X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=src%2Fhardware%2Fhung-chang-dso-2100%2Fprotocol.c;h=92d52c35e9a26d11401f330847f6310eb7bacd95;hb=50bc52f3a6102ad687c8abe11cf1e39ab44b1e6a;hp=1a5dd33d959583b715c380f644a80f9591470885;hpb=05ac4a9828fc73bee0d420e96104d9cf3c5b658a;p=libsigrok.git diff --git a/src/hardware/hung-chang-dso-2100/protocol.c b/src/hardware/hung-chang-dso-2100/protocol.c index 1a5dd33d..92d52c35 100644 --- a/src/hardware/hung-chang-dso-2100/protocol.c +++ b/src/hardware/hung-chang-dso-2100/protocol.c @@ -17,14 +17,410 @@ * along with this program. If not, see . */ +#include +#include +#include #include "protocol.h" -SR_PRIV int hung_chang_dso_2100_receive_data(int fd, int revents, void *cb_data) +/* The firmware can be in the following states: + * 0x00 Temporary state during initialization + * Automatically transitions to state 0x01 + * 0x01 Idle, this state updates calibration caps + * Send 0x02 to go to state 0x21 + * Send 0x03 to go to state 0x03 + * Send 0x04 to go to state 0x14 + * 0x21 Trigger is armed, caps are _not_ updated + * Send 0x99 to check if trigger event occured + * if triggered, goes to state 0x03 + * else stays in state 0x21 + * Send 0xFE to generate artificial trigger event + * returns to state 0x21 + * but next 0x99 will succeed + * Send 0xFF to go to state 0x03 (abort capture) + * 0x03 Extracts two 500 sample subsets from the 5000 + * sample capture buffer for readout + * When reading samples, the FPGA starts at the + * first of the 1000 samples and automatically + * advances to the next. + * Send 0x04 to go to state 0x0F + * 0x14 Scroll acquisition mode, update calib caps + * When reading samples, the FPGA provides the + * current value of the ADCs + * Send 0xFF to go to state 0x0F + * 0x0F Send channel number (1 or 2) to go to next state + * There are actually two 0x0F states in series + * which both expect the channel number. + * If the values don't match, they are discarded. + * The next state 0x05 is entered anyway + * 0x05 Same as state 0x0F but expects sample rate index. + * The next state is 0x08 + * 0x08 Same as state 0x0F but expects step size + 1 for + * the second 500 sample subset + * The next state is 0x09 + * 0x09 Same as state 0x0F but expects step size + 1 for + * the first 500 sample subset + * The next state is 0x06 + * 0x06 Same as state 0x0F but expects vdiv and coupling + * configuration for the first channel and trigger + * source selection. + * (U46 in the schematics) + * The next state is 0x07 + * 0x07 Same as state 0x0F but expects vdiv and coupling + * configuration for the first channel and trigger + * type (edge, TV hsync, TV vsync). + * (U47 in the schematics) + * The next state is 0x0A + * 0x0A Same as state 0x0F but expects a parameter X + 1 + * that determines the offset of the second 500 sample + * subset + * Offset = 5 * X * step size for first subset + * The next state is 0x0B + * 0x0B Same as state 0x0F but expects the type of edge to + * trigger on (rising or falling) + * The next state is 0x0C + * 0x0C Same as state 0x0F but expects the calibration + * value for the first channel's position + * (POS1 in the schematics) + * The next state is 0x0D + * 0x0D Same as state 0x0F but expects the calibration + * value for the second channel's position + * (POS2 in the schematics) + * The next state is 0x0E + * 0x0E Same as state 0x0F but expects the trigger level + * (TRIGLEVEL in the schematics) + * Keep in mind that trigger sources are AC coupled + * The next state is 0x10 + * 0x10 Same as state 0x0F but expects