acq  = devc->acquisition;
362
363         if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
364                 sr_err("Received size %d doesn't match expected size %d.",
365                        acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
366                 devc->transfer_error = TRUE;
367                 return;
368         }
369
370         /* TODO: Find out the actual bit width of these fields as stored
371          * in the FPGA.  These fields are definitely less than 64 bit wide
372          * internally, and the unused bits occasionally even contain garbage.
373          */
374         mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
375         duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]);
376         flags    = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
377
378         /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
379          * However, the time base used for the duration is apparently not
380          * adjusted for this "boost" mode.  Whereas normally the duration
381          * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
382          * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
383          * counter period is the same as at the 100 MHz setting.
384          */
385         if (acq->bypass_clockdiv)
386                 acq->duration_now = duration * 4 / 5;
387         else
388                 acq->duration_now = duration;
389
390         sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
391                 mem_fill, acq->duration_now, flags);
392
393         if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
394                 sr_info("Capture triggered.");
395
396         acq->capture_flags = flags;
397
398         if (acq->duration_now >= acq->duration_max) {
399                 sr_dbg("Time limit reached, stopping capture.");
400                 issue_stop_capture(sdi);
401                 return;
402         }
403         devc->state = STATE_STATUS_WAIT;
404
405         if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
406                 sr_spew("Waiting for trigger.");
407         } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
408                 sr_dbg("Capture memory filled.");
409                 request_capture_length(sdi);
410         } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
411                 sr_spew("Sampling in progress.");
412         }
413 }
414
415 /* Issue a capture buffer read request as an asynchronous USB transfer.
416  * The address and size of the memory area to read are derived from the
417  * current acquisition state.
418  */
419 static void request_read_mem(const struct sr_dev_inst *sdi)
420 {
421         struct dev_context *devc;
422         struct acquisition_state *acq;
423         size_t count;
424
425         devc = sdi->priv;
426         acq  = devc->acquisition;
427
428         if (acq->mem_addr_next >= acq->mem_addr_stop)
429                 return;
430
431         /* Always read a multiple of 8 device words. */
432         count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
433         count = MIN(count, READ_CHUNK_LEN);
434
435         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
436         acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
437         acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
438         acq->xfer_buf_out[3] = LWLA_WORD_0(count);
439         acq->xfer_buf_out[4] = LWLA_WORD_1(count);
440
441         acq->xfer_out->length = 5 * sizeof(uint16_t);
442
443         if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
444                 acq->mem_addr_next += count;
445                 devc->state = STATE_READ_REQUEST;
446         }
447 }
448
449 /* Demangle and decompress incoming sample data from the capture buffer.
450  * The data chunk is taken from the acquisition state, and is expected to
451  * contain a multiple of 8 device words.
452  * All data currently in the acquisition buffer will be processed.  Packets
453  * of decoded samples are sent off to the session bus whenever the output
454  * buffer becomes full while decoding.
455  */
456 static int process_sample_data(const struct sr_dev_inst *sdi)
457 {
458         uint64_t sample;
459         uint64_t high_nibbles;
460         uint64_t word;
461         struct dev_context *devc;
462         struct acquisition_state *acq;
463         uint8_t *out_p;
464         uint32_t *slice;
465         struct sr_datafeed_packet packet;
466         struct sr_datafeed_logic logic;
467         size_t expect_len;
468         size_t actual_len;
469         size_t out_max_samples;
470         size_t out_run_samples;
471         size_t ri;
472         size_t in_words_left;
473         size_t si;
474
475         devc = sdi->priv;
476         acq  = devc->acquisition;
477
478         if (acq->mem_addr_done >= acq->mem_addr_stop
479                         || acq->samples_done >= acq->samples_max)
480                 return SR_OK;
481
