X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=tests%2Fanalog.c;h=8490bf9fca2a14e90cb4e04eb4f2f72fc5a9ddb3;hb=7601dca780c21facad042dd716d76fe7923d7eab;hp=98d55b1cc6f3958cb6c1f039efef3186d2693a8b;hpb=32054b0963b84dca07c088d526b7f7936b73ac10;p=libsigrok.git diff --git a/tests/analog.c b/tests/analog.c index 98d55b1c..8490bf9f 100644 --- a/tests/analog.c +++ b/tests/analog.c @@ -24,6 +24,36 @@ #include #include "lib.h" +/* + * This test sequence cannot use internal helpers, since it's limited + * to the library's public API (by design). That is why there are local + * helper routines for endianess handling. + */ + +static int host_be; + +static void get_host_endianess(void) +{ + int x; + uint8_t *p; + + p = (void *)&x; + x = 1; + host_be = *p ? 0 : 1; +} + +static void swap_bytes(uint8_t *buff, size_t blen) +{ + size_t idx; + uint8_t tmp; + + for (idx = 0; idx < blen / 2; idx++) { + tmp = buff[blen - 1 - idx]; + buff[blen - 1 - idx] = buff[idx]; + buff[idx] = tmp; + } +} + static int sr_analog_init_(struct sr_datafeed_analog *analog, struct sr_analog_encoding *encoding, struct sr_analog_meaning *meaning, @@ -123,6 +153,281 @@ START_TEST(test_analog_to_float_null) } END_TEST +START_TEST(test_analog_to_float_conv) +{ + static const int with_diag = 0; + + struct { + const char *desc; + void *bytes; + size_t nums, unit; + int is_fp, is_sign, is_be; + int scale, offset; + float *want; + } *item, items[] = { + /* Test to cover multiple values in an array, odd numbers. */ + { + .desc = "float single input, native, value array", + .bytes = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, }, + .nums = 6, .unit = sizeof(float), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .scale = 1, .offset = 0, + .want = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, }, + }, + /* Tests to cover floating point input data conversion. */ + { + .desc = "float single input, native", + .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + .nums = 4, .unit = sizeof(float), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "float single input, big endian", + .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + .nums = 4, .unit = sizeof(float), + .is_fp = TRUE, .is_sign = FALSE, .is_be = TRUE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "float single input, little endian", + .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + .nums = 4, .unit = sizeof(float), + .is_fp = TRUE, .is_sign = FALSE, .is_be = FALSE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "float double input, native", + .bytes = (double[]){ 1.0, 2.0, 3.0, 4.0, }, + .nums = 4, .unit = sizeof(double), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "float half input, unsupported, fake bytes", + .bytes = (uint16_t[]){ 0x1234, 0x5678, }, + .nums = 2, .unit = sizeof(uint16_t), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .want = NULL, + }, + { + .desc = "float quad input, unsupported, fake bytes", + .bytes = (uint64_t[]){ 0x0, 0x0, }, + .nums = 1, .unit = 2 * sizeof(uint64_t), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .want = NULL, + }, + /* Tests to cover integer input data conversion. */ + { + .desc = "int u8 input", + .bytes = (uint8_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint8_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = host_be, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "int i8 input", + .bytes = (int8_t[]){ -1, 2, -3, 4, }, + .nums = 4, .unit = sizeof(int8_t), + .is_fp = FALSE, .is_sign = TRUE, .is_be = host_be, + .scale = 1, .offset = 0, + .want = (float[]){ -1.0, 2.0, -3.0, 4.0, }, + }, + { + .desc = "int u16 input, big endian", + .bytes = (uint16_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint16_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "int u16 input, little endian", + .bytes = (uint16_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint16_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "int i16 input, big endian", + .bytes = (int16_t[]){ 1, -2, 3, -4, }, + .nums = 4, .unit = sizeof(int16_t), + .is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, -2.0, 3.0, -4.0, }, + }, + { + .desc = "int i16 input, little endian", + .bytes = (int16_t[]){ 1, -2, 3, -4, }, + .nums = 4, .unit = sizeof(int16_t), + .is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, -2.0, 3.0, -4.0, }, + }, + { + .desc = "int u32 input, big endian", + .bytes = (uint32_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint32_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "int u32 input, little endian", + .bytes = (uint32_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint32_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + }, + { + .desc = "int i32 input, big endian", + .bytes = (int32_t[]){ 1, 2, -3, -4, }, + .nums = 4, .unit = sizeof(int32_t), + .is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, -3.0, -4.0, }, + }, + { + .desc = "int i32 input, little endian", + .bytes = (int32_t[]){ 1, 2, -3, -4, }, + .nums = 4, .unit = sizeof(int32_t), + .is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE, + .scale = 1, .offset = 0, + .want = (float[]){ 1.0, 2.0, -3.0, -4.0, }, + }, + { + .desc = "int u64 input, unsupported", + .bytes = (uint64_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint64_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, + .want = NULL, + }, + /* Tests to cover scale/offset calculation. */ + { + .desc = "float single input, scale + offset", + .