the calibration + * value for the first channel's offset + * (OFFSET1 in the schematics) + * The next state is 0x11 + * 0x11 Same as state 0x0F but expects the calibration + * value for the first channel's gain + * (GAIN1 in the schematics) + * The next state is 0x12 + * 0x12 Same as state 0x0F but expects the calibration + * value for the second channel's offset + * (OFFSET2 in the schematics) + * The next state is 0x13 + * 0x13 Same as state 0x0F but expects the calibration + * value for the second channel's gain + * (GAIN2 in the schematics) + * The next state is 0x01 + * + * The Mailbox appears to be half duplex. + * If one side writes a byte into the mailbox, it + * reads 0 until the other side has written a byte. + * So you can't transfer 0. + * + * As the status signals are unconnected, the device is not + * IEEE1284 compliant and can't make use of EPP or ECP transfers. + * It drives the data lines when control is set to: + * 0 => Channel A data + * C1284_NAUTOFD => Channel B data + * C1284_NSELECTIN => Mailbox + * C1284_NSELECTIN | C1284_NAUTOFD => 0x55 + * + * It takes about 200ns for the data lines to become stable after + * the control lines have been changed. This driver assumes that + * parallel port access is slow enough to not require additional + * delays. + * + * Channel values in state 0x14 and the mailbox can change their + * value while they are selected, the latter of course only from + * 0 to a valid state. Beware of intermediate values. + * + * SRAM N layout (N = 1 or 2): + * 0x0000-0x13ff samples captured from ADC N + * 0x4000-0x41f3 bytes extracted from 0x6000 with step1 + * (both ADCs but only channel N) + * 0x41f4-0x43e7 bytes extracted from 0x6000+5*step1*shift + * with step2 (both ADCs but only channel N) + * 0x43e8-0x43ea {0x01, 0xfe, 0x80} + * 0x43eb-0x444e copy of bytes from 0x4320 + * 0x6000-0x7387 interleaved SRAM 1 and SRAM 2 bytes from + * 0x0001 to 0x09c5 after channel N was captured + * + * On a trigger event the FPGA directs the ADC samples to the region + * at 0x0000. The microcontroller then copies 5000 samples from 0x0001 + * to 0x6000. Each time state 0x03 is entered, the bytes from 0x4000 + * to 0x444e are filled and the start address for readout is reset to + * 0x4000. Readout will wrap around back to 0x4000 after reaching 0x7fff. + * + * As you can see from the layout, it was probably intended to capture + * 5000 samples for both probes before they are read out. We don't do that + * to be able to read the full 10k samples captured by the FPGA. It would + * be useless anyway if you don't capture repetitive signals. We're also + * not reading the two samples at 0x0000 to save a few milliseconds. + */ + +static const struct { + uint16_t num; + uint8_t step1; + uint8_t shift; + uint8_t interleave; +} readout_steps[] = { + { 1000, 1, 100, 0 }, + { 500, 100, 2, 0 }, + { 500, 100, 3, 0 }, + { 500, 100, 4, 0 }, + { 500, 100, 5, 0 }, + { 500, 100, 6, 0 }, + { 500, 100, 7, 0 }, + { 500, 100, 8, 0 }, + { 500, 100, 9, 0 }, + { 499, 212, 41, 1 }, + { 500, 157, 56, 1 }, + { 500, 247, 36, 1 }, + { 500, 232, 180, 1 }, + { 500, 230, 182, 1 }, + { 120, 212, 43, 1 } +}; + +SR_PRIV void hung_chang_dso_2100_reset_port(struct parport *port) +{ + ieee1284_write_control(port, + C1284_NSTROBE | C1284_NAUTOFD | C1284_NSELECTIN); + ieee1284_data_dir(port, 0); +} + +SR_PRIV gboolean hung_chang_dso_2100_check_id(struct parport *port) +{ + gboolean ret = FALSE; + + if (ieee1284_data_dir(port, 1) != E1284_OK) + goto fail; + + ieee1284_write_control(port, C1284_NSTROBE | C1284_NAUTOFD | C1284_NSELECTIN); + ieee1284_write_control(port, C1284_NAUTOFD | C1284_NSELECTIN); + + if (ieee1284_read_data(port) != 0x55) + goto fail; + + ret = TRUE; +fail: + hung_chang_dso_2100_reset_port(port); + + return ret; +} + +SR_PRIV void hung_chang_dso_2100_write_mbox(struct parport *port, uint8_t val) +{ + sr_dbg("mbox <= %X", val); + ieee1284_write_control(port, + C1284_NSTROBE | C1284_NINIT | C1284_NSELECTIN); + ieee1284_data_dir(port, 0); + ieee1284_write_data(port, val); + ieee1284_write_control(port, C1284_NINIT | C1284_NSELECTIN); + ieee1284_write_control(port, + C1284_NSTROBE | C1284_NINIT | C1284_NSELECTIN); + ieee1284_data_dir(port, 1); + ieee1284_write_control(port, + C1284_NSTROBE | C1284_NAUTOFD | C1284_NINIT | C1284_NSELECTIN); +} + +SR_PRIV uint8_t hung_chang_dso_2100_read_mbox(struct parport *port, float timeout) +{ + GTimer *timer = NULL; + uint8_t val; + + ieee1284_write_control(port, C1284_NSTROBE | C1284_NSELECTIN); + ieee1284_write_control(port, C1284_NSELECTIN); + + for (;;) { + if (ieee1284_read_data(port)) { + /* Always read the value a second time. + * The first one may be unstable. */ + val = ieee1284_read_data(port); + break; + } + if (!timer) { + timer = g_timer_new(); + } else if (g_timer_elapsed(timer, NULL) > timeout) { + val = 0; + break; + } + } + + ieee1284_write_control(port, C1284_NSTROBE | C1284_NSELECTIN); + ieee1284_write_control(port, + C1284_NSTROBE | C1284_NAUTOFD | C1284_NINIT | C1284_NSELECTIN); + + if (timer) + g_timer_destroy(timer); + sr_dbg("mbox == %X", val); + return val; +} + +SR_PRIV int hung_chang_dso_2100_move_to(const struct sr_dev_inst *sdi, uint8_t target) +{ + struct dev_context *devc = sdi->priv; + int timeout = 40; + uint8_t c; + + while (timeout--) { + c = hung_chang_dso_2100_read_mbox(sdi->conn, 0.1); + if (c == target) + return SR_OK; + + switch (c) { + case 0x00: + /* Can happen if someone wrote something into + * the mbox that was not expected by the uC. + * Alternating between 0xff and 4 helps in + * all states. */ + c = (timeout & 1) ? 0xFF : 0x04; + break; + case 0x01: + switch (target) { + case 0x21: c = 2; break; + case 0x03: c = 3; break; + default: c = 4; + } + break; + case 0x03: c = 4; break; + case 0x05: c = devc->rate + 1; break; + case 0x06: c = devc->cctl[0]; break; + case 0x07: c = devc->cctl[1]; break; + case 0x08: c = 1 /* step 2 */ + 1 ; break; + case 0x09: c = readout_steps[devc->step].step1 + 1; break; + case 0x0A: c = readout_steps[devc->step].shift + 1; break; + case 0x0B: c = devc->edge + 1; break; + case 0x0C: c = devc->pos[0]; break; + case 0x0D: c = devc->pos[1]; break; + case 0x0E: c = devc->tlevel; break; + case 0x0F: + if (!devc->channel) + c = 1; + else if (readout_steps[devc->step].interleave) + c = devc->adc2 ? 2 : 1; + else + c = devc->channel; + break; + case 0x10: c = devc->offset[0]; break; + case 0x11: c = devc->gain[0]; break; + case 0x12: c = devc->offset[1]; break; + case 0x13: c = devc->gain[1]; break; + case 0x14: + case 0x21: c = 0xFF; break; + default: + return SR_ERR_DATA; + } + hung_chang_dso_2100_write_mbox(sdi->conn, c); + } + return SR_ERR_TIMEOUT; +} + +static void skip_samples(struct parport *port, uint8_t ctrl, size_t num) +{ + while (num--) { + ieee1284_write_control(port, ctrl & ~C1284_NSTROBE); + ieee1284_write_control(port, ctrl); + } +} + +static void read_samples(struct parport *port, uint8_t ctrl, uint8_t *buf, size_t num, size_t stride) +{ + while (num--) { + ieee1284_write_control(port, ctrl & ~C1284_NSTROBE); + *buf = ieee1284_read_data(port); + buf += stride; + ieee1284_write_control(port, ctrl); + } +} + +static void push_samples(const struct sr_dev_inst *sdi, uint8_t *buf, size_t num) +{ + struct dev_context *devc = sdi->priv; + float *data = devc->samples; + struct sr_datafeed_analog analog; + struct sr_analog_encoding encoding; + struct sr_analog_meaning meaning; + struct sr_analog_spec spec; + struct sr_datafeed_packet packet = { + .type = SR_DF_ANALOG, + .payload = &analog, + }; + float factor = devc->factor; + + while (num--) + data[num] = (buf[num] - 0x80) * factor; + + float vdivlog = log10f(factor); + int digits = -(int)vdivlog + (vdivlog < 0.0); + + sr_analog_init(&analog, &encoding, &meaning, &spec, digits); + analog.meaning->channels = devc->enabled_channel; + analog.meaning->mq = SR_MQ_VOLTAGE; + analog.meaning->unit = SR_UNIT_VOLT; + analog.meaning->mqflags = 0; + analog.num_samples = num; + analog.data = data; + + sr_session_send(sdi, &packet); +} + +static int read_subframe(const struct sr_dev_inst *sdi, uint8_t *buf) { - const struct sr_dev_inst *sdi; + struct dev_context *devc = sdi->priv; + uint8_t sig[3], ctrl; + unsigned int num; + gboolean interleave; + + interleave = readout_steps[devc->step].interleave; + ctrl = C1284_NSTROBE; + if ((interleave && devc->adc2) || (!interleave && devc->channel == 2)) + ctrl |= C1284_NAUTOFD; + + ieee1284_write_control(sdi->conn, ctrl); + num = readout_steps[devc->step].num; + if (num < 1000) + skip_samples(sdi->conn, ctrl, 1000 - num); + read_samples(sdi->conn, ctrl, buf + (devc->adc2 ? 1 : 0), num, + interleave ? 2 : 1); + read_samples(sdi->conn, ctrl, sig, 3, 1); + if (sig[0] != 0x01 || sig[1] != 0xfe || sig[2] != 0x80) { + if (--devc->retries) { + sr_dbg("Missing signature at end of buffer, %i tries remaining", + devc->retries); + return TRUE; + } else { + sr_err("Failed to read frame without transfer errors"); + devc->step = 0; + } + } else { + if (interleave && !devc->adc2) { + devc->adc2 = TRUE; + devc->retries = MAX_RETRIES; + return TRUE; + } else { + if (interleave) + num *= 2; + if (!devc->step) { + push_samples(sdi, buf, 6); + std_session_send_df_trigger(sdi); + buf += 6; + num -= 6; + } + push_samples(sdi, buf, num); + if (++devc->step > devc->last_step) + devc->step = 0; + } + } + + devc->adc2 = FALSE; + devc->retries = MAX_RETRIES; + + return devc->step > 0; +} + +SR_PRIV int hung_chang_dso_2100_poll(int fd, int revents, void *cb_data) +{ + struct sr_dev_inst *sdi; struct dev_context *devc; + uint8_t state, buf[1000]; (void)fd; + (void)revents; if (!(sdi = cb_data)) return TRUE; @@ -32,9 +428,39 @@ SR_PRIV int hung_chang_dso_2100_receive_data(int fd, int revents, void *cb_data) if (!(devc = sdi->priv)) return TRUE; - if (revents == G_IO_IN) { - /* TODO */ + if (devc->state_known) + hung_chang_dso_2100_write_mbox(sdi->conn, 0x99); + + state = hung_chang_dso_2100_read_mbox(sdi->conn, 0.00025); + devc->state_known = (state != 0x00); + + if (!devc->state_known || state == 0x21) + return TRUE; + + if (state != 0x03) { + sr_err("Unexpected state 0x%X while checking for trigger", state); + return FALSE; + } + + std_session_send_df_frame_begin(sdi); + + if (devc->channel) { + while (read_subframe(sdi, buf)) { + if (hung_chang_dso_2100_move_to(sdi, 1) != SR_OK) + break; + hung_chang_dso_2100_write_mbox(sdi->conn, 3); + g_usleep(1700); + if (hung_chang_dso_2100_read_mbox(sdi->conn, 0.02) != 0x03) + break; + } } + std_session_send_df_frame_end(sdi); + + if (++devc->frame >= devc->frame_limit) + sr_dev_acquisition_stop(sdi); + else + hung_chang_dso_2100_move_to(sdi, 0x21); + return TRUE; }