482         in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
483                             READ_CHUNK_LEN);
484         expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
485         actual_len = acq->xfer_in->actual_length;
486
487         if (actual_len != expect_len) {
488                 sr_err("Received size %zu does not match expected size %zu.",
489                        actual_len, expect_len);
490                 devc->transfer_error = TRUE;
491                 return SR_ERR;
492         }
493         acq->mem_addr_done += in_words_left;
494
495         /* Prepare session packet. */
496         packet.type    = SR_DF_LOGIC;
497         packet.payload = &logic;
498         logic.unitsize = UNIT_SIZE;
499         logic.data     = acq->out_packet;
500
501         slice = acq->xfer_buf_in;
502         si = 0; /* word index within slice */
503
504         for (;;) {
505                 /* Calculate number of samples to write into packet. */
506                 out_max_samples = MIN(acq->samples_max - acq->samples_done,
507                                       PACKET_LENGTH - acq->out_index);
508                 out_run_samples = MIN(acq->run_len, out_max_samples);
509
510                 /* Expand run-length samples into session packet. */
511                 sample = acq->sample;
512                 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
513
514                 for (ri = 0; ri < out_run_samples; ++ri) {
515                         out_p[0] =  sample        & 0xFF;
516                         out_p[1] = (sample >>  8) & 0xFF;
517                         out_p[2] = (sample >> 16) & 0xFF;
518                         out_p[3] = (sample >> 24) & 0xFF;
519                         out_p[4] = (sample >> 32) & 0xFF;
520                         out_p += UNIT_SIZE;
521                 }
522                 acq->run_len -= out_run_samples;
523                 acq->out_index += out_run_samples;
524                 acq->samples_done += out_run_samples;
525
526                 /* Packet full or sample count limit reached? */
527                 if (out_run_samples == out_max_samples) {
528                         logic.length = acq->out_index * UNIT_SIZE;
529                         sr_session_send(sdi, &packet);
530                         acq->out_index = 0;
531
532                         if (acq->samples_done >= acq->samples_max)
533                                 return SR_OK; /* sample limit reached */
534                         if (acq->run_len > 0)
535                                 continue; /* need another packet */
536                 }
537
538                 if (in_words_left == 0)
539                         break; /* done with current chunk */
540
541                 /* Now work on the current slice. */
542                 high_nibbles = LWLA_TO_UINT32(slice[8]);
543                 word = LWLA_TO_UINT32(slice[si]);
544                 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
545
546                 if (acq->rle == RLE_STATE_DATA) {
547                         acq->sample = word & ALL_CHANNELS_MASK;
548                         acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
549                         if (word & RLE_FLAG_LEN_FOLLOWS)
550                                 acq->rle = RLE_STATE_LEN;
551                 } else {
552                         acq->run_len += word << 1;
553                         acq->rle = RLE_STATE_DATA;
554                 }
555
556                 /* Move to next word. */
557                 si = (si + 1) % 8;
558                 if (si == 0)
559                         slice += 9;
560                 --in_words_left;
561         }
562
563         /* Send out partially filled packet if this was the last chunk. */
564         if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
565                 logic.length = acq->out_index * UNIT_SIZE;
566                 sr_session_send(sdi, &packet);
567                 acq->out_index = 0;
568         }
569         return SR_OK;
570 }
571
572 /* Finish an acquisition session.  This sends the end packet to the session
573  * bus and removes the listener for asynchronous USB transfers.
574  */
575 static void end_acquisition(struct sr_dev_inst *sdi)
576 {
577         struct drv_context *drvc;
578         struct dev_context *devc;
579         struct sr_datafeed_packet packet;
580
581         drvc = sdi->driver->priv;
582         devc = sdi->priv;
583
584         if (devc->state == STATE_IDLE)
585                 return;
586
587         devc->state = STATE_IDLE;
588
589         /* Remove USB file descriptors from polling. */
590         usb_source_remove(sdi->session, drvc->sr_ctx);
591
592         packet.type = SR_DF_END;
593         sr_session_send(sdi, &packet);
594
595         lwla_free_acquisition_state(devc->acquisition);
596         devc->acquisition = NULL;
597
598         sdi->status = SR_ST_ACTIVE;
599 }
600
601 /* USB output transfer completion callback.