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, + .nums = 4, .unit = sizeof(float), + .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, + .scale = 3, .offset = 2, + .want = (float[]){ 5.0, 8.0, 11.0, 14.0, }, + }, + { + .desc = "int u8 input, scale + offset", + .bytes = (uint8_t[]){ 1, 2, 3, 4, }, + .nums = 4, .unit = sizeof(uint8_t), + .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, + .scale = 3, .offset = 2, + .want = (float[]){ 5.0, 8.0, 11.0, 14.0, }, + }, + }; + const size_t max_floats = 6; + struct sr_channel ch = { + .index = 0, + .enabled = TRUE, + .type = SR_CHANNEL_LOGIC, + .name = "input", + }; + + size_t item_idx; + char item_text[32]; + struct sr_datafeed_analog analog; + struct sr_analog_encoding encoding; + struct sr_analog_meaning meaning; + struct sr_analog_spec spec; + size_t byte_count, value_idx; + uint8_t f_in[max_floats * sizeof(double)], *byte_ptr; + float f_out[max_floats]; + int ret; + float want, have; + + for (item_idx = 0; item_idx < ARRAY_SIZE(items); item_idx++) { + item = &items[item_idx]; + + /* Construct "4x u32le" style test item identification. */ + snprintf(item_text, sizeof(item_text), "%zu: %zux %c%zu%s", + item_idx, item->nums, + item->is_fp ? 'f' : item->is_sign ? 'i' : 'u', + item->unit * 8, item->is_be ? "be" : "le"); + if (with_diag) { + fprintf(stderr, "%s -- %s", item_text, item->desc); + fflush(stderr); + } + + /* Copy input data bytes, optionally adjust endianess. */ + byte_count = item->nums * item->unit; + memcpy(f_in, item->bytes, byte_count); + if (item->is_be != host_be) { + byte_ptr = &f_in[0]; + for (value_idx = 0; value_idx < item->nums; value_idx++) { + swap_bytes(byte_ptr, item->unit); + byte_ptr += item->unit; + } + } + if (with_diag) { + fprintf(stderr, " -- bytes:"); + for (value_idx = 0; value_idx < byte_count; value_idx++) + fprintf(stderr, " %02x", f_in[value_idx]); + fflush(stderr); + } + + /* Setup the analog feed description. */ + sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); + analog.num_samples = item->nums; + analog.data = &f_in[0]; + encoding.unitsize = item->unit; + encoding.is_float = item->is_fp; + encoding.is_signed = item->is_sign; + encoding.is_bigendian = item->is_be; + encoding.scale.p = item->scale ? item->scale : 1; + encoding.offset.p = item->offset; + meaning.channels = g_slist_append(NULL, &ch); + + /* Convert to an array of single precision float values. */ + ret = sr_analog_to_float(&analog, &f_out[0]); + if (!item->want) { + fail_if(ret == SR_OK, + "%s: sr_analog_to_float() passed", item_text); + if (with_diag) { + fprintf(stderr, " -- expected fail, OK\n"); + fflush(stderr); + } + continue; + } + fail_unless(ret == SR_OK, + "%s: sr_analog_to_float() failed: %d", item_text, ret); + if (with_diag) { + fprintf(stderr, " -- float:"); + for (value_idx = 0; value_idx < item->nums; value_idx++) + fprintf(stderr, " %f", f_out[value_idx]); + fprintf(stderr, "\n"); + fflush(stderr); + } + + /* + * Compare result data to the expectation. No tolerance + * is required here due to the input set's values. This + * test concentrates on endianess / data type / bit count + * conversion and simple scale/offset calculation, neither + * on precision nor rounding nor truncation. + */ + for (value_idx = 0; value_idx < item->nums; value_idx++) { + want = item->want[value_idx]; + have = f_out[value_idx]; + fail_unless(want == have, + "%s: input %f != output %f", + item_text, want, have); + } + } +} +END_TEST + START_TEST(test_analog_si_prefix) { struct { @@ -381,15 +686,24 @@ Suite *suite_analog(void) Suite *s; TCase *tc; + get_host_endianess(); + s = suite_create("analog"); tc = tcase_create("analog_to_float"); tcase_add_test(tc, test_analog_to_float); tcase_add_test(tc, test_analog_to_float_null); + tcase_add_test(tc, test_analog_to_float_conv); + suite_add_tcase(s, tc); + + tc = tcase_create("analog_si_unit"); tcase_add_test(tc, test_analog_si_prefix); tcase_add_test(tc, test_analog_si_prefix_null); tcase_add_test(tc, test_analog_unit_to_string); tcase_add_test(tc, test_analog_unit_to_string_null); + suite_add_tcase(s, tc); + + tc = tcase_create("analog_rational"); tcase_add_test(tc, test_set_rational); tcase_add_test(tc, test_set_rational_null); tcase_add_test(tc, test_cmp_rational);