602  */
603 static void receive_transfer_out(struct libusb_transfer *transfer)
604 {
605         struct sr_dev_inst *sdi;
606         struct dev_context *devc;
607
608         sdi  = transfer->user_data;
609         devc = sdi->priv;
610
611         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
612                 sr_err("Transfer to device failed: %d.", transfer->status);
613                 devc->transfer_error = TRUE;
614                 return;
615         }
616
617         if (devc->reg_write_pos < devc->reg_write_len) {
618                 issue_next_write_reg(sdi);
619         } else {
620                 switch (devc->state) {
621                 case STATE_START_CAPTURE:
622                         devc->state = STATE_STATUS_WAIT;
623                         break;
624                 case STATE_STATUS_REQUEST:
625                         devc->state = STATE_STATUS_RESPONSE;
626                         submit_transfer(devc, devc->acquisition->xfer_in);
627                         break;
628                 case STATE_STOP_CAPTURE:
629                         if (sdi->status == SR_ST_ACTIVE)
630                                 request_capture_length(sdi);
631                         else
632                                 end_acquisition(sdi);
633                         break;
634                 case STATE_LENGTH_REQUEST:
635                         devc->state = STATE_LENGTH_RESPONSE;
636                         submit_transfer(devc, devc->acquisition->xfer_in);
637                         break;
638                 case STATE_READ_PREPARE:
639                         request_read_mem(sdi);
640                         break;
641                 case STATE_READ_REQUEST:
642                         devc->state = STATE_READ_RESPONSE;
643                         submit_transfer(devc, devc->acquisition->xfer_in);
644                         break;
645                 case STATE_READ_END:
646                         end_acquisition(sdi);
647                         break;
648                 default:
649                         sr_err("Unexpected device state %d.", devc->state);
650                         break;
651                 }
652         }
653 }
654
655 /* USB input transfer completion callback.
656  */
657 static void receive_transfer_in(struct libusb_transfer *transfer)
658 {
659         struct sr_dev_inst *sdi;
660         struct dev_context *devc;
661         struct acquisition_state *acq;
662
663         sdi  = transfer->user_data;
664         devc = sdi->priv;
665         acq  = devc->acquisition;
666
667         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
668                 sr_err("Transfer from device failed: %d.", transfer->status);
669                 devc->transfer_error = TRUE;
670                 return;
671         }
672
673         switch (devc->state) {
674         case STATE_STATUS_RESPONSE:
675                 process_capture_status(sdi);
676                 break;
677         case STATE_LENGTH_RESPONSE:
678                 process_capture_length(sdi);
679                 break;
680         case STATE_READ_RESPONSE:
681                 if (process_sample_data(sdi) == SR_OK
682                                 && acq->mem_addr_next < acq->mem_addr_stop
683                                 && acq->samples_done < acq->samples_max)
684                         request_read_mem(sdi);
685                 else
686                         issue_read_end(sdi);
687                 break;
688         default:
689                 sr_err("Unexpected device state %d.", devc->state);
690                 break;
691         }
692 }
693
694 /* Initialize the LWLA.  This downloads a bitstream into the FPGA
695  * and executes a simple device test sequence.
696  */
697 SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
698 {
699         struct dev_context *devc;
700         int ret;
701         uint32_t value;
702
703         devc = sdi->priv;
704
705         /* Force reload of bitstream */
706         devc->cur_clock_config = CONF_CLOCK_NONE;
707
708         ret = lwla_set_clock_config(sdi);
709
710         if (ret != SR_OK)
711                 return ret;
712
713         ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
714         if (ret != SR_OK)
715                 return ret;
716
717         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
718         if (ret != SR_OK)
719                 return ret;
720         sr_dbg("Received test word 0x%08X back.", value);
721         if (value != 0x12345678)
722                 return SR_ERR;
723
724         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
725         if (ret != SR_OK)
726                 return ret;
727         sr_dbg("Received test word 0x%08X back.", value);
728         if (value != 0x12345678)
729                 return SR_ERR;
730
731         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
732         if (ret != SR_OK)
733                 return ret;
734         sr_dbg("Received test word 0x%08X back.", value);
735         if (value != 0x87654321)
736                 return SR_ERR;
737
738         return ret;
739 }
740
741 SR_PRIV int lwla_convert_trigger(const struct sr_dev_inst *sdi)
742 {
743         struct dev_context *devc;
744         struct sr_trigger *trigger;
745         struct sr_trigger_stage *stage;
746         struct sr_trigger_match *match;
747         const GSList *l, *m;
748         uint64_t channel_index;
749
750         devc = sdi->priv;
751
752         devc->trigger_mask = 0;
753         devc->trigger_values = 0;
754         devc->trigger_edge_mask = 0;
755
756         if (!(trigger = sr_session_trigger_get(sdi->session)))
757                 return SR_OK;
758
759         if (g_slist_length(trigger->stages) > 1) {
760                 sr_err("This device only supports 1 trigger stage.");
761                 return SR_ERR;
762         }
763
764         for (l = trigger->stages; l; l = l->next) {
765                 stage = l->data;
766                 for (m = stage->matches; m; m = m->next) {
767                         match = m->data;
768                         if (!match->channel->enabled)
769                                 /* Ignore disabled channels with a trigger. */
770                                 continue;
771                         channel_index = 1 << match->channel->index;
772                         devc->trigger_mask |= channel_index;
773                         switch (match->match) {
774                         case SR_TRIGGER_ONE:
775                                 devc->trigger_values |= channel_index;
776                                 break;
777                         case SR_TRIGGER_RISING:
778                                 devc->trigger_values |= channel_index;
779                                 /* Fall through for edge mask. */
780                         case SR_TRIGGER_FALLING:
781                                 devc->trigger_edge_mask |= channel_index;
782                                 break;
783                         }
784                 }
785         }
786
787         return SR_OK;
788 }
789
790 /* Select the LWLA clock configuration.  If the clock source changed from
791  * the previous setting, this will download a new bitstream to the FPGA.
792  */
793 SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
794 {
795         struct dev_context *devc;
796         int ret;
797         enum clock_config choice;
798
799         devc = sdi->priv;
800
801         if (sdi->status == SR_ST_INACTIVE)
802                 choice = CONF_CLOCK_NONE;
803         else if (devc->cfg_clock_source == CLOCK_INTERNAL)
804                 choice = CONF_CLOCK_INT;
805         else if (devc->cfg_clock_edge == EDGE_POSITIVE)
806                 choice = CONF_CLOCK_EXT_RISE;
807         else
808                 choice = CONF_CLOCK_EXT_FALL;
809
810         if (choice != devc->cur_clock_config) {
811                 devc->cur_clock_config = CONF_CLOCK_NONE;
812                 ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]);
813                 if (ret == SR_OK)
814                         devc->cur_clock_config = choice;
815                 return ret;
816         }
817         return SR_OK;
818 }
819
820 /* Configure the LWLA in preparation for an acquisition session.
821  */
822 SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
823 {
824         struct dev_context *devc;
825         struct sr_usb_dev_inst *usb;
826         struct acquisition_state *acq;
827         struct regval_pair regvals[7];
828         int ret;
829
830         devc = sdi->priv;
831         usb  = sdi->conn;
832         acq  = devc->acquisition;
833
834         if (devc->limit_msec > 0) {
835                 acq->duration_max = devc->limit_msec;
836                 sr_info("Acquisition time limit %" PRIu64 " ms.",
837                         devc->limit_msec);
838         } else
839                 acq->duration_max = MAX_LIMIT_MSEC;
840
841         if (devc->limit_samples > 0) {
842                 acq->samples_max = devc->limit_samples;
843                 sr_info("Acquisition sample count limit %" PRIu64 ".",
844                         devc->limit_samples);
845         } else
846                 acq->samples_max = MAX_LIMIT_SAMPLES;
847
848         if (devc->cfg_clock_source == CLOCK_INTERNAL) {
849                 sr_info("Internal clock, samplerate %" PRIu64 ".",
850                         devc->samplerate);
851                 if (devc->samplerate == 0)
852                         return SR_ERR_BUG;
853                 /* At 125 MHz, the clock divider is bypassed. */
854                 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
855
856                 /* If only one of the limits is set, derive the other one. */
857                 if (devc->limit_msec == 0 && devc->limit_samples > 0)
858                         acq->duration_max = devc->limit_samples
859                                         * 1000 / devc->samplerate + 1;
860                 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
861                         acq->samples_max = devc->limit_msec
862                                         * devc->samplerate / 1000;
863         } else {
864                 acq->bypass_clockdiv = TRUE;
865
866                 if (devc->cfg_clock_edge == EDGE_NEGATIVE)
867                         sr_info("External clock, falling edge.");
868                 else
869                         sr_info("External clock, rising edge.");
870         }
871
872         regvals[0].reg = REG_MEM_CTRL2;
873         regvals[0].val = 2;
874
875         regvals[1].reg = REG_MEM_CTRL2;
876         regvals[1].val = 1;
877
878         regvals[2].reg = REG_CMD_CTRL2;
879         regvals[2].val = 10;
880
881         regvals[3].reg = REG_CMD_CTRL3;
882         regvals[3].val = 0x74;
883
884         regvals[4].reg = REG_CMD_CTRL4;
885         regvals[4].val = 0;
886
887         regvals[5].reg = REG_CMD_CTRL1;
888         regvals[5].val = 0;
889
890         regvals[6].reg = REG_DIV_BYPASS;
891         regvals[6].val = acq->bypass_clockdiv;
892
893         ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
894         if (ret != SR_OK)
895                 return ret;
896
897         return capture_setup(sdi);
898 }
899
900 /* Start the capture operation on the LWLA device.  Beginning with this
901  * function, all USB transfers will be asynchronous until the end of the
902  * acquisition session.
903  */
904 SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
905 {
906         struct dev_context *devc;
907         struct sr_usb_dev_inst *usb;
908         struct acquisition_state *acq;
909         struct regval_pair *regvals;
910
911         devc = sdi->priv;
912         usb  = sdi->conn;
913         acq  = devc->acquisition;
914
915         acq->duration_now  = 0;
916         acq->mem_addr_fill = 0;
917         acq->capture_flags = 0;
918
919         libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
920                                   (unsigned char *)acq->xfer_buf_out, 0,
921                                   &receive_transfer_out,
922                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT);
923
924         libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
925                                   (unsigned char *)acq->xfer_buf_in,
926                                   sizeof acq->xfer_buf_in,
927                                   &receive_transfer_in,
928                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT);
929
930         regvals = devc->reg_write_seq;
931
932         regvals[0].reg = REG_CMD_CTRL2;
933         regvals[0].val = 10;
934
935         regvals[1].reg = REG_CMD_CTRL3;
936         regvals[1].val = 1;
937
938         regvals[2].reg = REG_CMD_CTRL4;
939         regvals[2].val = 0;
940
941         regvals[3].reg = REG_CMD_CTRL1;
942         regvals[3].val = 0;
943
944         devc->reg_write_pos = 0;
945         devc->reg_write_len = 4;
946
947         devc->state = STATE_START_CAPTURE;
948
949         return issue_next_write_reg(sdi);
950 }
951
952 /* Allocate an acquisition state object.
953  */
954 SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
955 {
956         struct acquisition_state *acq;
957
958         acq = g_try_new0(struct acquisition_state, 1);
959         if (!acq) {
960                 sr_err("Acquisition state malloc failed.");
961                 return NULL;
962         }
963
964         acq->xfer_in = libusb_alloc_transfer(0);
965         if (!acq->xfer_in) {
966                 sr_err("Transfer malloc failed.");
967                 g_free(acq);
968                 return NULL;
969         }
970
971         acq->xfer_out = libusb_alloc_transfer(0);
972         if (!acq->xfer_out) {
973                 sr_err("Transfer malloc failed.");
974                 libusb_free_transfer(acq->xfer_in);
975                 g_free(acq);
976                 return NULL;
977         }
978
979         return acq;
980 }
981
982 /* Deallocate an acquisition state object.
983  */
984 SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
985 {
986         if (acq) {
987                 libusb_free_transfer(acq->xfer_out);
988                 libusb_free_transfer(acq->xfer_in);
989                 g_free(acq);
990         }
991 }
992
993 /* USB I/O source callback.
994  */
995 SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
996 {
997         struct sr_dev_inst *sdi;
998         struct dev_context *devc;
999         struct drv_context *drvc;
1000         struct timeval tv;
1001         int ret;
1002
1003         (void)fd;
1004
1005         sdi  = cb_data;
1006         devc = sdi->priv;
1007         drvc = sdi->driver->priv;
1008
1009         if (!devc || !drvc)
1010                 return FALSE;
1011
1012         /* No timeout: return immediately. */
1013         tv.tv_sec  = 0;
1014         tv.tv_usec = 0;
1015
1016         ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
1017                                                      &tv, NULL);
1018         if (ret != 0)
1019                 sr_err("Event handling failed: %s.", libusb_error_name(ret));
1020
1021         /* If no event flags are set the timeout must have expired. */
1022         if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
1023                 if (sdi->status == SR_ST_STOPPING)
1024                         issue_stop_capture(sdi);
1025                 else
1026                         request_capture_status(sdi);
1027         }
1028
1029         /* Check if an error occurred on a transfer. */
1030         if (devc->transfer_error)
1031                 end_acquisition(sdi);
1032
1033         return TRUE;
1034 }